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Solutions of Volterra integral and
integro-differential equations using modified
Laplace Adomian decomposition method
D. RANI' AND V. MISHRA

Abstract

In this paper, an effectual and new modification in Laplace Adomian decomposition method based on
Bernstein polynomials is proposed to find the solution of nonlinear Volterra integral and
integro-differential equations. The performance and capability of the proposed idea is endorsed by
comparing the exact and approximate solutions for three different examples on Volterra integral,
integro-differential equations of the first and second kinds. The results shown through tables and figures
demonstrate the accuracy of our method. It is concluded here that the non orthogonal polynomials can also
be used for Laplace Adomian decomposition method. In addition, convergence analysis of the modified
technique is also presented.
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1. INTRODUCTION

Substantial interest is devoted to solve nonlinear Volterra integral and
integro-differential equations by many researchers and scientists due to its
applications in science such as the population dynamics, spread of epidemics,
semi-conductor devices [Wazwaz 2011], biological species coexisting together with
increasing and decreasing rates of generating and in engineering such as heat transfer
and neutron diffusion process [Bahuguna et al. 2009].

The nonlinear Volterra integral equation of the second kind is defined as [Wazwaz
2011]

ulx) = )+ [ kG0 a(e)ds (1)

where f(x) is known as source term and F is a nonlinear operator, F(u(x)) is a
nonlinear function.

The nonlinear Volterra integro-differential equation of the first kind is given by
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[Wazwaz 2011; 2010]

/let dt+/ K> (x,0)u (£)dr = £(x) 2)

However, the nonlinear Volterra integro-differential equation of the second kind is
defined as [Wazwaz 2011; 2010]

() = 1)+ [ ke (al) e 3)

where u()(x) denotes the ith order derivative of u(x). The kernel k(x,r) and the
function f(x) of these equations are given real-valued functions and F(u(x)) is a
nonlinear function.

Earlier many numerical and analytical methods have been presented to solve these
kinds of equations [Wazwaz 2011; 2010; Maleknejad and Najafi 2011; Maleknejad
etal. 2011].

1.1. Laplace Adomian decomposition method and modifications

In recent years, several researchers have adapted Adomian decomposition method
(ADM) to solve many kinds of functional equations, which was developed by
Adomian in 1980. In [Adomian 1988; 1990], Adomian provided a review of
decomposition method in applied mathematics. The solution in this method is
considered as the summation of an infinite convergent series without using any
restrictive assumptions. A theoretical foundation of Adomian method was developed
in [Gabet 1994], Venkatarangan and Rajalakshmi [Venkatarangan and Rajalakshmi
1995] used modified ADM to solve equations containing radical signs. Adomian
polynomials are modified by Adomian and Rach in [Adomian and Rach 1996], Luo
et. al [Luo et al. 2006] studied the partial solutions on ADM for solving heat and
wave equations, Hashim [Hashim 2006] applied ADM to solve linear and nonlinear
boundary value problems for fourth order integro-differential equations. In [Hosseini
2006], Hosseini modified the Adomian decomposition method by expressing the
source function f(x) in Chebyshev polynomials and solved the nonlinear differential
algebraic equations. The ADM is used to solve nonlinear Sturm-Liouville problems
in [Somali and Gokmen 2007], Marwat and Asghar [Marwat and Asghar 2008]
suggested a two step Adomian decomposition method for solving heat equation with
variable coefficients, Liu [Liu 2009] employed Legendre polynomials to improve the
Adomian decomposition method and concluded that Chebyshev and Legendre

polynomials can be successfully used for ADM and comparatively Chebyshev
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expansion provides the better estimation . The interested reader can see the other
applications and modifications of this method in [Ghazanfari and Sepahvandzadeh
2014; Evans et al. 2004; Singh and Kumar 2011; Biazar et al. 2004; Zhang and Lu
2011; Li and Wang 2009; Biazar et al. 2010; Abassy 2010; Bildik and Deniz 2015;
Babolian and Biazar 2002].

Further, Khuri [Khuri 2001] developed Laplace Adomian decomposition method
and applied to find the solutions of nonlinear differential equations. This method is
the combination of two powerful tools, Laplace transform and Adomian
decomposition method, which is used to solve extinct functional equations [Wazwaz
2010; Doan 2012]. Hence, there are numerous applications where Laplace Adomian
decomposition method is used. The method is also improved and modified from
different aspects by some authors [Manafianheris 2012; Kumar et al. 2014].

