On Some New Classes of Bi-univalent Functions

M. DARUS AND S. SINGH

Abstract

In the present paper, we introduce and investigate two new subclasses $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ and $\mathscr{B}_{\Sigma}(n, \beta, k)$ of bi-valent functions in the unit disk \mathbb{U}. For functions belonging to the classes $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ and $\mathscr{B}_{\Sigma}(n, \beta, k)$, we obtain estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

Mathematics Subject Classification 2010: 30C45, 30C50
Keywords: Univalent, starlike and convex functions, subordination and integral transform

1. INTRODUCTION AND PRELIMINARIES

Let \mathscr{A} be the class of analytic functions defined on the unit disc $U=\{z \in \mathbb{C}:|z|<1\}$ with the normalized condition $f(0)=0=f^{\prime}(0)-1$. Let \mathscr{S} be the class of all functions $f \in \mathscr{A}$ which are univalent in Δ. So $f(z) \in \mathscr{S}$ has the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{n} z^{n}, \quad z \in U \tag{1}
\end{equation*}
$$

Let $f^{-1}(z)$ be inverse of the function $f(z)$ and it is well known that every function $f \in \mathscr{S}$ has an inverse $f^{-1}(z)$, defined by

$$
f^{-1}(f(z))=z, \quad z \in U
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad \text { for } \quad|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

A function $f \in \mathscr{A}$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(w)$ are univalent in U.

Let Σ denote the class of bi-univalent functions in U given by (1).
Many interesting examples of the functions of the class Σ, together with various other properties and characteristics associated with bi-univalent functions (including also
several open problems and conjectures involving bounds of the coefficients of the functions in Σ), can be found in the earlier work studied by Lewin[17], Brannan and Clunie [16], Netanyahu[18] and others. They introduced subclasses of Σ, like class of bi-starlike and convex functions, bi-strongly starlike and convex functions similar to the well-known subclasses $\mathscr{S}^{*}(\alpha)$ and $\mathscr{K}^{*}(\alpha)$ of starlike and convex functions of order $\alpha(0<\alpha<1)$, respectively (see [15]) and obtained non-sharp estimates on the initial coefficients in the Taylor-Maclaurin series expansion (1) see[16; 9; 10]. More recently, Srivastava et al. [8; 12; 13], Frasin and Aouf [11], R.M. Ali et al. [14] and Porwal and Darus [6] introduced some new subclasses of Σ and obtained bounds for the initial coefficients of the function given by (1).
Motivated by the work of Porwal and Darus [6], we introduce a new subclass $\mathscr{Q}_{\Sigma}(k, n, \alpha, \gamma)$.

DEFInition 1.1. A function f given by (1) is said to be in the class $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ if the following conditions are satisfied:
For $n \in Z, 0 \leq \gamma<1, \alpha \geq 1, \lambda \geq 0$ we introduce the subclass $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ of S of functions of the form (1) satisfying the condition

$$
\begin{align*}
& f \in \Sigma \quad \text { and } \quad\left|\arg \left(\frac{(1-\alpha) I_{\lambda}^{n} f(z)+\alpha I_{\lambda}^{n+1} f(z)}{z}\right)\right|<\frac{\gamma \pi}{2} \quad z \in U, \tag{3}\\
& f \in \Sigma \quad \text { and } \quad\left|\arg \left(\frac{(1-\alpha) I_{\lambda}^{n} g(w)+\alpha I_{\lambda}^{n+1} g(w)}{w}\right)\right|<\frac{\gamma \pi}{2} \quad z \in U, \tag{4}
\end{align*}
$$

where

$$
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

And

$$
I_{\lambda}^{n} f(z)=z+\sum_{k=2}^{\infty}(1+\lambda(k-1))^{n} a_{k} z^{k}, \quad z \in \Delta, \quad \lambda \geq 0, \quad n \in \mathbb{Z}
$$

is generalized Sălăgean derivative defined by [2].

This generalized operator is studied by many and mentioned again by [3]. For $k=$ 1, this class is introduced and investigated in [6]. For $n=0$ and $\lambda=1$ the class $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ reduces to H_{Σ}^{α} introduced and studied by Srivastava et al. [8] and for $n=0$ the class $\mathscr{Q}_{\Sigma}(n, \gamma, k)$ reduces to $\mathscr{B}_{\Sigma}(\alpha, \lambda)$ introduced and studied by Frasin and Aouf
[11]. In this paper, we investigate the estimates for the initial coefficients a_{2} and a_{3} of bi-univalent functions belonging to the class $\mathscr{Q}_{\Sigma}(n, \gamma, k)$. Our results generalize several well-known results in $[1 ; 4 ; 5 ; 10]$ and these are pointed out. In order to prove our main result we need the following lemma:

Lemma 1.1. [3] If $p \in \mathscr{P}$, then $\left|c_{k}\right| \leq 2$ for each k, where \mathscr{P} is the family of all functions $p(z)$ analytic in U for which $\operatorname{Re} p(z)>0, p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ for $z \in U$.

