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Abstract

In this article, we introduce some examples of cubic rank transmuted distributions proposed by Granzatto
et al. (2017). The statistical aspects of the introduced distributions such as probability density functions,
hazard rate functions and reliability functions are studied. The maximum likelihood estimation method is
used in order to estimate the parameters of interest. Finally, real data examples are applied for the
illustration of these distributions.
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1. INTRODUCTION

In order to obtain more flexible statistical models, generalization of the well-known
distributions have been widely used. Firstly, Amoroso (1925) introduced the
generalized gamma distribution in order to model the distribution of income rate.
Since then various authors have discussed the generalizations of the distributions.
Good (1953), for example, proposed the inverse Gaussian distribution. Ljubo (1965),
Pickands (1975) and Hoskings and Wallis (1987) made generalization of Pareto
distribution. The generalized beta of the first and second kind was introduced by
McDonald (1984) to study the distribution of income.

Shaw and Buckley (2007) proposed a new generalization method called transmution
mapping. According to them a ranking quadratic transmutation (QRT) map is

F(x) = (1+λ )G(x)−λ [G(x)]2, |λ |< 1 (1)

where G(x) is the cumulative distribution function (cdf) of the base distribution. It
should be noted that, when λ = 0, the new distribution becomes the original
distribution.

This method have been used by many researchers to obtain new distributions, see
Aryal and Tsokos (2011), Aryal (2013), Elbatal and Aryal (2013) and Merovci (2013).
Recently, Granzatto et al. (2017) introduced a new family of transmuted distributions,
the cubic rank transmutation (CRT) map distribution and to demonstrate the usefulness
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of this method CRT Weibull and log-logistic distribution are used in their article. This
new method enables to fit complex data sets with bimodal hazard rates. The cdf and
the probability density function (pdf) of a CRT distribution are given

F(x) = λ1G(x)+(λ2−λ1)[G(x)]2 +(1−λ2)[G(x)]3 (2)

f (x) = g(x)[λ1 +2(λ2−λ1)G(x)+3(1−λ2)[G(x)]2] (3)

respectively. Here , λ1 ∈ [0,1] λ2 ∈ [−1,1] and g(x) is the pdf of the base distribution.
The proofs and the further details can be found in Granzatto et al. (2017).

In this paper, we are motivated to generate a new family of the distributions in
order to get more flexible fitting. For this reason further examples of CRT
distributions are introduced. The rest of the paper organizes as follows, in Section
2-4, we offer Frechet, Gumbel and Gombertz distributions which are commonly used
as life-time distributions in survival analysis. The cubic rank transmutation method is
applied to these distributions and some mathematical and statistical properties of
these new distributions are derived. The maximum likelihood estimations of the
parameters of interest are obtained. In Section 5, real data examples, which were
previously studied with Frechet, Gumbel and Gombertz distribution are fitted into the
cubic rank transmuted version of the base distributions. A conclusion is given at the
end of this paper.

2. CUBIC RANK TRANSMUTED FRECHET DISTRIBUTION

Generalized extreme value (GEV) distribution covers the well known probability
distributions developed within extreme value theory and it combines Gumbel,
Frechet and Weibull families. It is proposed by Jenkinson (1955) in order to model
extreme values based on Fisher-Tippet theorem. The class of GEV distributions is
very flexible, since it can be represented by single shape parameter (ξ ) which
controls the tail behaviour with three different distribution families. If ξ = 0, then the
distribution has thin tail behaviour and is called Gumbel type distribution. When
ξ > 0, then the distribution has fat tail and is called Frechet type distribution which
includes well known fat tailed distribution such as Pareto, Student-t and Cauchy.
Finally, if ξ < 0, the distribution class converts to Weibull which has short tail
behaviour and includes uniform and beta distribution.
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A random variable X is said to have a Frechet distribution with parameters µ > 0
and σ > 0 if its pdf is given by

g(x) =
α

σ

( x
σ

)−1−α

e

(
−
(

x
σ

)−α
)

(4)

The cdf of Frechet distribution is

G(x) = e

(
−
(

x
σ

)−α
)

(5)

Mahmoud and Mandouh (2013) introduced the QRT Frechet distribution and
studied its statistical properties. Now using (2) the cdf of cubic rank transmuted
Frechet (CRTF) distribution with parameters µ , σ , λ1 and λ2 takes the form

F(x) = λ1e

(
−
(

x
σ

)−α
)
+(λ2−λ1)

[
e

(
−
(

x
σ

)−α
)]2

+(1−λ2)
[
e

(
−
(

x
σ

)−α
)]3

(6)

and the pdf of CRT Frechet distribution becomes

f (x) =
α

σ

( x
σ

)−1−α

e

(
−
(

x
σ

)−α
)(

λ1 +2(λ2−λ1)e

(
−
(

x
σ

)−α
)
+3(1−λ2)

[
e

(
−
(

x
σ

)−α
)]2)

(7)

Figure 1 shows the pdfs of the CRT Frechet distributions for different λ1 and λ2

values.