In this work, our aim is to modify Laplace Adomian decomposition method based
on Bernstein polynomials. At the beginning of our technique, we expand the source
function, i.e. f(x) as Bernstein polynomials which approximate the function
uniformly and then Laplace Adomian decomposition method is applied to solve
Volterra integral and integro-differential equations, that gives the tremendous
improved results as shown in examples. To the best of our knowledge, Bernstein
polynomials is not combined with the LADM. Therefore, this is the new idea which

we have used.

1.2.  Bernstein polynomials

The Berstein basis polynomials which are named after Russian mathematician Sergei
Bernstein, is used to approximate the functions and curves. Following are some basic
definitions [Quain et al. 2011]:

DEFINITION 1.1 (Bernstein basis polynomials). The Bernstein basis
polynomials of degree n form a complete basis over the interval [0, 1] and are defined
by

Bia(x) = (Z)xk(l —x)"*k=0,1,2...n

DEFINITION 1.2 (Bernstein polynomials). A linear combination of Bernstein

basis polynomials
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Ba(x) = Y BiBin(r) 4
k=0

is called the Bernstein polynomial of degree n where By are Bernstein coefficients.

DEFINITION 1.3. With f a real valued function defined and bounded on [0,1] ,
let B, (f) be the polynomial on [0,1] ,that assigns to f(x) the value

B(N=Y (Z)xk“ —x)" s (';) )

k=0

where B, (f) is the nth Bernstein polynomial for f(x).

The utilizations and properties of Bernstein polynomials have gained much
importance in the domain of applied mathematics, physics and computer
aided-geometric designs [Farouki 2012; Farouki and Rajan 1998; Bohm et al. 1984;
Bhatti and Bracken 2007]. Bernstein polynomials are the basis of approximation
theory, with the help of these polynomials Weierstrass approximation theorem

[Quain et al. 2011] is proved, which is given as follows:

THEOREM 1.4. For all functions f in C[0, 1], the sequence of B,(f) converges
uniformly to f, where B, (f) is defined by (5).

Using Taylors series, if we approximate a function, curve or surface, it seems that
it converges slowly and does not converge to original function. Comparatively,
Bernstein polynomials are better approximation to a function. It also has some
applications in optimal control theory, stochastic dynamics and in the modelling of
chemical reactions [Yousefi and Behroozifar 2010]. Problems like, elliptic and
hyperbolic partial differential equations have been solved using Bernstein
polynomials by implementation of Galerkin and collocation approaches to determine

the coefficients.

The contents of this paper are as follows: in Section 2, we will give analysis of
modified LADM; Section 3 gives the convergence analysis of the method; in Section 4
we will give three examples to demonstrate the applicability of the proposed approach.

In the last section, conclusions are drawn.
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2. MODIFIED LAPLACE ADOMIAN DECOMPOSITION METHOD BASED
ON BERNSTEIN POLYNOMIALS

In this section, we are analyzing the method developed in [Rani and Mishra 2017] for
nonlinear Volterra integral equation with the difference kernel, i.e k(x,7) = k(x —¢)
given by (1).

Adopting the standard Laplace Adomian decomposition method, firstly applying
Laplace transform on both sides of (1) and with the use of linear property and

convolution theorem of Laplace transform, we get
Llu(x)] = L{f (x)] + L{k(x = )|L[F (u(x))] ©)

According to the LADM technique u(x) can be written as an infinite series given by

u(x) = f:oun (%) @)

Then writing the nonlinear term F (u(x)) as

Flu(x)) =Y An(x) (8)

where A,’s are the Adomian polynomials, given by the formula

1 d}’l n ;
i),

i=0

Substituting (7) and (8) into (6), we get

L [iun(ﬂ] = L[f(x)] + Lk(x —1)]L

n=0
The linearity property of Laplace transform implies
Y Llun ()] = LF ()] + Lk(x=1)] ) L[An(x)] (10)
n=0 n=0

Now we are modifying the standard LADM, where the source term is expanded or
written in the form of Bernstein polynomials with degree m given by (5). Therefore,

we attain

oo oo

Y L{un(x)] = LB f (x)] + Lik(x—1)] Y L[A,(x)] (11)

n=0 n=0
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u(x) can be found by defining the following iterative scheme:

Llug(x)] = L[Bn(f(x))] (12)

Taking inverse Laplace transform on both sides of (12), we obtain

Therefore, the initial approximation depends on the Bernstein polynomials of source
function, which plays a significant role in the next approximations, hence in the
approximate solution of the given problem.

