ON CERTAIN SUBCLASS OF MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS

S.P. GOYAL, ONKAR SINGH, AND RAKESH KUMAR

Abstract

In this paper we introduce and investigate a certain subclass of functions which are analytic in the punctured unit disk and meromorphically close-to-convex. The sub-ordination property, inclusion relationship, coefficient inequalities, distortion theorem and a sufficient condition for our subclass of functions are derived. The results presented here would provide extensions of those given in earlier works.

Mathematics Subject Classification 2000: 30C45
Additional Key Words and Phrases: Analytic functions, Meromorphic starlike function, Meromorphic close-to-convex functions, Coefficient estimates, Subordinations, Distortion theorem

1. INTRODUCTION

Let Σ denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured open unit disk

$$
\mathcal{U}^{*}=\{z: z \in \mathbb{C} ; 0<|z|<1\}=: \mathcal{U} \backslash\{0\} .
$$

where \mathcal{U} is an open unit disk.
Let \mathcal{P} denote the class of functions p given by

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \quad(z \in \mathcal{U}) \tag{1.2}
\end{equation*}
$$

which are analytic and convex in \mathcal{U} and satisfy the condition

$$
\begin{equation*}
p(z) \prec \frac{1+A z}{1+B z} \quad(z \in \mathcal{U} ;-1 \leq B<A \leq 1) \tag{1.3}
\end{equation*}
$$

Let $f, g \in \Sigma$, where f is given by (1.1) and g is defined by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n} \tag{1.4}
\end{equation*}
$$

A function $f \in \Sigma$ is said to be in the class $\mathcal{M S}^{*}(\alpha)$ of meromorphic starlike of order α if it satisfies the inequality

$$
\begin{equation*}
R\left(\frac{-z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathcal{U} ; 0 \leq \alpha<1) \tag{1.5}
\end{equation*}
$$

Moreover, a function $f \in \Sigma$ is said to be in the class $\mathcal{M C}$ of meromorphic close-toconvex functions if it satisfies the condition

$$
\begin{equation*}
R\left(\frac{z f^{\prime}(z)}{g(z)}\right)<0 \quad\left(z \in \mathcal{U} ; g \in \mathcal{M} \mathcal{S}^{*}(0) \equiv \mathcal{M} \mathcal{S}^{*}\right) \tag{1.6}
\end{equation*}
$$

Further let

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots \tag{1.7}
\end{equation*}
$$

be analytic in \mathcal{U}. If there exists a function $g(z) \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$ such that

$$
R\left(\frac{z^{2} f^{\prime}(z)}{g(z) g(-z)}\right)<0 \quad(z \in U)
$$

then we say that $f \in \mathcal{K}_{s}$, where $\mathcal{S}^{*}\left(\frac{1}{2}\right)$ denotes the usual class of starlike functions of order $\frac{1}{2}$. The function class \mathcal{K}_{s} was introduced and studied by Gao and Zhou [3]. Also Srivastava et al. [10] considered the class $\mathcal{M S}_{s}^{*}$ of meromorphic starlike functions with respect to symmetric points which satisfy the condition

$$
\begin{equation*}
R\left(\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right)<0 \tag{1.8}
\end{equation*}
$$

Again Kowalczyk and Bomba [5] discussed $\mathcal{K}_{s}(\gamma)$ of analytic functions related to starlike functions. Let f is given by (1.3). Then $f \in \mathcal{K}_{s}(\gamma)$ if it satisfies the inequality

$$
\begin{equation*}
R\left(\frac{-z^{2} f^{\prime}(z)}{g(z) g(-z)}\right)>\gamma \quad(z \in \mathcal{U} ; 0 \leq \gamma<1) \tag{1.9}
\end{equation*}
$$

where $g(z) \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$.
Motivated by the class $\mathcal{K}_{s}(\gamma)$, Seker [8] introduced a new class $\mathcal{K}_{s}^{(k)}(\gamma)$ of analytic functions related to starlike functions as follows
Let f be an analytic function defined by (1.3). Then $f \in \mathcal{K}_{s}^{(k)}(\gamma)$, if it satisfies the condition

