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Abstract

Fisher information is of key importance in estimation theory. It is used as a tool for characterizing complex
signals or systems, with applications, e.g. in biology, geophysics and signal processing. The problem of
minimizing Fisher information in a set of distributions has been studied by many researchers. In this paper,
based on some rather simple statistical reasoning, we provide an alternative proof for the fact that
Gaussian distribution with finite variance minimizes the Fisher information over all distributions with the
same variance.
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1. INTRODUCTION

The role of Fisher information as a way of measuring information in a distribution is
well established in the literature. Fisher information is used in estimation theory for
constructing a basic bound, known as Cramer-Rao lower bound (CRLB), on the
variance of an estimator ([Khoolenjani and Alamatsaz (2016)]). Applications of
Fisher information in geophysics ([Balasco et al. (2008)]), biology ([Frank (2009)]),
analysing complex signals or systems ([Martin et al. (2009)], [Nagy (2003)]), signal
processing ([Vignat and Bercher (2003)], [Zivojnovic and Noll (1997)]), computing
the asymptotic covariance matrix of the models ([Hussin et al. (2010)] and [Mamun
et al. (2013)]) and obtaining performance bounds ([Xu et al. (2008)]) are discussed
in the literature. It is also used in statistical physics and biology as a way of inference
and understanding ([Frieden (2009)]). Recently, [Dulek and Gezici (2014)] studied
the maximization of Fisher information in presence of a constraint on the cost of
measurements. [Neri et al. (2013)] studied the theoretical evaluation of the
achievable performance using Fisher information.

Gaussian distribution is one of the most well-known and widely applied
distributions in many fields such as statistics, engineering and physics. One of the
major reasons why Gaussian distribution has become so prominent is because of the
Central Limit Theorem (CLT) and the fact that the distribution of noise in numerous
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engineering systems is well fitted by Gaussian distribution. It is well known that
Gaussian distribution minimizes the Fisher information, which equals to the inverse
of Cramer-Rao lower bound, (see [Shao (1999)]). This fact is established in [Park et
al. (2013)]. Especially, when there is no information about the distribution of
observations, Gaussian assumption appears as the most traditional choice. Therefore,
optimization of estimation methods based on the CRLB that holds under Gaussian
distribution yields the best CRLB-related performance. [Stoica and Babu (2011)]
provided a general proof of result that the largest CRLB is achievable by the
Gaussian distribution. In this note, we provide a simple alternative proof for the fact
that Gaussian distribution yields the minimum Fisher information. Using certain
standard statistical reasoning, we believe that there is a value – in general, and also
here – in presenting alternative proofs for fundamental theorems. Such alternative
proofs can shed new light on the statement being proven, introduce new arguments
that can be useful elsewhere, or yield different generalizations and applications.

2. MAIN RESULT

Let us first review the fundamental notions and basic definitions used in the paper.

Suppose that X is a random observable taking on values in a sample space X

according to a probability distribution from the family F = { f (x;θ) : θ ∈ Θ}, in
which θ is a deterministic parameter.

DEFINITION 1. The Fisher information I(F) of a distribution F on the real line
is defined as

I(F) =

∞∫
−∞

(
d ln f (x;θ)

dx

)2

f (x;θ)dx, (1)

where f denotes the density of F .

DEFINITION 2. An estimator is a real-valued function δ defined over the sample
space X . It is used to estimate an estimand, g(θ), a real-valued function of the
parameter.

Quite generally, suppose that the consequences of estimating g(θ) by a value d are
measured by L(θ ,d). Of the loss function L, we shall assume that L(θ ,d) ≥ 0 for
all θ ,d and L[θ ,g(θ)] = 0 for all θ , so that the loss is zero when the correct value is
estimated. The accuracy, or rather inaccuracy, of an estimator θ is then measured by
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the risk function

R(θ ,δ ) = Eθ{L[θ ,δ (X)]}. (2)

DEFINITION 3. A set of functions {g(x) :g∈G } from the sample space X onto
X is called a group of transformations of X if

i. (Inverse) For every g∈G there is a g′∈G such that g′(g(x)) = x for all x ∈X .

ii. (Composition) For every g∈G and g′∈G there exists g′′∈G such that g′(g(x)) =

g′′(x) for all x ∈X .

iii. (Identity) The identity, e(x), defined by e(x) = x is an element of G .

DEFINITION 4. Let G be a group of transformations of the sample space X .
Then, the family F = { f (x;θ) : θ ∈ Θ} is invariant under the group G if for every
θ ∈ Θ there exists a unique θ ′ ∈ Θ such that Y = g(X) has the distribution f (y;θ ′) if
X has the distribution f (x;θ).