It can be seen from the Figure 1, for some special λ1 and λ2 values the distribution
become the bimodal distribution.

The hazard rate function for the CRT Frechet distribution is given by

h(x) =
α

σ

(
x
σ

)−1−α

e
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−
(

x
σ

)−α
)(

λ1 +2(λ2−λ1)e

(
−
(

x
σ

)−α
)
+3(1−λ2)

[
e

(
−
(

x
σ

)−α
)]2)

1−λ1e

(
−
(

x
σ

)−α
)
+(λ2−λ1)

[
e

(
−
(

x
σ

)−α
)]2

+(1−λ2)
[
e

(
−
(

x
σ

)−α
)]3

(8)

Figure 2 illustrates some of the possible shapes of the hazard function of a CRT
Frechet distribution for selected values of the parameters λ1 and λ2.
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Fig. 1. The pdfs of CRT Frechet distribution, α = 2, σ = 1.

The moments of the proposed distribution can be found easily by using the
following integration

E(Xk) =
∫

xk α

σ

( x
σ

)−1−α

e

(
−
(

x
σ

)−α
)(

λ1 +2(λ2−λ1)e

(
−
(

x
σ

)−α
)
+3(1−λ2)

[
e

(
−
(

x
σ

)−α
)]2)

dx (9)

Taking t =
( x

σ

)−α , we can obtain the general formula of the moments of the
distribution as

E(Xk) = Γ

(
1− k

α

)[
λ1 +(λ2−λ1)21/α +(1−λ2)31/α

]
σ (10)
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Fig. 2. The hazard rate functions of CRT Frechet distribution, α = 2, σ = 1.

For generating random numbers from the distribution, one can use the method of
inversion. After simple calculation this yields

x = σ

{
− ln

[(
q+
(
q2 +(r− p2)3)1/2

)1/3
+
(

q−
(
q2 +(r− p2)3)1/2

)1/3
+ p
]}−1/α

(11)

where p = − λ2−λ1
3(1−λ2)

, q = p3 + λ1(λ2−λ1)+3u(1−λ2)
6(1−λ2)2 , r = λ1

3(1−λ2)
and u is uniformly

distributed random variable.

Suppose X1,X2, ...,Xn are random samples from a CRT Frechet distribution defined
in (7), then the likelihood function is given by

L =
(

α

σ

)n
e

(
−∑

n
i=1

(
xi
σ

)−α
)

n

∏
i=1

(xi

σ

)−1−α n

∏
i=1

(
λ1 +2(λ2−λ1)e

(
−
(

xi
σ

)−α
)

(12)

+3(1−λ2)
[
e

(
−
(

xi
σ

)−α
)]2)
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and the log-likelihood function is

lnL = nln(α)−nln(σ)−
n

∑
i=1

(σ

xi

)α − (1+α)
n

∑
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ln
(xi

σ
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∑
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(
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(
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σ
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)α
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By differentiating the log-likelihood function with respect to the unknown
parameters and equating them to zero, we obtain the following likelihood equations.

∂ lnL
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α
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xi

)
+
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∑
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(
−
(

σ

xi

)α
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(
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(
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(
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)
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[
e

(
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∂ lnL
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σ
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∑
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∑
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α
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∂ lnL
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)
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[
e

(
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σ
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)α
)]2)

Solutions of these equations are called ML estimates. However, the equations must
be solved with numerical methods such as Newton Raphson or iteratively reweighting
algorithm.
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3. CUBIC RANK TRANSMUTED GUMBEL DISTRIBUTION

A random variable X is said to have a Gumbel distribution with parameters if its pdf
and cdf is given by

g(x) =
1
σ

e
−
(

x−µ

σ
+e

(
− x−µ

σ

))
(15)

and

G(x) = e

(
−e

(
− x−µ

σ

))
(16)

respectively.

