Determination of Beeswax Hydrocarbons by Gas Chromatography with a Mass Detector (GC -MS ) Technique

Open access

Abstract

Here we describe a method of hydrocarbon (alkanes, alkenes, dienes) identification and quantitative determination of linear saturated hydrocarbons (n-alkanes) in beeswax using gas chromatography with a mass detector technique (GC -MS ). Beeswax hydrocarbons were isolated using a solid-phase extraction (SPE ) technique with neutral aluminum oxide (Alumina - N, 1000 mg, 6 mL), then were separated on a non-polar gas chromatography column ZB-5HT INFERNO (20 m×0.18 mm×0.18 μm). Qquantitative analysis of n-alkanes was conducted by the method of internal standard with squalane used as the internal standard. The basic parameters of validation (linearity and working range, limit of determination, repeatability and reproducibility, recovery) were determined. For all of the identified compounds, satisfactory (≥0.997) coefficients of correlation in the working ranges of the method (from 0.005 to 5.0 g/100 g) were obtained. The elaborated method was characterized by satisfactory repeatability and within-laboratory reproducibility. The average coefficients of variation for the total n-alkanes did not exceed 2% under conditions of repeatability or 4% under conditions of reproducibility. The recovery for individual n-alkanes was above 94%; for their total content, it was 100.5%. In beeswax originating from Apis mellifera, n-alkanes containing from 20 to 35 carbon atoms in their molecules were determined. The total content of these alkanes was between 9.08 g and 10.86 g/100 g (on average, 9.81 g/100 g). Additionally, apart from the saturated hydrocarbons, unsaturated hydrocarbons and dienes were identified.

Aichholz R., Lorbeer E. (1996) Use of methoxy-terminated poly (diphenyl 1H,1H,2H,2H- perfluorodecylmethyl) siloxane as stationary-phase for high-temperature capillary gas-chromatography and its application in the analysis of beeswax. Journal of Microcolumn Separation 8(8): 553-559. DOI: 10.1002/(SICI)1520-667X(1996)8:8<553::AID-MCS5>3.0.CO;2-0/pdf Aichholz R., Lorbeer E. (1999) Investigation of combwax of honeybees with high-temperature gas chromatography and high - temperature gas chromatography - chemical ionization mass spectrometry. I - High-temperature gas chromatography. Journal of Chromatography A 855: 601-615. DOI: 10.1016/S0021-9673(99)00725-6

Aichholz R., Lorbeer E. (2000) Investigation of combwax of honeybees with high-temperature gas chromatography and high - temperature gas chromatography - chemical ionization mass spectrometry. II - High-temperature gas chromatography - chemical ionization mass spectrometry. Journal of Chromatography A 883: 75-88. DOI: 10.1016/S0021-9673(00)00386-1

Bernal J. L., Jimenez J. J., del Nozal M. J., Toribio L., Martin M. T. (2005) Physico-chemical parameters for the characterization of pure beeswax and detection of adulterations. European Journal of Lipid Science and Technology 107(3): 158-166. DOI: 10.1002/ejlt.200401105

Bogdanov S. (2004) Beeswax: quality issues today. Bee World 85(3): 46-50.

Curyło J., Ignaszewska T. (1969) Porównanie dwu metod oznaczania węglowodorów w wosku pszczelim. Pszczelnicze Zeszyty Naukowe 13(1-2-3): 137-141.

Curyło J., Zalewski W. (1957a) Charakterystyka krajowego wosku pszczelego z naturalnych nieczerwionych plastrów oraz charakterystyka węglowodorów wydzielonych z niego przy pomocy chromatografii. Pszczelnicze Zeszyty Naukowe 1(3): 105-117.

Curyło J., Zalewski W. (1957b) Ilościowa metoda oznaczania parafiną i cerezyną. Pszczelnicze Zeszyty Naukowe 1(3): 118-128.

DGF-M-V-6 (1957) DGF - Einheitsmethoden - Abteilung M - Wachse. German Standard -Beeswax. 29 pp. Available at: http://www.dgfett.de/methods/inhaltsverzeichnis.pdf

Downing T. D., Kranz Z. H., Lamberton J. A., Murray K. E., Redcliffe A. H. (1961) Studies in waxes. XVIII. Beeswax: A spectroscopic and gas chromatographic examination. Australian Journal of Chemistry 14: 253-263.

EFSA (2007) Beeswax (E 901) as a glazing agent and as carrier for flavours. The EFSA Journal 615: 1-28.

Fuschs W., de Jong A. (1954) Chromatographische Zerlegung von Bienenwachs. Fette-Seifen-Anstrichmittel 56(4): 218-220.

