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FRACTIONAL INTEGRAL INEQUALITIES
FOR DIFFERENTIABLE CONVEX MAPPINGS
AND APPLICATIONS TO SPECIAL MEANS
AND A MIDPOINT FORMULA
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Abstract

In this paper, Riemann-Liouville type fractional integral identity and inequality for differentiable

convex mappings are studied. Some applications to special means of real numbers are given.

Finally, error estimates for a midpoint formula are also obtained.
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1. INTRODUCTION

For f ∈ L[a, b], the Riemann-Liouville integrals Jαa+f and Jαb−f of order α > 0 with
a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a,

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b,

respectively, where Γ(·) is the Gamma function and J0
a+f(x) = J0

b−f(x) = f(x).
Fractional calculus and its widely application have recently been paid more and

more attentions. For more recent development on fractional calculus, one can see
the monographs of Baleanu et al. [1], Diethelm [2], Kilbas et al. [3], Lakshmikan-
tham et al. [4], Miller and Ross [5], Michalski [6], Podlubny [7] and Tarasov [8].

It is remarkable that Sarikaya et al. [9] initial give the following interesting inte-
gral inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional
integrals.

Theorem 1.1. Let f : [a, b] → R be a positive function with 0 ≤ a < b and
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f ∈ L[a, b]. If f is a convex function on [a, b], then the following inequality for
fractional integrals hold

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] ≤ f(a) + f(b)

2
. (1)

Clearly, if we put α = 1 in Theorem 1.1, then inequality (1) becomes to the following
known Hermite-Hadamard’s inequality:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (2)

For more recent results which generalize, improve, and extend the inequalities
presented above, one can see Abramovich et al. [10], Cal et al. [11], Avci et al. [12],
Ödemir et al. [13; 14], Dragomir [15; 16], Sarikaya et al. [17], Xiao et al. [18], Xi
et al. [19], Bessenyei [20], Tseng et al. [21], Niculescu [22] and references therein.

Unfortunately, Sarikaya et al. [9] only give some results connected with the right
part of the equality (1). Some pioneer works connected with the left part of the
equality (2) have been reported by Kirmaci and Ödemir [23; 24]. However, some
related results connected with the left part of the equality (1) have not been studied
extensively.

In the present paper, we will investigate some inequalities connected with the
left part of the equality (1). In order to achieve our goals, we have to establish
a important fractional integral identity (see Lemma 2.1) for differentiable convex
mappings via Riemann-Liouville fractional integrals, which will be widely used to
derive a inequality for connected with the left part of the equality (1) for differ-
entiable convex mappings (see Theorem 2.3). We also give some applications to
special means of real numbers and obtain error estimates for a midpoint formula.

2. FRACTIONAL INTEGRAL IDENTITY AND INEQUALITY FOR DIFFERENTIABLE
CONVEX MAPPINGS

We establish a important fractional integral identity for differentiable convex map-
pings.

Lemma 2.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b.
If f

′ ∈ L[a, b], then the following equality for fractional integrals holds:

Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]− f

(
a+ b

2

)
=

b− a
2

[∫ 1

0

kf
′
(ta+ (1− t)b)dt−

∫ 1

0

[(1− t)α − tα]f
′
(ta+ (1− t)b)dt

]
(3)

where

k =

{
1, 0 ≤ t < 1

2 ,
−1, 1

2 ≤ t < 1.
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Proof. It suffices to note that

I =

∫ 1
2

0

f
′
(ta+ (1− t)b)dt−

∫ 1

1
2

f
′
(ta+ (1− t)b)dt

−
∫ 1

0

[(1− t)α − tα]f
′
(ta+ (1− t)b)dt

=

[∫ 1
2

0

f
′
(ta+ (1− t)b)dt

]
+

[
−
∫ 1

1
2

f
′
(ta+ (1− t)b)dt

]

+

[
−
∫ 1

0

(1− t)αf
′
(ta+ (1− t)b)dt

]
+

[∫ 1

0

tαf
′
(ta+ (1− t)b)dt

]
:= I1 + I2 + I3 + I4. (4)

Integrating by parts, we have

I1 =

∫ 1
2

0

f
′
(ta+ (1− t)b)dt =

1

a− b
f(ta+ (1− t)b)

∣∣∣∣ 12
0

=
1

b− a

[
−f
(
a+ b

2

)
+ f(b)

]
, (5)

I2 = −
∫ 1

1
2

f
′
(ta+ (1− t)b)dt =

−1

a− b
f(ta+ (1− t)b)

∣∣∣∣1
1
2

=
1

b− a

[
f(a)− f

(
a+ b

2

)]
. (6)

Put x = ta+ (1− t)b, we have

I3 = −
∫ 1

0

(1− t)αf
′
(ta+ (1− t)b)dt

= − (1− t)α

a− b
f(ta+ (1− t)b)

∣∣∣∣1
0

− α

a− b

∫ 1

0

(1− t)α−1f(ta+ (1− t)b)dt

= − f(b)

b− a
+

α

b− a

∫ a

b

(
x− a
b− a

)α−1
f(x)

a− b
dx

= − f(b)

b− a
+

Γ(α+ 1)

