On Some New Classes of Bi-univalent Functions

M. DARUS AND S. SINGH

Abstract

In the present paper, we introduce and investigate two new subclasses $\mathscr{D}_{\Sigma}(n,\gamma,k)$ and $\mathscr{B}_{\Sigma}(n,\beta,k)$ of bi-valent functions in the unit disk \mathbb{U} . For functions belonging to the classes $\mathscr{D}_{\Sigma}(n,\gamma,k)$ and $\mathscr{B}_{\Sigma}(n,\beta,k)$, we obtain estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$.

Mathematics Subject Classification 2010: 30C45, 30C50 Keywords: Univalent, starlike and convex functions, subordination and integral transform

1. INTRODUCTION AND PRELIMINARIES

Let \mathscr{A} be the class of analytic functions defined on the unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$ with the normalized condition f(0) = 0 = f'(0) - 1. Let \mathscr{S} be the class of all functions $f \in \mathscr{A}$ which are univalent in Δ . So $f(z) \in \mathscr{S}$ has the form

$$f(z) = z + \sum_{k=2}^{\infty} a_n z^n, \quad z \in U.$$
(1)

Let $f^{-1}(z)$ be inverse of the function f(z) and it is well known that every function $f \in \mathscr{S}$ has an inverse $f^{-1}(z)$, defined by

$$f^{-1}(f(z)) = z, \quad z \in U$$

and

$$f(f^{-1}(w)) = w$$
, for $|w| < r_0(f); r_0(f) \ge \frac{1}{4}$,

where

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$
 (2)

A function $f \in \mathscr{A}$ is said to be bi-univalent in U if both f(z) and $f^{-1}(w)$ are univalent in U.

Let Σ denote the class of bi-univalent functions in U given by (1).

Many interesting examples of the functions of the class Σ , together with various other properties and characteristics associated with bi-univalent functions (including also

10.2478/jamsi-2018-0010 ©University of SS. Cyril and Methodius in Trnava

several open problems and conjectures involving bounds of the coefficients of the functions in Σ), can be found in the earlier work studied by Lewin[17], Brannan and Clunie [16], Netanyahu[18] and others. They introduced subclasses of Σ , like class of bi-starlike and convex functions, bi-strongly starlike and convex functions similar to the well-known subclasses $\mathscr{S}^*(\alpha)$ and $\mathscr{K}^*(\alpha)$ of starlike and convex functions of order α ($0 < \alpha < 1$), respectively (see [15]) and obtained non-sharp estimates on the initial coefficients in the Taylor-Maclaurin series expansion (1) see[16; 9; 10]. More recently, Srivastava et al. [8; 12; 13], Frasin and Aouf [11], R.M. Ali et al. [14] and Porwal and Darus [6] introduced some new subclasses of Σ and obtained bounds for the initial coefficients of the function given by (1).

Motivated by the work of Porwal and Darus [6], we introduce a new subclass $\mathscr{Q}_{\Sigma}(k, n, \alpha, \gamma)$.

DEFINITION 1.1. A function f given by (1) is said to be in the class $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ if the following conditions are satisfied:

For $n \in Z$, $0 \le \gamma < 1$, $\alpha \ge 1, \lambda \ge 0$ we introduce the subclass $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ of *S* of functions of the form (1) satisfying the condition

$$f \in \Sigma$$
 and $\left| \arg\left(\frac{(1-\alpha)I_{\lambda}^{n}f(z) + \alpha I_{\lambda}^{n+1}f(z)}{z} \right) \right| < \frac{\gamma\pi}{2} \quad z \in U,$ (3)

$$f \in \Sigma$$
 and $\left| arg\left(\frac{(1-\alpha)I_{\lambda}^{n}g(w) + \alpha I_{\lambda}^{n+1}g(w)}{w} \right) \right| < \frac{\gamma \pi}{2} \quad z \in U,$ (4)

where

$$g(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

And

$$I_{\lambda}^{n}f(z) = z + \sum_{k=2}^{\infty} (1 + \lambda(k-1))^{n} a_{k} z^{k}, \quad z \in \Delta, \quad \lambda \ge 0, \quad n \in \mathbb{Z}$$

is generalized Sălăgean derivative defined by [2].