$$
\begin{equation*}
R\left(\frac{z^{k} f^{\prime}(z)}{g_{k}(z)}\right)>\gamma \quad(z \in \mathcal{U} ; 0 \leq \gamma<1) \tag{1.10}
\end{equation*}
$$

where $g \in \mathcal{S}^{*}\left(\frac{k-1}{k}\right), k \geq 1$ is a fixed positive integer and $g_{k}(z)$ is defined by the following equality

$$
\begin{equation*}
g_{k}(z)=\prod_{\nu=0}^{k-1} \epsilon^{-\nu} g\left(\epsilon^{\nu} z\right) \quad\left(\epsilon=e^{\frac{2 \pi \iota}{k}}\right) \tag{1.11}
\end{equation*}
$$

Recently Wang et al.[11] considered and investigated the class $\mathcal{M K}$ of meromorphic close-to-convex function, if $f \in \Sigma$ it satisfies the inequality

$$
\begin{equation*}
R\left(\frac{f^{\prime}(z)}{g(z) g(-z)}\right)>0 \quad(z \in \mathcal{U}) \tag{1.12}
\end{equation*}
$$

where $g \in \mathcal{M S}^{*}\left(\frac{1}{2}\right)$.
Motivated essentially by the aforementioned function classes $\mathcal{M K}$ and $K_{s}^{(k)}(\gamma)$, in this paper we introduce and investigate a new class $\mathcal{M} \mathcal{K}^{(k)}[A, B]$ of meromorphic functions.

Definition. A function $f \in \Sigma$ is said to be in the class $\mathcal{M} \mathcal{K}^{(k)}[A, B]$ if it satisfies the inequality

$$
\begin{equation*}
\frac{-f^{\prime}(z)}{z^{k-2} g_{k}(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathcal{U} ;-1 \leq B<A \leq 1) \tag{1.13}
\end{equation*}
$$

where $g \in \mathcal{M S}^{*}\left(\frac{k-1}{k}\right), k \geq 1$ is fixed positive integer and $g_{k}(z)$ is defined by the following equality

$$
\begin{equation*}
g_{k}(z)=\prod_{\nu=0}^{k-1} \rho^{\nu} g\left(\rho^{\nu} z\right) \quad\left(\rho=e^{\frac{2 \pi \iota}{k}}\right) \tag{1.14}
\end{equation*}
$$

Remark 1. $\mathcal{M} \mathcal{K}^{(2)}[1,-1]=\mathcal{M} \mathcal{K}$, where $\mathcal{M} \mathcal{K}$ were studied by Wang et al.[11]. By simple calculations we see that the inequality (1.13) is equivalent to

$$
\left|\frac{f^{\prime}(z)}{z^{k-2} g_{k}(z)}+1\right|<\left|\frac{B f^{\prime}(z)}{z^{k-2} g_{k}(z)}+A\right| \quad(z \in \mathcal{U} ;-1 \leq B<A \leq 1)
$$

The class $\mathcal{M} \mathcal{K}^{(k)}[A, B]$ is generalization of $\mathcal{M} \mathcal{K}^{(2)}[A, B]$ which was defined by Sim and Kwon [9].
In this paper we prove that the class $\mathcal{M K}^{(k)}[A, B]$ is a subclass of meromorphic close-to-convex functions. Furthermore, we investigate coefficient inequalities, distortion theorems and inclusion relationship for functions belonging to the class $\mathcal{M} \mathcal{K}^{(k)}[A, B]$.

2. Results Required

To prove our main results given in the next section, we shall require the results contained in following Lemmas:
Lemma 1. Let $\varphi_{i}(z) \in \mathcal{M S}^{*}\left(\alpha_{i}\right)$ where $0 \leq \alpha_{i}<1 \quad(i=0,1,2, \ldots, k-1)$.
Then for $k-1 \leq \sum_{i=0}^{k-1} \alpha_{i}<k$, we have

$$
z^{k-1} \prod_{i=0}^{k-1} \varphi_{i}(z) \in \mathcal{M S}^{*}\left(\sum_{i=0}^{k-1} \alpha_{i}-(k-1)\right)
$$