(b− a)α+1
Jαb−f(a), (7)

and

I4 =

∫ 1

0

tαf
′
(ta+ (1− t)b)dt

=
tα

a− b
f(ta+ (1− t)b)

∣∣∣∣1
0

− α

a− b

∫ 1

0

tα−1f(ta+ (1− t)b)dt

= − f(a)

b− a
+

α

b− a

∫ a

b

(
b− x
b− a

)α−1
f(x)

a− b
dx

= − f(a)

b− a
+

Γ(α+ 1)

(b− a)α+1
Jαa+f(b). (8)
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Submitting (5), (6), (7), (8) to (4), it follows that

I = − 2

b− a
f

(
a+ b

2

)
+

Γ(α+ 1)

(b− a)α+1
[Jαa+f(b) + Jαb−f(a)].

Thus, by multiplying both sides by b−a
2 , we have conclusion (3). �

Remark 2.2. In Lemma 2.1, if we put α = 1 then the equality (3) becomes

1

b− a

∫ b

a

f(x)dx− f
(
a+ b

2

)
=

b− a
2

[ ∫ 1
2

0

f
′
(ta+ (1− t)b)dt−

∫ 1

1
2

f
′
(ta+ (1− t)b)dt

−
∫ 1

0

(1− 2t)f
′
(ta+ (1− t)b)dt

]
. (9)

Using the above fractional integral identity, we can obtain the following result.

Theorem 2.3. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If |f ′ | is convex on [a, b], then the following inequality for fractional integrals holds:∣∣∣∣ Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4(α+ 1)

(
α+ 3− 1

2α−1

)
[|f
′
(a)|+ |f

′
(b)|]. (10)

Proof. Using Lemma 2.1 and the convexity of |f ′ |, we have∣∣∣∣ Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

2

[ ∫ 1
2

0

|f
′
(ta+ (1− t)b)|dt+

∫ 1

1
2

|f
′
(ta+ (1− t)b)|dt

+

∫ 1

0

|(1− t)α − tα||f
′
(ta+ (1− t)b)|dt

]
≤ b− a

2

[ ∫ 1
2

0

[t|f
′
(a)|+ (1− t)|f

′
(b)|]dt+

∫ 1

1
2

[t|f
′
(a)|+ (1− t)|f

′
(b)|]dt

+

∫ 1

0

|(1− t)α − tα||f
′
(ta+ (1− t)b)|dt

]
≤ b− a

2

[ ∫ 1
2

0

[t|f
′
(a)|+ (1− t)|f

′
(b)|]dt+

∫ 1

1
2

[t|f
′
(a)|+ (1− t)|f

′
(b)|]dt

+

∫ 1
2

0

[(1− t)α − tα][t|f
′
(a)|+ (1− t)|f

′
(b)|]dt

+

∫ 1

1
2

[tα − (1− t)α][t|f
′
(a)|+ (1− t)|f

′
(b)|]dt

]
:=

b− a
2

(K1 +K2 +K3 +K4). (11)
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After some calculation, we obtain

K1 =

∫ 1
2

0

[t|f
′
(a)|+ (1− t)|f

′
(b)|]dt =

|f ′(a)|
2

t2
∣∣∣∣ 12
0

+ |f
′
(b)|

(
t− t2

2

) ∣∣∣∣ 12
0

=
1

8
|f
′
(a)|+ 3

8
|f
′
(b)|, (12)

K2 =

∫ 1

1
2

[t|f
′
(a)|+ (1− t)|f

′
(b)|]dt =

|f ′(a)|
2

t2
∣∣∣∣1
1
2

+ |f
′
(b)|

(
t− t2

2

) ∣∣∣∣1
1
2

=
3

8
|f
′
(a)|+ 1

8
|f
′
(b)|, (13)

K3 =

∫ 1
2

0

[(1− t)α − tα][t|f
′
(a)|+ (1− t)|f

′
(b)|]dt

= |f
′
(a)|

[∫ 1
2

0

t(1− t)αdt−
∫ 1

2

0

tα+1dt

]

+|f
′
(b)|

[∫ 1
2

0

(1− t)α+1dt−
∫ 1

2

0

(1− t)tαdt

]

= |f
′
(a)|

[
1

(α+ 1)(α+ 2)
−

( 1
2 )α+1

α+ 1

]
+ |f

′
(b)|

[
1

(α+ 2)
−

( 1
2 )α+1

α+ 1

]
, (14)

and

K4 =

∫ 1

1
2

[tα − (1− t)α][t|f
′
(a)|+ (1− t)|f

′
(b)|]dt

= |f
′
(a)|

[∫ 1

1
2

tα+1dt−
∫ 1

1
2

t(1− t)αdt

]

+|f
′
(b)|

[∫ 1

1
2

(1− t)tαdt−
∫ 1

1
2

(1− t)α+1dt

]