This generalized operator is studied by many and mentioned again by [3]. For k = 1, this class is introduced and investigated in [6]. For n = 0 and $\lambda = 1$ the class $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ reduces to H_{Σ}^{α} introduced and studied by Srivastava et al. [8] and for n = 0 the class $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ reduces to $\mathscr{B}_{\Sigma}(\alpha, \lambda)$ introduced and studied by Frasin and Aouf

[11]. In this paper, we investigate the estimates for the initial coefficients a_2 and a_3 of bi-univalent functions belonging to the class $\mathscr{D}_{\Sigma}(n, \gamma, k)$. Our results generalize several well-known results in [1; 4; 5; 10] and these are pointed out. In order to prove our main result we need the following lemma:

LEMMA 1.1. [3] If $p \in \mathscr{P}$, then $|c_k| \le 2$ for each k, where \mathscr{P} is the family of all functions p(z) analytic in U for which $\operatorname{Re} p(z) > 0$, $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ for $z \in U$.

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $\mathscr{Q}_{\Sigma}(N, \gamma, K)$

THEOREM 2.1. Let f(z) given by (1) be in the class $\mathscr{Q}_{\Sigma}(n,\gamma,k)$, $k \in \mathbb{N}$, $n \in \mathbb{Z}$, $0 \leq \gamma < 1$, $\alpha \geq 1, \lambda \geq 0$. Then

$$|a_2| \leq \frac{2\alpha}{\sqrt{(1+\lambda)^{2n}(1+\lambda\alpha)^2 + \gamma[2(1+2\lambda)^n(1+2\lambda\alpha) - (1+\lambda)^{2n}(1+\lambda\alpha)^2]}},$$
(5)

and

$$|a_3| \le \frac{2\gamma}{2[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}]} + \frac{4\gamma^2}{2[(1-\alpha)(1+\lambda)^n + \alpha(1+\lambda)^{n+1}]}.$$
(6)

PROOF. It follows from (3) and (4) that

$$\frac{(1-\alpha)I_{\lambda}^{n}f(z) + \alpha I_{\lambda}^{n+1}f(z)}{z} = (p(z))^{\gamma}$$
(7)

$$\frac{(1-\alpha)I_{\lambda}^{n}g(w) + \alpha I_{\lambda}^{n+1}g(w)}{w} = (q(w))^{\gamma}$$
(8)

where $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ and $q(w) = 1 + q_1 w + q_2 w^2 + \cdots$ in \mathscr{P} . Now on equating the coefficients in (7) and (8), we have

$$[(1-\alpha)(1+\lambda)^n + \alpha(1+\lambda)^{n+1}]a_2 = \gamma p_1 \tag{9}$$

$$[(1-\alpha)(1+2\lambda)^{n} + \alpha(1+2\lambda)^{n+1}]a_{3} = \gamma p_{2} + \frac{\gamma(\gamma-1)}{2}p_{1}^{2}$$
(10)

$$-[(1-\alpha)(1+\lambda)^n + \alpha(1+\lambda)^{n+1}]a_2 = \gamma q_1$$
(11)

and

$$[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}](2a_2^2 - a_3) = \gamma q_2 + \frac{\gamma(\gamma-1)}{2}q_1^2.$$
(12)

From (9) and (11) we get

$$p_1 = -q_1 \tag{13}$$

and

$$2[(1-\alpha)(1+\lambda)^n + \alpha(1+\lambda)^{n+1}]a_2^2 = \gamma^2(p_1^2 + q_1^2)$$
(14)

From (10), (12) and (14), we get

$$2[(1-\alpha)(1+2\lambda)^{n} + \alpha(1+2\lambda)^{n+1}]a_{2}^{2}$$

= $(p_{2}+q_{2})\gamma + \frac{\gamma(\gamma-1)}{2}(p_{1}^{2}+q_{1}^{2})$
= $(p_{2}+q_{2})\gamma + \frac{\gamma(\gamma-1)}{2}\frac{2[(1-\alpha)(1+\lambda)^{n} + \alpha(1+\lambda)^{n+1}]}{\alpha^{2}}a_{2}^{2}.$

Therefore, we have

$$a_2^2 = \frac{\gamma^2 (p_2 + q_2)}{(1 + \lambda)^{2n} (1 + \lambda \alpha)^2 + \gamma [2(1 + 2\lambda)^n (1 + 2\lambda \alpha) - (1 + \lambda)^{2n} (1 + \lambda \alpha)^2]}$$
(15)

Applying Lemma 1.1 for (15), we get

$$|a_2| \leq \frac{2\alpha}{\sqrt{(1+\lambda)^{2n}(1+\lambda\alpha)^2 + \gamma[2(1+2\lambda)^n(1+2\lambda\alpha) - (1+\lambda)^{2n}(1+\lambda\alpha)^2]}}.$$

which gives us desired estimate on $|a_2|$ as asserted in (5).