Proof: Since $\varphi_{i}(z) \in \mathcal{M} \mathcal{S}^{*}\left(\alpha_{i}\right)$ where $0 \leq \alpha_{i}<1 \quad(i=0,1,2, \ldots, k-1)$, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{-z \varphi_{0}^{\prime}(z)}{\varphi_{0}(z)}\right)>\alpha_{0}, \operatorname{Re}\left(\frac{-z \varphi_{1}^{\prime}(z)}{\varphi_{1}(z)}\right)>\alpha_{1}, \ldots, \operatorname{Re}\left(\frac{-z \varphi_{k-1}^{\prime}(z)}{\varphi_{k-1}(z)}\right)>\alpha_{k-1} \tag{2.1}
\end{equation*}
$$

We now let

$$
\begin{equation*}
F_{k}(z)=z^{k-1} \varphi_{0}(z) \varphi_{1}(z) \ldots \varphi_{k-1}(z) \tag{2.2}
\end{equation*}
$$

Differentiating (2.2) logarithmically, we have

$$
\begin{equation*}
\frac{z F_{k}^{\prime}(z)}{F_{k}(z)}=(k-1)+\frac{z \varphi_{0}^{\prime}(z)}{\varphi_{0}(z)}+\frac{z \varphi_{1}^{\prime}(z)}{\varphi_{1}(z)}+\ldots+\frac{z \varphi_{k-1}^{\prime}(z)}{\varphi_{k-1}(z)} \tag{2.3}
\end{equation*}
$$

Therefore

$$
\operatorname{Re}\left(\frac{-z F_{k}^{\prime}(z)}{F_{k}(z)}\right)>-(k-1)+\alpha_{0}+\alpha_{1}+\ldots \alpha_{k-1}
$$

$$
\begin{equation*}
=\sum_{i=0}^{k-1} \alpha_{i}-(k-1) \tag{2.4}
\end{equation*}
$$

Thus, if

$$
0 \leq \sum_{i=0}^{k-1} \alpha_{i}-(k-1)<1
$$

that is,

$$
(k-1) \leq \sum_{i=0}^{k-1} \alpha_{i}<k
$$

Then

$$
\begin{equation*}
F_{k}(z)=z^{k-1} \prod_{i=0}^{k-1} \varphi_{i}(z) \in \mathcal{M S}^{*}\left(\sum_{i=0}^{k-1} \alpha_{i}-(k-1)\right) \tag{2.5}
\end{equation*}
$$

Lemma 2 (see [2]). Suppose that

$$
\begin{equation*}
h(z)=\frac{1}{z}+\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{M S}^{*} \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|c_{n}\right| \leq \frac{2}{n+1}(n \in N) \tag{2.7}
\end{equation*}
$$

Each of these inequality is sharp, with the extremal function given by

$$
\begin{equation*}
h(z)=z^{-1}\left(1+z^{n+1}\right)^{\frac{2}{n+1}} \tag{2.8}
\end{equation*}
$$

Lemma 3 (see [1]). Let $p \in P[A, B]$ and $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$
Then

$$
\left|c_{n}\right| \leq A-B
$$

This result is sharp.
Lemma 4 (see [4]). Let $p \in P[A, B]$, then for $|z|=r<1$

$$
\begin{equation*}
\frac{1-A r}{1-B r} \leq \operatorname{Re} p(z) \leq|p(z)| \leq \frac{1+A r}{1+B r} \tag{2.9}
\end{equation*}
$$

These bounds are sharp.
Lemma 5 (see [7]) Suppose that $g \in \mathcal{M S}^{*}$, then

$$
\begin{equation*}
\frac{(1-r)^{2}}{r} \leq|g(z)| \leq \frac{(1+r)^{2}}{r} \quad(|z|=r ; 0<r<1) \tag{2.10}
\end{equation*}
$$

Lemma 6(see [6]). Let $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1$. Then

$$
\begin{equation*}
\frac{1+A_{1} z}{1+B_{1} z} \prec \frac{1+A_{2} z}{1+B_{2} z} \tag{2.11}
\end{equation*}
$$