Now using (2) the cdf of cubic rank transmuted Gumbel (CRT Gumble) distribution
with parameters is

F(x) = λ1e

(
−e

(
− x−µ

σ

))
+(λ2−λ1)

[
e

(
−e

(
− x−µ

σ

))]2
+(1−λ2)

[
e

(
−e

(
− x−µ

σ

))]3
(17)

and the pdf of CRT Gumbel distribution takes the form

f (x) =
1
σ

e
−
(

x−µ

σ
+e

(
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σ

)){
λ1 +2(λ2−λ1)e

(
−e

(
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σ

))
+3(1−λ2)

[
e

(
−e

(
− x−µ

σ

))]2}
(18)

Figure 3 and Figure 4 show the pdfs and the hazard rate functions of the CRT
Gumbel distribution for representative λ values respectively.

The hazard rate function for the distribution is

h(x) =
1
σ

e
−
(

x−µ

σ
+e

(
− x−µ

σ

)){
λ1 +2(λ2−λ1)e

(
−e

(
− x−µ

σ

))
+3(1−λ2)

[
e

(
−e

(
− x−µ

σ

))]2}
1−
{

λ1e

(
−e

(
− x−µ

σ

))
+(λ2−λ1)

[
e

(
−e

(
− x−µ

σ

))]2
+(1−λ2)

[
e

(
−e

(
− x−µ

σ

))]3}
(19)

The moments of CRT Gumbel distribution can be found as
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Fig. 3. The pdfs of CRT Gumbel distribution, µ = 0, σ = 1.

E(Xk) =
∫

∞

0
xk 1

σ
e
−
(

x−µ

σ
+e

(
− x−µ

σ

)){
λ1 +2(λ2−λ1)e

(
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(
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))
(20)

+3(1−λ2)
[
e

(
−e

(
− x−µ

σ

))]2}
dx

By taking y = exp
(
− x−µ

σ

)
the moments can be obtained like

E(Xk) =
n

∑
i=0

(−1)n
(

n
i

)
σ

i
µ

n−i
[
λ1

∂ i
∂ν i Γ(ν)+2(λ2−λ1)

∂ i
∂ν i (2

−ν
Γ(ν)) (21)

+3(1−λ2)
∂ i

∂ν i (3
−ν

Γ(ν))
]
|ν=1

For generation random numbers the following formula can be used.
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Fig. 4. The hazard rate functions of CRT Gumbel distribution, µ = 0, σ = 1.

x = µ−σ

(
ln
{
− ln

[(
q+
(
q2 +(r− p2)3)1/2

)1/3
+
(

q−
(
q2 +(r− p2)3)1/2

)1/3
+ p
]})

(22)

where p = − λ2−λ1
3(1−λ2)

, q = p3 + λ1(λ2−λ1)+3u(1−λ2)
6(1−λ2)2 , r = λ1

3(1−λ2)
and u is uniformly

distributed random variable.

Now, in order to obtain the ML estimators of the parameters, the likelihood function

L = σ
−ne
−∑

n
i=1

(
xi−µ

σ
+e

(
− xi−µ

σ

))
n

∏
i=1

{
λ1 +2(λ2−λ1)e

(
−e

(
− xi−µ

σ

))
(23)

+3(1−λ2)
[
e

(
−e

(
− xi−µ

σ

))]2}
and the log-likelihood function
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lnL =−nln(σ)−
n

∑
i=1

(xi−µ

σ
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(
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σ
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+
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can be obtained respectively. And the likelihood equations are
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σ

)
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σ
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σ
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∂ lnL
∂σ
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σ
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σ
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∑
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σ
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σ

λ1 +2(λ2−λ1)e

(
−e

(
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σ
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+3(1−λ2)

[
e

(
−e

(
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σ

))]2

∂ lnL
∂λ1

=
n

∑
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1−2e

(
−e

(
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σ

))
λ1 +2(λ2−λ1)e

(
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(
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σ
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σ
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∂ lnL
∂λ2

=
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σ
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e

(
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(
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σ

))]2

By equating them to zero and solving the equations the ML estimators of the
unknown parameters can be obtained.

4. CUBIC RANK TRANSMUTED GOMPERTZ DISTRIBUTION

The Gompertz distribution has been widely used in actuarial sciences especially in
calculation of adult deaths. The pdf and the cdf of Gompetz distribution are given

g(x) = αβeαxeβ exp
(
−βeαx

)
(26)

36 

 

N. Celik 



G(x) = 1− exp
(
−β

(
eαx−1

))
(27)

respectively.

Following the idea of (2), the CRT Gompertz distribution is obtained as follows,

F(x) = λ1

(
1− exp

(
−β

(
eαx−1

)))
+(λ2−λ1)

[
1− exp

(
−β

(
eαx−1

))]2
(28)

+3(1−λ2)
[
1− exp

(
−β

(
eαx−1

))]3

and the corresponding pdf is defined

f (x) = αβeαxeβ exp
(
−βeαx

)[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαx−1

)))
(29)

+3(1−λ2)
[
1− exp

(
−β

(
eαx−1

))]2]
Figure 5 shows different pdfs of CRT Gompertz distribution for plausible

alternatives of λ1 and λ2.