Next in order to find the bound on $|a_3|$, by subtracting (12) from (10), we get

$$2[(1-\alpha)(1+2\lambda)^{n} + \alpha(1+2\lambda)^{n+1}](a_3 - a_2^2) = \gamma(p_2 - q_2) + \frac{\gamma(\gamma - 1)}{2}(p_1^2 - q_1^2)$$
(16)

It follows from (13), (14) and (16)

$$a_{3} = \frac{\gamma(p_{2} - q_{2})}{2[(1 - \alpha)(1 + 2\lambda)^{n} + \alpha(1 + 2\lambda)^{n+1}]} + \frac{\gamma^{2}(p_{1}^{2} + q_{1}^{2})}{2[(1 - \alpha)(1 + \lambda)^{n} + \alpha(1 + \lambda)^{n+1}]}$$
(17)

Applying Lemma 1.1 for (17), we get

$$|a_3| \le \frac{2\gamma}{2[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}]} + \frac{4\gamma^2}{2[(1-\alpha)(1+\lambda)^n + \alpha(1+\lambda)^{n+1}]}.$$

This completes the proof of Theorem 2.1.

3. COEFFICIENT BOUNDS FOR THE FUNCTION $\mathscr{B}_{\Sigma}(N,\beta,K)$

DEFINITION 3.1. A function f given by (1) is said to be in the class $\mathscr{B}_{\Sigma}(n,\beta,k)$ if the following conditions are satisfied:

For $n \in Z$, $0 \le \beta < 1$, $\alpha \ge 1, \lambda \ge 0$, we introduce the subclass $\mathscr{B}_{\Sigma}(n, \beta, k)$ of *S* of functions of the form (1) satisfying the condition

$$f \in \Sigma$$
 and $\Re e\left(\frac{(1-\alpha)I_{\lambda}^{n}f(z) + \alpha I_{\lambda}^{n+1}f(z)}{z}\right) > \beta$ $z \in U$, (18)

$$f \in \Sigma \quad and \quad \mathscr{R}e\left(\frac{(1-\alpha)I_{\lambda}^{n}g(w) + \alpha I_{\lambda}^{n+1}g(w)}{w}\right) > \beta \quad z \in U,$$
(19)

where

$$g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

And $I_{\lambda}^{n} f(z)$ is generalized *Sălăgean* derivative defined by [2].

For k = 1 and n = 0, the class $\mathscr{B}_{\Sigma}(n, \beta, k)$ reduces the class $\mathscr{H}_{\Sigma}(n, \beta, \lambda)$ and $\mathscr{H}_{\Sigma}(\beta, \lambda)$ studied by Porwal and Darus [6] and Frasin and Aouf [11], respectively. For n = 0, $\lambda = 1$, this class reduces to $\mathscr{H}_{\Sigma}(\lambda)$ studied by Srivastava et al. [8].

THEOREM 3.1. Let f(z) given by (1) be in the class $\mathscr{B}_{\Sigma}(n,\beta,k)$, $n \in \mathbb{Z}$, $0 \leq \beta < 1$, $\alpha \geq 1$, $\lambda \geq 0$. Then

$$|a_2| \le \sqrt{\frac{2(1-\beta))}{2[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}]^2}}$$
(20)

and

$$|a_{3}| \leq \frac{4(1-\beta)^{2}}{[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}]^{2}} + \frac{2(1-\beta)}{[(1-\alpha)(1+2\lambda)^{n}+\alpha(1+2\lambda)^{n+1}]}.$$
(21)

PROOF. It follows from (18) and (19) that there exists $p(z) \in P$ and $q(z) \in P$

$$\frac{(1-\alpha)I_{\lambda}^{n}f(z) + \alpha I_{\lambda}^{n+1}f(z)}{z} = \beta + (1-\beta)p(z)$$
(22)

$$\frac{(1-\alpha)I_{\lambda}^{n}g(w) + \alpha I_{\lambda}^{n+1}g(w)}{w} = \beta + (1-\beta)q(w)$$
(23)

where $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ and $q(w) = 1 + q_1 w + q_2 w^2 + \cdots$ in \mathscr{P} . Now on equating the coefficients in (22) and (23), we have

$$[(1-\alpha)(1+\lambda)^n + \alpha(1+\lambda)^{n+1}]a_2 = (1-\beta)p_1$$
(24)

$$([(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}]a_3 = (1-\beta)p_2$$
(25)

$$-[(1-\alpha)(1+\lambda)^{n} + \alpha(1+\lambda)^{n+1}]a_{2} = (1-\beta)q_{1}$$
(26)

and

$$[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}](2a_2^2 - a_3) = (1-\beta)q_2$$
(27)

From (24) and (26) we get

$$p_1 = -q_1 \tag{28}$$

and

$$2[(1-\alpha)(1+\lambda)^n + \alpha(1+\lambda)^{n+1}]a_2^2 = (1-\beta)^2(p_1^2+q_1^2)$$
(29)

From (25) and (27), we get

$$2[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}]^2 a_2^2 = (p_2+q_2)(1-\beta)$$
(30)

From (29) and (30), we get

$$|a_2|^2 \le \frac{(1-\beta)(|p_2|^2 + |q_2|^2)}{2[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}]^2}$$
(31)

and

$$|a_2^2| \le \frac{2(1-\beta))}{2[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}]^2}.$$
(32)

Which is the bound on $|a_2|$ as given in (20).