3. Main Results

Theorem 1 Let $g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n} \in \mathcal{M} \mathcal{S}^{*}\left(\frac{k-1}{k}\right)$, then

$$
\begin{equation*}
G_{k}(z)=z^{k-1} g_{k}(z)=\frac{1}{z}+\sum_{n=1}^{\infty} B_{n} z^{n} \in \mathcal{M} \mathcal{S}^{*} \tag{3.1}
\end{equation*}
$$

Proof From (1.14), we know that

$$
\begin{align*}
& z^{k-1} g_{k}(z)=z^{k-1} \prod_{\nu=0}^{k-1} \rho^{\nu} g\left(\rho^{\nu} z\right) \\
& \quad=z^{k-1}\left[\prod_{\nu=0}^{k-1}\left(\frac{1}{z}+\sum_{n=2}^{\infty} b_{n} \rho^{\nu(n+1)} z^{n}\right)\right] \tag{3.2}
\end{align*}
$$

Now since

$$
g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n} \in \mathcal{M} \mathcal{S}^{*}\left(\frac{k-1}{k}\right)
$$

Then by above Lemma 1 and equality (3.2), we can get $G_{k}(z) \in \mathcal{M} \mathcal{S}^{*}$.
Corollary For $k=2$ in Theorem 1, we get the result of Theorem 2 obtained by Wang et al.[11].
Remark 2 By Theorem 1 we see that $G_{k}(z)$ given by (3.1) belongs to $\mathcal{M} \mathcal{S}^{*}$. Thus by (1.13), we find that our class $\mathcal{M} \mathcal{K}^{(k)}[A, B]$ is a subclass of the class $\mathcal{M K}$ of meromorphic close-to-convex functions.
Theorem 2. Let $f(z)$ given by (1.1) and $-1 \leq B<A \leq 1$. if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\{(1+|B|) n\left|a_{n}\right|+(1+|A|) \frac{2}{n+1}\right\} \leq A-B \tag{3.3}
\end{equation*}
$$

then $f \in \mathcal{M K}^{(k)}[A, B]$.
Proof. Let the function $f(z)$ and $g_{k}(z)$ be given by (1.1) and (1.14) respectively. Furthermore, let $g(z) \in \mathcal{M} \mathcal{S}^{*}\left(\frac{k-1}{k}\right)$.
Then by Theorem 1 and Lemma 2, we have

$$
G_{k}(z)=z^{k-1} g_{k}(z)=\frac{1}{z}+\sum_{n=1}^{\infty} B_{n} z^{n} \in \mathcal{M S}^{*}
$$

where $\left|B_{n}\right| \leq \frac{2}{n+1}$.
Now we obtain

$$
\begin{aligned}
\Delta & =\left|z f^{\prime}(z)+G_{k}(z)\right|-\left|B z f^{\prime}(z)+A G_{k}(z)\right| \\
& =\left|\sum_{n=1}^{\infty} n a_{n} z^{n}+\sum_{n=1}^{\infty} B_{n} z^{n}\right|-\left|(A-B) \frac{1}{z}+A \sum_{n=1}^{\infty} B_{n} z^{n}+B \sum_{n=1}^{\infty} n a_{n} z^{n}\right|
\end{aligned}
$$

Thus for $|z|=r(0 \leq r<1)$, we have
$\Delta \leq \sum_{n=1}^{\infty} n\left|a_{n}\right| r^{n}+\sum_{n=1}^{\infty}\left|B_{n}\right| r^{n}-\left((A-B) \frac{1}{r}-|A| \sum_{n=1}^{\infty}\left|B_{n}\right| r^{n}-|B| \sum_{n=1}^{\infty} n\left|a_{n}\right| r^{n}\right)$

$$
\begin{aligned}
= & -(A-B) \frac{1}{r}+(1+|A|) \sum_{n=1}^{\infty}\left|B_{n}\right| r^{n}+(1+|B|) \sum_{n=1}^{\infty} n\left|a_{n}\right| r^{n} \\
& \leq-(A-B) \frac{1}{r}+(1+|A|) \sum_{n=1}^{\infty} \frac{2}{n+1} r^{n}+(1+|B|) \sum_{n=1}^{\infty} n\left|a_{n}\right| r^{n} \\
& \leq 0 . \quad \text { (By the given condition) }
\end{aligned}
$$