Similarly, we have the general relation as
Lluns1(x)] = L{k(x = 1)]L[A (x)] (13)

For determining the terms uj, us, usz ...of infinite series we use the inverse Laplace
transform to above recursive relation and u(x), the approximate solution to given
nonlinear Volterra integral equation can be calculated. The same process is used to
solve nonlinear Volterra integro-differential equations of the first and second kinds.

The efficacy of technique is demonstrated by convergence analysis and following

numerical examples.

3. CONVERGENCE ANALYSIS

The convergence analysis is presented here which demonstrate the efficiency of the
above-modified technique. Considering E = (C[J],]|.||) the Banach space of all
continuous functions on J, suppose that there exist a constant N such that
k(x,t)| <N, for all (x,t)e[0,T]>.

Also, we suppose that the nonlinear term satisfy the Lipschitz condition, the
approximate solution of (1) by using Bernstein polynomials based MLADM,
converges to the exact one if 0 < o < 1, where o0 = NLx.

Let U be the exact solution and U* be the approximate solution of (1) by taking n

terms, then

U=l =max )+ [ kPOt = Balf00) - [ k0P (0)ds

150~ Bl + | [ K (PO 0) - PO )] 19
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Now using the convergence theorem of Bernstein polynomials (1.4) and above given

conditions in the statement, we get
X
|U-U"|| < 8+/0 lk(x,)[|F(U(t)) —F(U"(t))|dt
X
<e+ [ NLW0O) - U 0)ar
< e+ NLxmax|U(t) —U*(t)]
xeJ
<al|lU-U7|
(15)
Therefore, if 0 < oo < 1, @ = NLx, the approximate solution converges to exact
solution as n — oo,
4. NUMERICAL EXAMPLES

EXAMPLE 4.1. Consider the following nonlinear Volterra integro-differential
equation of the second kind [Wazwaz 2010]

1 2 x
W' (x) = —2sinx — Foosx— 3 0052x+/ cos(x —1)u?(t)dt, (16)
0

with initial condition u(0) = 1, having the exact solution as u(x) = cosx — sinx.

In this example, the source term, i.e. f(x) = —2sinx— % cosx — % cos2x. Now using
the above technique, we expand f(x) in the terms of Bernstein polynomials of order

m=6
£(x) = 0.000507191x5 + 0.010605381x> — 0.10640906x* — 0.06228815x>+
1.314840965x% — 1.742867841x— 1 (17)

By applying Laplace transform to both sides of (16), we get

L) = | + LW+ 5

The methodology consisting of letting the solution as an infinite series as mentioned

L[ (x)] (18)

above, we have

L [zo un<x>] = L)+

s s s24+1

L iAn(x)] (19)
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—— Exact solution | 1 Exact solution
—*— Approximate solution —*— Approximate solution

0 005 01 015 02 025 03 035 04 045 O 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
x

Fig. 1. Comparison of solutions in [0,0.5] and [0.6, 1]

where the nonlinear term F (u(x)) = u?(x) is decomposed in Adomian polynomials,
few terms are as follows:

Ar = 2upur + u%

A3z = 2uousz +2uuy

The recursive relation is obtained by comparing the terms in (19), which gives

Lluo()] = -+ LI ()] o)
In general
Ll 1(0)] = - Ll 0] e

Employing the inverse Laplace transform on both sides of (20) and using (17), we get
the value of ug(x).

Similarly (21) gives the values of u;(x), u2(x) and so on. Subsequently, one can
compare the results from Figure 1, which shows that the approximate solutions are
very much close to exact in the interval [0,0.5] than in the interval [0.6, 1].
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EXAMPLE 4.2. The following nonlinear Volterra integro-differential equation of
the first kind [Wazwaz 2010]

/x(x—t)uz(t)dt—l—/X(x—t)u"(t)dt __ + 3 + lcos2x— Lcos4x (22)
0 0 32 4 2 32 ’

with initial condition u(0) = 2, u'(0) = 0 which has the exact solution as
u(x) = 14 cos2x.