Giumanini A. G., Verardo G., Strazzolini P., Hepburn H. R. (1995) Rapid detection of high-molecular-mass dienes in beeswax. Journal of Chromatography A 704: 224-227. DOI: 10.1016/0021-9673(95)00145-D

Jimenez J. J., Bernal J. L., Aumente S., Toribio L., Bernal Jr. J. (2003) Quality assurance of commercial beeswax II.

Gas chromatography - electron impact ionization mass spectrometry of alcohols and acids. Journal of Chromatography A 1007: 101-116. DOI: 10.1016/S0021-9673(03)00962-2

Jimenez J. J., Bernal J. L., del Nozal M. J., Martin M. T., Bernal J. (2006) Sample preparation methods for beeswax characterization by gas chromatography with flame ionization. Journal of Chromatography A 1129: 262-272. DOI: 10.1016/j.chroma.2006.06.098

Jimenez J. J., Bernal J. L., del Nozal M. J., Martin M. T., Toribio L. (2009) Identification of adulterants added to beeswax: Estimation of detectable minimum percentages. European Journal of Lipid Science and Technology 111: 902-911. DOI: 10.1002/ejlt.200800263

Jimenez J. J., Bernal J. L., del Nozal M. J., Toribio L., Bernal J. (2007) Detection of beeswax adulterations using concentration guide-values. European Journal of Lipid Science and Technology 109: 682-690. DOI: 10.1002/ ejlt.200600308

Jimenez J. J., Bernal J. L., Aumente S., del Nozal., Martin M. T., Bernal Jr. J. (2004) Quality assurance of commercial beeswax - Part I. Gas chromatography - electron impact ionization mass spectrometry of hydrocarbons and monoesters. Journal of Chromatography A 1024: 147-154.DOI: 10.1016/j.chroma.2003.10.063

Maia M., Nunes F. M. (2013) Authentication of beeswax (Apis mellifera) by high-temperature gas chromatography and chemometric analysis. Food Chemistry 136: 961-968. DOI: 10.1016/j.foodchem.2012.09.003 PN-R-78890 (1996) Wosk Pszczeli. Polski Komitet Normalizacyjny. Wydawnictwo Normalizacyjne “Alfa”. Warszawa Poncini L., Poncini A., Prakash D. (1993) The effects of washing on the fluorescent impurities and chemical properties of Fijian beeswax from Apis mellifera L. Apiacta 2: 42-51.

Serra Bonvehi J. (1988) Estudio de la composición de la cera de abejas (Apis mellifera L.) española. Grasas y Aceites 39 Fasc. 6: 334-342.

Serra Bonvehi J. (1990) Estudio de la adulteracion de la cera de abejas. Grasas y Aceites 41: 69-72.

Serra Bonvehi J., Ornantes Bermejo F. J. (2012) Detection of adulterated commercial Spanish beeswax. Food Chemistry 132: 642-648. DOI: 10.1016/j.foodchem. 2011.10.104

Serra Bonvehi J., Cañas Lloria S., Gomez Pajuelo (1989) Caracteristicas fisico-quimicas de la cera de abejas producida en Espana. Alimentacion, equipos y tecnologia 5-6: 213-216.

Skowronek W. (1973) Rozwój gruczołów woskowych u różnych ras pszczoły miodnej. Pszczelnicze Zeszyty Naukowe 17: 1-9.

Sprengler G., Wöllner E. (1953) Eine neue Paraffin - Bestimmungsmethode von Wachsen und Wachs - Verschnitten. Fette-Seifen-Anstrichmittel 57(1): 5-8.

Sprengler G., Wöllner E. (1954) Adsorptive Trennung von Wachsen und Wachskomponenten. Fette-Seifen-Anstrichmittel 56(10): 775-784.

Streibl M., Stransky K., Sorm F. (1966) Über einige neue Kohlenwasserstoffe in Wachs der Honigbiene (Apis mellifera L.). Fette Seifen Anstrichmittel 68: 799-805.

Tulloch A. P. (1973) Factors Affecting Analytical Values of Beeswax and Detection of Adulteration. Journal of the American Oil Chemists’ Society 50: 269-272.

Tulloch A. P. (1980) Beeswax - composition and analysis. Bee World 61: 47-62.

Vit P., Roldan S., Tamer E., Olivo de Acosta E., Bianchi M. (1992) Deteccion de adulteraciones en cera de abejas comercializadas en Venezuela. Revista del Instituto Nacional de Higiene Rafael Rangel 23: 23-27.

White J. W. Jr., Reader M. K., Riethof M. L.( 1960) Chromatographic Determination of Hydrocarbons in Beeswax. Journal of the Association of Official Agricultural Chemists 43: 778-780.

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information


IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 167 64
PDF Downloads 68 68 36