Thus we have

$$
\left|z f^{\prime}(z)+G_{k}(z)\right|<\left|B z f^{\prime}(z)+A G_{k}(z)\right|
$$

which is equivalent to

$$
\left|\frac{f^{\prime}(z)}{z^{k-2} g_{k}(z)}+1\right|<\left|\frac{B f^{\prime}(z)}{z^{k-2} g_{k}(z)}+A\right| \quad(z \in U)
$$

which implies that $f \in \mathcal{M} \mathcal{K}^{(k)}[A, B]$.
Next, we give the coefficient estimates of functions belonging to the class $\mathcal{M K}^{(k)}[A, B]$
Theorem 3. Let $f \in \mathcal{M K}^{(k)}[A, B](-1 \leq B<A \leq 1)$ and $g_{k}(z)$ is given by (1.1) and (1.14) respectively. Then for $k \geq 1$, we have

$$
\begin{equation*}
\sum_{k=1}^{n}\left|k a_{k}+B_{k}\right|^{2}-\sum_{k=1}^{n-1}\left|A \cdot B_{k}+k B a_{k}\right|^{2}<(A-B)^{2} \tag{3.4}
\end{equation*}
$$

Proof Let $f \in \mathcal{M K}^{(k)}[A, B]$. Then we have

$$
\frac{-z f^{\prime}(z)}{G_{k}(z)}=\frac{1+A w(z)}{1+B w(z)}
$$

where w is an analytic function in $\mathcal{U},|w(z)|<1$ for $z \in \mathcal{U}$ and $G_{k}(z)=z^{k-1} g_{k}(z)$. Then,

$$
-z f^{\prime}(z)-G_{k}(z)=\left(A \cdot G_{k}(z)+B z f^{\prime}(z)\right) w(z)
$$

Thus, putting

$$
w(z)=\sum_{n=1}^{\infty} t_{n} z^{n}
$$

we obtain

$$
\begin{equation*}
-\sum_{n=1}^{\infty} n a_{n} z^{n}-\sum_{n=1}^{\infty} B_{n} z^{n}=\left\{(A-B) \frac{1}{z}+\sum_{n=1}^{\infty} A \cdot B_{n} z^{n}+\sum_{n=1}^{\infty} n B a_{n} z^{n}\right\}\left(\sum_{n=1}^{\infty} t_{n} z^{n}\right) \tag{3.5}
\end{equation*}
$$

Now equating the coefficient of z^{n}, we get
$-n a_{n}-B_{n}=(A-B) t_{n+1}+\left(A \cdot B_{1}+B a_{1}\right) t_{n-1}+\ldots+\left\{A \cdot B_{n-1}+(n-1) B a_{n-1}\right\} t_{1}$
and thus the coefficient combination on the R.H.S. of (3.5) depends only upon the coefficient combinations

$$
\left(A \cdot B_{1}+B a_{1}\right), \ldots,\left\{A \cdot B_{n-1}+(n-1) B a_{n-1}\right\}
$$

Hence for $n \geq 1$

$$
\begin{equation*}
\left[(A-B) \frac{1}{z}+\sum_{k=1}^{n-1}\left(A \cdot B_{k}+k B a_{k}\right) z^{k}\right] w(z)=\sum_{k=1}^{n}\left(-k a_{k}-B_{k}\right) z^{k}+\sum_{k=n+1}^{\infty} d_{k} z^{k} \tag{3.6}
\end{equation*}
$$

Then squaring the modulus of both sides of the above equality and integrating along $|z|=r$ and using the fact that $|w(z)|<1$, we obtain

$$
\begin{equation*}
\sum_{k=1}^{n}\left|k a_{k}+B_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|d_{k}\right|^{2} r^{2 k}<(A-B)^{2} \frac{1}{r^{2}}+\sum_{k=1}^{n-1}\left|A \cdot B_{k}+k B a_{k}\right|^{2} r^{2 k} \tag{3.7}
\end{equation*}
$$

Letting $r \rightarrow 1$ on both sides of (3.7), we obtain

$$
\sum_{k=1}^{n}\left|k a_{k}+B_{k}\right|^{2}<(A-B)^{2}+\sum_{k=1}^{n-1}\left|A \cdot B_{k}+k B a_{k}\right|^{2}
$$