= |f
′
(a)|

[
1

(α+ 2)
−

( 1
2 )α+1

α+ 1

]
+ |f

′
(b)|

[
1

(α+ 1)(α+ 2)
−

( 1
2 )α+1

α+ 1

]
. (15)

Submitting (12), (13), (14), (15) to (11), we obtain the inequality (10). This
completes the proof. �

Remark 2.4. If we take α = 1 in Theorem 2.3, then the equality (10) becomes
to the following inequality:∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣ ≤ 3(b− a)

8
(|f
′
(a)|+ |f

′
(b)|). (16)

3. APPLICATIONS TO SPECIAL MEANS AND A MIDPOINT FORMULA

Consider the following special means (see Pearce and Pec̆arić [25]) for arbitrary real
numbers α, β, α 6= β as follows:
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(i) H(α, β) = 2
1
α+ 1

β

, α, β ∈ R \ {0},

(ii) A(α, β) = α+β
2 , α, β ∈ R,

(iii) L(α, β) = β−α
ln |β|−ln |α| , |α| 6= |β|, αβ 6= 0,

(iv) Ln(α, β) =
[
βn+1−αn+1

(n+1)(β−α)

] 1
n

, n ∈ Z \ {−1, 0}, α, β ∈ R, α 6= β.

Now, using the obtained results in Section 2, we give some applications to special
means of real numbers.

Proposition 3.1. Let a, b ∈ R, a < b, 0 does not belong to [a, b] and n ∈ Z,
|n| ≥ 2. Then

|Lnn(a, b)−An(a, b)| ≤ 3

4
|n|(b− a)A(|a|n−1, |b|n−1). (17)

Proof. Applying Remark 2.4 for f(x) = xn, one can obtain the result immedi-
ately. �

Proposition 3.2. Let a, b ∈ R, a < b, 0 does not belong to [a, b]. Then

|L−1(a, b)−A−1(a, b)| ≤ 3

4
(b− a)A(|a|−2, |b|−2). (18)

Proof. The assertion follows from Remark 2.4 applied for f(x) = 1
x . �

Proposition 3.3. Let a, b ∈ R \ {0}, a < b, a−1 > b−1, 0 does not belong to
[a, b] and n ∈ Z, |n| ≥ 2. Then we have

|Lnn(b−1, a−1)−H−n(b, a)| ≤ 3

4
|n|(a−1 − b−1)H−1(|a|n−1, |b|n−1), (19)

and

|L−1(b−1, a−1)−H(b, a)| ≤ 3

4
(a−1 − b−1)H−1(|a|−2, |b|−2). (20)

Proof. Making the substitutions a → b−1, b → a−1 in the inequalities (17)
and (18), one can obtain desired inequalities (19) and (20) respectively, where
A−1(a−1, b−1) = H(a, b) = 2

1
a+

1
b

, b−1 < a−1. �

To end this paper, we give an application to a midpoint formula. As in Pearce
and Pec̆arić [25], let d be a division a = x0 < x1 < · · · < xn−1 < xn = b of the
interval [a, b] and consider the quadrature formula∫ b

a

f(x)dx = T (f, d) + E(f, d), (21)

where

T (f, d) =
n−1∑
i=0

f

(
xi + xi+1

2

)
(xi+1 − xi).

is the midpoint version and E(f, d) denotes the approximation error. Here, we
derive some error estimates for midpoint formula.
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Theorem 3.4. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If |f ′ | is convex on [a, b], then in (21), for every division d of [a, b], we have

|E(f, d)| ≤ 3

8

n−1∑
i=0

(xi+1 − xi)2(|f
′
(xi)|+ |f

′
(xi+1)|).

Proof. Applying Remark 2.4 on the subinterval [xi, xi+1] (i = 0, 1, · · · , n − 1) of
the division d, we get∣∣∣∣∫ xi+1

xi

f(x)dx− f
(
xi + xi+1

2

)
(xi+1 − xi)

∣∣∣∣ ≤ 3

8
(xi+1−xi)2(|f

′
(xi)|+ |f

′
(xi+1)|).

Summing over i from 0 to n − 1 and taking into account that |f ′ | is convex, we
obtain, by the triangle inequality, that∣∣∣∣∣

∫ b

a

f(x)dx− T (f, d)

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
i=0

[∫ xi+1

xi

f(x)dx− f
(
xi + xi+1

2

)
(xi+1 − xi)

]∣∣∣∣∣
≤

n−1∑
i=0

∣∣∣∣∫ xi+1

xi

f(x)dx− f
(
xi + xi+1

2

)
(xi+1 − xi)

∣∣∣∣
≤ 3

8

n−1∑
i=0

(xi+1 − xi)2(|f
′
(xi)|+ |f

′
(xi+1)|).

The proof is completed. �
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842 48 Bratislava, Slovakia
e-mail: Michal.Feckan@fmph.uniba.sk

JinRong Wang
Department of Mathematics
Guizhou University
Guiyang, Guizhou 550025, P.R. China
e-mail: wjr9668@126.com; sci.jrwang@gzu.edu.cn

Received April 2012

28