Next, in order to find the bound on $|a_3|$ by subtracting (29) from (25), we obtain

$$2[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}](a_3 - 2a_2^2) = (1-\beta)(p_2 - q_2)$$
(33)

$$a_3 = a_2^2 + \frac{(1-\beta)(p_2 - q_2)}{2[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}]}$$
(34)

On substituting the value $|a_2^2|$ from (31), we have

$$a_{3} = \frac{(1-\beta)^{2}(|p_{2}|^{2}+|q_{2}|^{2})}{2[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}]^{2}} + \frac{(1-\beta)(p_{2}-q_{2})}{2[(1-\alpha)(1+2\lambda)^{n}+\alpha(1+2\lambda)^{n+1}]}$$
(35)

On applying Lemma 1.1 for the coefficients p_1 , q_1 , p_2 and q_2 , we obtain

$$|a_3| \le \frac{4(1-\beta)^2}{[(1-\alpha)(1+\lambda)^n + \alpha(1+\lambda)^{n+1}]^2} + \frac{2(1-\beta)}{[(1-\alpha)(1+2\lambda)^n + \alpha(1+2\lambda)^{n+1}]}.$$
(36)

This completes the proof of Theorem 3.1.

ACKNOWLEDGEMENT

The work here is partially supported by UKM Grant: GUP-2017-064.

REFERENCES

- S. S. Ding, Y. Ling and G. J. Bao, Some properties of a class of analytic functions, *J. Math. Anal. Appl.*, 195(1)(1995), 71-81.
- F. M. Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., 27 (2004), 25-28.
- J. Patel, Inclusion relations and convolution properties of certain subclasses of analytic functions defined by generalized Sălăgean operator, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 33-47.
- M. Chen, On the function satisfying $\Re e \frac{f(z)}{z} > \alpha$, Bull. Inst. Math. Acad. Sinica, 3 (1975), 65-70.
- T. H. Macgregor, Functions whose derivative has a positive real part, *Trans. Amer. Math. Soc.*, 104 (1962), 532-537.
- S. Porwal and M. Darus, On a class of bi-univalent functions, *Journal of Egyptian Mathematical Society*, 21 (2013), 190-193
- N. Tuneski, Some simple sufficient condition for starlikeness and convexity, Appl. Lett, 22 (2009), 693-697.
- H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, *Appl. Math. Lett.*, 23 (2010),1188-1192.

- D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S Faour(Eds), Mathematical Analysis and its Applications, Kuwait, February 18-21, 1985, in: KFAS Proceeding Series, vol. 3, Pergamon Press(Elsevier Science Limited). Oxford, 1988, pp. 53-60: see also Studia Univ. Babes-Bolyai Math. 31 no.2 (1986), 70-77.
- T.S. Taha, Topics in univalent function theory, Ph.D thesis, University of London, 1981.
- B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, *Appl. Math. Lett.*, 24 (2011),1569-1573.
- Q-H. Xu, Y-Ch. Gui and H. M. Srivastava, Coefficient estimates for certain subclass of analytic and biunivalent functions, *Appl. Math. Lett.*, 25 (2012),990-994.
- Q-H. Xu, H-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, *Appl. Math. Comp.*, 218 (2012), 11461-11465.
- R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, *Appl. Math. Lett.*, 25 (2012), 344-351.
- P. L. Duren, Univalent functions, Springer-Verlag, Berlin-New York, 1983.
- D. A. Brannan and J. Clunie (Eds), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July1-20, 1979), Academic Press, New-York and London, 1980.
- M. Lewin, On a coefficient problem for bi-functions, Proc. Amer. Math. Soc., 18 (1967), 63-67.
- E. Netanyahu, The minimal distance of the image boundary from origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32 (1969), 100-112.

M. Darus

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi email: maslina@pkrisc.cc.ukm.my

Saumya Singh Department of Mathematics, O. P. Jindal University, Raigarh, India, email: saumya.singh@opju.ac