Hence we have

$$
\sum_{k=1}^{n}\left|k a_{k}+B_{k}\right|^{2}-\sum_{k=1}^{n-1}\left|A \cdot B_{k}+k B a_{k}\right|^{2}<(A-B)^{2}
$$

which implies the required inequality.
Theorem 4. Suppose that

$$
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \in \mathcal{M K}^{(k)}[A, B]
$$

Then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(A-B)}{n}\left[-1+2 \sum_{m=1}^{n} \frac{1}{m}\right]+\frac{2}{n(n+1)} \tag{3.8}
\end{equation*}
$$

Proof Suppose that $f \in \mathcal{M K}^{(k)}[A, B]$. Then we know that

$$
\frac{-f^{\prime}(z)}{z^{k-2} g_{k}(z)} \prec \frac{1+A z}{1+B z}
$$

this implies that

$$
\frac{-z f^{\prime}(z)}{G_{k}(z)} \prec \frac{1+A z}{1+B z}
$$

If we set

$$
\begin{equation*}
q(z)=\frac{-z f^{\prime}(z)}{G_{k}(z)} \tag{3.9}
\end{equation*}
$$

it follows that

$$
q(z)=1+d_{1} z+d_{2} z^{2}+\ldots \in \mathcal{P}
$$

In view of Lemma 3, we know that

$$
\left|d_{n}\right| \leq A-B \quad(n \in N)
$$

By substituting the series expressions of functions f, G_{k} and q in (3.9), we obtain

$$
\begin{gather*}
\left(1+d_{1} z+d_{2} z^{2}+\ldots+d_{n} z^{n}+\ldots\right)\left(\frac{1}{z}+B_{1} z+B_{2} z^{2}+\ldots+B_{n} z^{n}+\ldots\right) \tag{3.10}\\
=\frac{1}{z}-a_{1} z-2 a_{2} z^{2}-\ldots-n a_{n} z^{n}-\ldots
\end{gather*}
$$

Comparing like coefficients of z^{n} in (3.10), we get

$$
\begin{equation*}
-n a_{n}=B_{1} d_{n-1}+B_{2} d_{n-2}+\ldots+B_{n-2} d_{2}+B_{n-1} d_{1}+B_{n}+d_{n+1} \tag{3.11}
\end{equation*}
$$

By using Lemma 2 and 3, we get

$$
n\left|a_{n}\right| \leq 2(A-B)\left[1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right]+\frac{2}{n+1}-(A-B)
$$

Thus

$$
\left|a_{n}\right| \leq \frac{(A-B)}{n}\left[-1+2 \sum_{m=1}^{n} \frac{1}{m}\right]+\frac{2}{n(n+1)}
$$

which implies the required inequality. The proof of Theorem 4 is completed.
Theorem 5. Let $f \in \mathcal{M} \mathcal{K}^{(k)}[A, B]$. Then

$$
\begin{equation*}
\frac{(1-r)^{2}}{r^{2}}\left(\frac{1-A r}{1-B r}\right) \leq\left|f^{\prime}(z)\right| \leq \frac{(1+r)^{2}}{r^{2}}\left(\frac{1+A r}{1+B r}\right) \quad(|z|=r, 0<r<1) \tag{3.12}
\end{equation*}
$$

Proof. Suppose $f \in \mathcal{M} \mathcal{K}^{(k)}[A, B]$. By definition we know that

$$
\frac{-z f^{\prime}(z)}{G_{k}(z)} \prec \frac{1+A z}{1+B z}
$$

and since $G_{k}(z) \in \mathcal{M S}^{*}$, thus by Lemma 5 , we have

$$
\frac{(1-r)^{2}}{r} \leq\left|G_{k}(z)\right| \leq \frac{(1+r)^{2}}{r}
$$

and also by Lemma 4, we have

$$
\frac{(1-A r)}{(1-B r)} \leq|q(z)| \leq \frac{(1+A r)}{(1+B r)}
$$

Thus by virtue of (3.9) and Lemma 5, we obtain

$$
\frac{(1-r)^{2}}{r^{2}}\left(\frac{1-A r}{1-B r}\right) \leq\left|f^{\prime}(z)\right| \leq \frac{(1+r)^{2}}{r^{2}}\left(\frac{1+A r}{1+B r}\right)
$$