The hazard rate function for the CRT Gombertz distribution is given by

h(x) =
αβeαxeβ e(−βeαx)

[
λ1 +2(λ2−λ1)

(
1− e

(
−β (eαx−1)

))
+3(1−λ2)

[
1− e

(
−β (eαx−1)

)]2]
1−λ1

(
1− e

(
−β (eαx−1)

))
+(λ2−λ1)

[
1− e

(
−β (eαx−1)

)]2
+3(1−λ2)

[
1− e

(
−β (eαx−1)

)]3 (30)

The possible shapes of hazard rate functions can be seen from Figure 6.

The moment generating function of CRT Gombertz distribution is

MX (t) =
∫

∞

0
etx

αβeαxeβ exp
(
−βeαx

)[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαx−1

)))
(31)

+3(1−λ2)
[
1− exp

(
−β

(
eαx−1

))]2]
dx

By taking y = β (eαx−1) and z = y+β

β
then, the mgf of CRT Gombertz distribution

becomes
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Fig. 5. The pdfs of CRT Gompertz distribution, α = 1, β = 1.

MX (t) = β
−t/α

λ1eβ
[
Γ

( t
β
+1
)
−

∞

∑
i=0

(−1)iβ t/α+1+i

i!(t/α +1+ i

]
+(2β )−t/α (λ2−λ1)e2β (32)

[
Γ

( t
β
+1
)
−

∞

∑
i=0

(−1)i(2β )t/α+1+i

i!(t/α +1+ i

]
+(3β )−t/α (1−λ2)e3β

[
Γ

( t
β
+1
)
−

∞

∑
i=0

(−1)i(3β )t/α+1+i

i!(t/α +1+ i

]

For generation random numbers from the distribution, one can use the method of
inversion. After simple calculation this yields

x =
1
α

ln
{−ln

[
1+
(

q+
(
q2 +(r− p2)3)1/2

)1/3
+
(

q−
(
q2 +(r− p2)3)1/2

)1/3
+ p
]

β
+1
}

(33)
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Fig. 6. The hazard rate functions of CRT Gompertz distribution, α = 1, β = 1.

where p = − λ2−λ1
3(1−λ2)

, q = p3 + λ1(λ2−λ1)+3u(1−λ2)
6(1−λ2)2 , r = λ1

3(1−λ2)
and u is uniformly

distributed random variable.

Suppose X1,X2, ...,Xn are random samples from a CRT Gompertz distribution
defined in (27), then the likelihood function is given by

L = α
n
β

neα ∑
n
i=1 xi eβne−β ∑

n
i=1 eαxi

n

∏
i=1

[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
(34)

+3(1−λ2)
[
1− exp

(
−β

(
eαxi −1

))]2]
and the log-likelihood function is

lnL = nln(α)+nln(β )+α

n

∑
i=1

xi +βn−β

n

∑
i=1

eαxi +3(1−λ2)
[
1− exp

(
−β

(
eαxi −1

))]2]
(35)

+
n

∑
i=1

ln
[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
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By differentiating the log-likelihood function with respect to the unknown
parameters and equating them to zero, we obtain the following likelihood equations.

∂ lnL
∂α

=
n
α

+
n

∑
i=1

xi−β

n

∑
i=1

xieαxi (36)

+
2(λ2−λ1)βxieαxi

(
e
(
−β (eαxi−1)

))
+6(1−λ2)βxieαxi

(
e
(
−β (eαxi−1)

))(
1− e

(
−β (eαxi−1)

))
[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
+3(1−λ2)

[
1− exp

(
−β

(
eαxi −1

))]2]
∂ lnL
∂β

=
n
β
+n−

n

∑
i=1

eαxi

+
2(λ2−λ1)eαxi

(
e
(
−β (eαxi−1)

))
+6(1−λ2)βxieαxi

(
e
(
−β (eαxi−1)

))(
1− e

(
−β (eαxi−1)

))
[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
+3(1−λ2)

[
1− exp

(
−β

(
eαxi −1

))]2]
∂ lnL
∂λ1

=
n

∑
i=1

1−2
(

1− exp
(
−β

(
eαxi −1

)))
[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
+3(1−λ2)

[
1− exp

(
−β

(
eαxi −1

))]2]
∂ lnL
∂λ2

=
n

∑
i=1

2
(

1− exp
(
−β

(
eαxi −1

)))
−3
[
1− exp

(
−β

(
eαx−1

))]2

[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
+3(1−λ2)

[
1− exp

(
−β

(
eαxi −1

))]2]
Solutions of these equations are called ML estimates. However, the equations must

be solved with numerical methods such as Newton Raphson or iteratively reweighting
algorithm.