Apply Laplace transform to both sides of (22) and using the derivative property and

convolution theorem, we get

L [ /0 x(x—t)uz(t)dt} +L [ /0 x(x—t)u”(t)dt} —L[f(0)] 23)

By solving, we get

Lju(9)] = 2+ L[/ (0) ~ L ()

where the nonlinear term F(u) = u? is decomposed as in the previous example

Now proceeding as before, following iterative scheme is obtained:

Lluo()] = = +LIf(2)] eh

In general

L1 ()] =~ S LIAW)] 25)

Here f(x) = 3—125 + % + 4 cos2x — 3—12 cos4x is the source term.
By adopting the above method, we expand f(x) as the Bernstein polynomials:

f(x) = —0.001381627x° +0.013467998x> +0.051210391x* 4+ 0.02773726x° +
0.002551943x% +0.00001698x  (26)

Applying inverse Laplace transform on both sides of (24), (25) and using the Bernstein
polynomials given by (26), we get the values of ug(x), uj(x), uz(x). ... Therefore, we
find the approximate solution. The approximate solution provides the accurate result

or close to the exact solution in very few iterations that is shown in Figure 2.
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Exact solution I L Exact solution
21 —*— Approximate solution 2 —— Approximate solution
18} J 18f ]
16 1 16f 1

0 0. ‘05 0‘1 0. ‘15 0‘2 0.‘25 0‘3 0. i’i5 0‘4 0. ‘45 !; 0.’6 0. ‘65 0.‘7 0.‘75 0.8 O.‘BS 0‘9 0. ‘95 ?L
x
Fig. 2. Comparison of solutions in [0,0.5] and [0.6, 1]

EXAMPLE 4.3. The nonlinear Volterra integral equation is given by

u(x):l—i—{

S 2(1)d 27
1 2+e—7+/0(x—t)u (t)dr, 27

having the exact solution as u(x) = e*.

The source term in (27) is f(x) = % +35+e - %Zr which can be expanded in the
Bernstein polynomials, here taking m = 10.

£(x) = —0.000000056x'% — 0.00000332x” — 0.00006387x> —0.00076576x —0.00589954x°

—0.03027348x> —0.1004593x* — 0.18599482x> — 0.05372434x> +0.99820229x +1  (28)
Taking Laplace transform on both sides of (27), gives
1

L[u(x)] = L[f ()] + Ll ()] (29)

Now u(x) can be evaluated based on Bernstein polynomials of f(x) and with decomposing the

nonlinear term in Adomian polynomials, which implies the relation
Lup(x)} = L[/ (x)] (30)
In general
1
Lltgs1 (9] = 5 LiAx (4] G1)

Substituting the approximated value of f(x) from (28) in (30) and having inverse Laplace
transform on both sides of (30), (31) give the values of ug(x), uj (x), up(x),...un(x). The sum
of these terms will yield the value of truncated sum of u(x). It is found that the error between
exact and approximate solution is very less as shown in Figure 3 and reveals that the Bernstein

polynomials based modification of LADM gives the solution in good agreement.
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Exact solution
| —*— Approximate solution

Exact solution
solution

H 26

Fig. 3. Comparison of solutions in [0,0.5] and [0.6, 1]

Table I. Comparison of approximate solution by proposed method with exact solution of examples

Examplel Example2 Example3
X Exact Approximate  Exact Approximate  Exact Approximate
0 1 1 2 2 1 1
0.1 0.8952 0.8964 1.9801  1.9801 1.1052  1.1044
02 0.7814 0.7858 1.9211 19212 1.2214  1.2188
0.3 0.6598 0.6687 1.8253  1.8259 1.3499  1.3441
04 05316 0.5455 1.6967  1.6982 1.4918  1.4819
0.5 0.3982 0.4166 1.5403  1.5431 1.6487  1.6338
0.6  0.2607 0.2828 1.3624  1.3663 1.8221  1.8018
0.7  0.1206 0.1451 1.1700  1.1734 2.0138  1.9887
0.8 -0.0206  0.0049 0.9708  0.9687 22255  2.1978
09 -0.1617 -0.1361 0.7728  0.7550 24596  2.4335
1 -0.3012  -0.2758 0.5839  0.5314 27183  2.7014

The numerical results by using modified LADM based on Bernstein polynomials are also

presented in Table I, which shows the performance of proposed technique.

5. CONCLUSIONS

For solving nonlinear Volterra integral and integro-differential equations a modification in
standard Laplace Adomian decomposition method based on Bernstein polynomials is used
here. Comparisons and analyses conclude that not only the orthogonal polynomials like
Legendre, Chebyshev or Jacobi polynomials can improve the ADM, the Bernstein polynomials
can also improve the source term as it is the better approximation to a function and hence the

approximate solution converges to exact one as shown in the examples.
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