Thus the proof is complete.
Remark For $A=1$ and $B=-1$ in Theorem 5, we obtain result of Theorem 7 by Wang et al.[11]
Theorem 6. Let $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1$. Then

$$
\begin{equation*}
\mathcal{M K}^{(k)}\left(A_{1}, B_{1}\right) \subset \mathcal{M K}^{(k)}\left(A_{2}, B_{2}\right) \tag{3.13}
\end{equation*}
$$

Proof. Suppose that $f \in \mathcal{M} \mathcal{K}^{(k)}\left[A_{1}, B_{1}\right]$, we have

$$
\frac{-f^{\prime}(z)}{z^{k-2} g_{k}(z)} \prec \frac{1+A_{1} z}{1+B_{1} z}
$$

Since $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1$, by lemma 6 , we get

$$
\frac{-f^{\prime}(z)}{z^{k-2} g_{k}(z)} \prec \frac{1+A_{1} z}{1+B_{1} z} \prec \frac{1+A_{2} z}{1+B_{2} z}
$$

Hence $f \in \mathcal{M K}^{(k)}\left[A_{2}, B_{2}\right]$.
This means that $\mathcal{M} \mathcal{K}^{(k)}\left(A_{1}, B_{1}\right) \subset \mathcal{M} \mathcal{K}^{(k)}\left(A_{2}, B_{2}\right)$.
Hence the proof of Theorem 6 is complete.

Acknowledgement

The author (S.P.G) is thankful to CSIR, New Delhi, India for awarding Emeritus Scientistship,under scheme number 21(084)/10/EMR-II. The second author (O.S.)is also thankful to CSIR for JRF under the same scheme.

References

[1] V.Anh, k-fold symmetric starlike univalent functions, Bull. Austral. Math. Soc., 32 (1985), 419-436.
[2] J.Clunie, On meromorphic schlicht functions, J. Lond. Math. Soc., 34 (1959), 215-216.
[3] C.Y.Gao and S.Q.Zhou, On a class of analytic functions related to the starlike funct-
ions, Kyungpook Math. J., 45 (2005), 123-130.
[4] W.Janowski, Some extremal problem for certain families of analytic functions I, Ann. Polon. Math., 28 (1973), 298-326.
[5] J.Kowalczyk and E.Les Bomba, On a subclass of close-to-convex functions, Appl. Math. Lett., 23 (2010), 1147-1151.
[6] M.S.Liu, On a subclass of p-valent close-to-convex functions of order β and type α,
J. Math. Study, 30 (1997), 102-104.
[7] Ch.Pommerenke, On meromorphic starlike functions, Pacific J. Math., 13 (1963), 221-235.
[8] B.Seker, On certain new subclass of close-to-convex function, Appl. Math. Comput.,

218 (2011), 1041-1045.
[9] Y.J.Sim and O.S.Kwon, A subclass of meromorphic close-to-convex functions of Janowski's
type Int. Jour. Math. Math. Sci. Vol. (2012), Article ID 682162, 12 pages.
[10] H.M.Srivastava, D.G.Yang and N.Xu, Some subclasses of meromorphically multiva-
lent functions associated with a linear operator, Appl. Math. Comput., 195 (2008), 11-23.
[11] Z.G.Wang, Y.Sun and N.Xu, Some properties of certain meromorphic close-toconvex

S.P. GOYAL, O. SINGH, AND R. KUMAR
 functions, Applied Mathematics Letters, 25 (2012), 454-460.

S.P. Goyal, Department of Mathematics University of Rajasthan, Jaipur-302004, India.
e-mail: somprg@gmail.com
Onkar Singh,
Department of Mathematics
University of Rajasthan, Jaipur-302004, India.
e-mail: onkarbhati@gmail.com
Rakesh Kumar,
Department of Mathematics
Amity University, NH-11, Jaipur-302002, India.
e-mail: rkyadav11@gmail.com