5. APPLICATION

In this section, we applied each of the new distribution families to the real data for
demonstrating the behaviour of the distributions. Determining an appropriate model
from a population problem has been widely discussed by several authors. However,
Nelson (1982) suggested that after fitting the general model to the data, then one seeks

to find which special case is suitable. For this reason, we used the data sets taken from
the literature which has been fitted by the original distributions.

5.1. Wind speed data

The data used for the present study were obtained from a yearly published book at
Permerhatian Cuaca Harian Pusat Pengajian Sosial, Pembangunan and Persekitaran
(PPSPP), Fakulti Sains Sosial, Kemanusiaan (FSSK), Universiti Kebangsaan
Malaysia (UKM) during the year 2004 to 2006, Zaharim et al. (2009). This data was
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collected from Malaysia and wind speeds were observed every 10 seconds and
averaged over 5 minutes period. The 5-minutes averaged data were further averaged
over one hour. At the end of each hour, the hourly mean wind speed was calculated
and stored sequentially in a permanent memory.

Elbatal et al. (2014) fit the data into the Frechet (F), Transmuted Frechet (TF) and
Transmuted Exponentiated Frechet (TEF) distributions. We also propose CRT Frechet
(CRTF) distribution and Table (1) shows the comparison results based on the estimated
parameter values.

Table I. Estimated Parameters of Frechet, Transmuted Frechet, Transmuted Exponentiated Frechet and
Cubic Rank Transmuted Frechet Distributions.

Distribution ParameterEstimates Log−Likelihood
β θ α λ1 λ2

F 1.922 1.024 − − − −19.43
T F 2.014 2.581 − 0.746 − −11.44

T EF 1.913 3.481 9.88 0.380 − −6.65
CRT F 1.887 3.041 − 0.591 0.115 −5.97

5.2. Water Quality Data

This water quality data were obtained from the Department of Chemistry, Gauhati
University. Various water quality parameters were estimated for the project entitled
Assessment of Toxic Element in Water of Semi-Under Area of Assam and
Investigation of the Disease Related Contaminants during 2009 for three
administration sub-divisions of Nogaon district of Assam, India. Deka et al (2017)
proposed Transmuted Exponentiated Gumbel (TEG) for this data set and compared
the results with Gumbel (G) and Transmuted Gumbel (TG) distributions. We fit the
data into the CRT Gumbel (CRTG) distribution and the results are given in Table (2).

Table II. Estimated Parameters of Gumbel, Transmuted Gumbel, Transmuted Exponentiated Gumbel and
Cubic Rank Transmuted Gumbel Distributions.

Distribution ParameterEstimates Log−Likelihood
β θ α λ1 λ2

G 1.063 0.769 − − − −40.80
T G 1.001 0.855 − 0.711 − −40.14

T EG 0.259 0.185 0.181 0.530 − −39.70
CRT G 0.715 0.625 − 0.856 0.211 −38.95
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5.3. Failure Data

Abdul-Maniem and Seham (2015) used the data set of the life of fatigue fracture of
Kevlar 373/epoxy that are subject to constant pressure at the 90% stress level until
all had failed. For this data set Gombertz (Go) and Transmuted Gombertz (TGo)
distributions were proposed in this paper. We, now propose CRT Gombertz (CRTGo)
distribution for the failure rate data and the results are shown in Table (3).

Table III. Estimated Parameters of Gombertz, Transmuted Gombertz, Transmuted Exponentiated Gombertz
and Cubic Rank Transmuted Gombertz Distributions.

Distribution ParameterEstimates Log−Likelihood
β θ α λ1 λ2

Go 0.121 3.385 − − − −87.20
T Go 0.187 1.148 − 0.819 − −64.25

T EGo 0.895 3.128 0.521 0.985 − −63.25
CRT Go 0.135 1.568 − 0.851 0.119 −61.13

6. CONCLUSION

In this paper, we introduce some examples of cubic rank transmutation mapping.
Frechet, Gumbel and Gombertz distributions are used as the base distribution. The
properties of these distributions such as the density functions, the medians, hazard
rate functions and the quantile functions are examined. Also, maximum likelihood
estimations are obtained. In the application section of the paper, real data set
examples are used to illustrate better fit than the distributions which have been used
before. For all real data sets introduced distributions provides better fittings than the
corresponding distributions.
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