The θ ′ uniquely determined by θ is denoted by ḡ(θ).

DEFINITION 5. An estimation problem (Θ,δ ,L) is said to be invariant under

the group G if the family F = { f (x;θ) : θ ∈ Θ} of distributions is invariant under G

and if the loss function is invariant under G in the sense that for every g∈ G and every
δ in the class of estimators D, there exists a unique δ ∗ ∈ D such that

L(θ ,δ ) = L(ḡ(θ),δ ∗) ∀θ ∈Θ. (3)

The δ ∗ uniquely determined by g and δ is denoted by g̃(δ ).

In an invariant estimation problem, an estimator δ is said to be equivariant if for all
g ∈ G

δ (g(x)) = g̃(δ (x)). (4)

If an equivariant estimator exists and minimizes the risk function, it is called the
minimum risk equivariant (MRE) estimator.

THEOREM 1. Let Y = (Y1, ...,Yn) be distributed as

f (y−θ) = f (y1−θ , ...,yn−θ),

Xi = Yi −Yn and X = (X1, ...,Xn−1). Suppose that the loss function is given by
L(θ ,W ) = (W −θ)2 and that there exists a location invariant estimator δ0 of θ with
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finite risk. Then, the minimum risk equivariant estimator of θ exists and is given by

δ
∗(Y) = δ0(Y)−E0[δ0(Y) | x]

PROOF. See [Lehmann and Casella (1998)].

THEOREM 2. (Cramer-Rao Inequality) Let Y1, ...,Yn be independent random
variables with a common probability density fθ (y) and W (Y1, ...,Yn) be an unbiased
estimator of θ . Then, under the regularity conditions we have

Var(W )≥ 1
nI(F)

. (5)

PROOF. See [Lehmann and Casella (1998)].

THEOREM 3. Among all densities with mean θ and finite variance σ2, Fisher
information is minimized by Gaussian density.

PROOF. Let F be a univariate distribution with density f and fixed finite
variance σ2 and Y1, ...,Yn be independently identically distributed random variables
with density fθ (y), where θ = E(Yi) is a location parameter. Assume that sn(F) is
the risk of the minimum risk equivariant estimator of θ under squared error loss
L(θ ,W ) = (W −θ)2. For Gaussian distribution with mean θ and finite variance σ2,
if we let δ0 = Ȳ in Theorem 1, it follows that δ0 is independent of X and hence
E0[Ȳ | x] = 0. Thus, the minimum risk equivariant estimator of θ becomes Ȳ with
risk Eθ (Ȳ − θ)2 = σ2

n . On the other hand, we obtain Fisher information in the
Gaussian case as

I(N) =

∞∫
−∞

(
d ln f (y;θ)

dy

)2

f (y;θ)dy

=

∞∫
−∞

(
d
dy

ln
1

σ
√

2π
e−

1
2σ2 (y−θ)2

)2 1
σ
√

2π
e−

1
2σ2 (y−θ)2

dy

=
1

σ4

∞∫
−∞

(y−θ)2

σ
√

2π
e−

1
2σ2 (y−θ)2

dy

=
1

σ2 . (6)

Therefore, we have

Eθ (Ȳ −θ)2 =
1

nI(N)
. (7)
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We know that for any distribution F , Ȳ is an unbiased estimator of θ with risk given
in (7). So, the risk of the minimum risk equivariant estimator for any distribution F

must be less than 1/(nI(N)). Now, let b be the constant bias of the MRE estimator δ ∗.
Then, δ1(y) = δ ∗(y)−b is a location invariant estimator of θ and the risk of δ1 under
squared error loss becomes

Rδ1 = E[δ ∗(y)−b−θ ]2 =Var(δ ∗)≤Var(δ ∗)+b2 = Rδ ∗ .

Since δ ∗ is the MRE estimator, b = 0, i.e., δ ∗ is unbiased (see [Shao (1999)], p. 215).
Therefore, by using Theorem 2, we have

sn(F)≥ 1
nI(F)

.

Thus, I(N)≤ I(F) and the proof is complete.

3. CONCLUSION

This paper focuses on deriving an alternative proof for the fact that the Fisher
information is minimized by Gaussian distribution. The risk of the sample mean in
Gaussian density is used to obtain an upper bound for the risk of the minimum risk
equivariant estimator for any other distribution F . Then, applying Cramer-Rao
inequality, a lower bound is obtained for the risk of the minimum risk equivariant
estimator, regardless of F . Combining these two bounds, the result is concluded.
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