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $\mathscr{Q}_{\Sigma}(N, \gamma, K)$

THEOREM 2.1. Let $f(z)$ given by (1) be in the class $\mathscr{Q}_{\Sigma}(n, \gamma, k), k \in \mathbb{N}, n \in Z$, $0 \leq \gamma<1, \alpha \geq 1, \lambda \geq 0$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(1+\lambda)^{2 n}(1+\lambda \alpha)^{2}+\gamma\left[2(1+2 \lambda)^{n}(1+2 \lambda \alpha)-(1+\lambda)^{2 n}(1+\lambda \alpha)^{2}\right]}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2 \gamma}{2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]}+\frac{4 \gamma^{2}}{2\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right]} \tag{6}
\end{equation*}
$$

Proof. It follows from (3) and (4) that

$$
\begin{align*}
& \frac{(1-\alpha) I_{\lambda}^{n} f(z)++\alpha I_{\lambda}^{n+1} f(z)}{z}=(p(z))^{\gamma} \tag{7}\\
& \frac{(1-\alpha) I_{\lambda}^{n} g(w)++\alpha I_{\lambda}^{n+1} g(w)}{w}=(q(w))^{\gamma} \tag{8}
\end{align*}
$$

where $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ and $q(w)=1+q_{1} w+q_{2} w^{2}+\cdots$ in \mathscr{P}. Now on equating the coefficients in (7) and (8), we have

$$
\begin{gather*}
{\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right] a_{2}=\gamma p_{1}} \tag{9}\\
{\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right] a_{3}=\gamma p_{2}+\frac{\gamma(\gamma-1)}{2} p_{1}^{2}} \tag{10}\\
-\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right] a_{2}=\gamma q_{1} \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]\left(2 a_{2}^{2}-a_{3}\right)=\gamma q_{2}+\frac{\gamma(\gamma-1)}{2} q_{1}^{2} \tag{12}
\end{equation*}
$$

From (9) and (11) we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right] a_{2}^{2}=\gamma^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{14}
\end{equation*}
$$

From (10), (12) and (14), we get

$$
\begin{gathered}
2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right] a_{2}^{2} \\
=\left(p_{2}+q_{2}\right) \gamma+\frac{\gamma(\gamma-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right) \\
=\left(p_{2}+q_{2}\right) \gamma+\frac{\gamma(\gamma-1)}{2} \frac{2\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right]}{\alpha^{2}} a_{2}^{2} .
\end{gathered}
$$

Therefore, we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\gamma^{2}\left(p_{2}+q_{2}\right)}{(1+\lambda)^{2 n}(1+\lambda \alpha)^{2}+\gamma\left[2(1+2 \lambda)^{n}(1+2 \lambda \alpha)-(1+\lambda)^{2 n}(1+\lambda \alpha)^{2}\right]} \tag{15}
\end{equation*}
$$

Applying Lemma 1.1 for (15), we get

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(1+\lambda)^{2 n}(1+\lambda \alpha)^{2}+\gamma\left[2(1+2 \lambda)^{n}(1+2 \lambda \alpha)-(1+\lambda)^{2 n}(1+\lambda \alpha)^{2}\right]}}
$$

which gives us desired estimate on $\left|a_{2}\right|$ as asserted in (5).

Next in order to find the bound on $\left|a_{3}\right|$, by subtracting (12) from (10), we get

$$
\begin{equation*}
2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]\left(a_{3}-a_{2}^{2}\right)=\gamma\left(p_{2}-q_{2}\right)+\frac{\gamma(\gamma-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) \tag{16}
\end{equation*}
$$

It follows from (13), (14) and (16)

$$
\begin{equation*}
a_{3}=\frac{\gamma\left(p_{2}-q_{2}\right)}{2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]}+\frac{\gamma^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right]} \tag{17}
\end{equation*}
$$

Applying Lemma 1.1 for (17), we get

$$
\left|a_{3}\right| \leq \frac{2 \gamma}{2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]}+\frac{4 \gamma^{2}}{2\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right]}
$$

This completes the proof of Theorem 2.1.

3. COEFFICIENT BOUNDS FOR THE FUNCTION $\mathscr{B}_{\Sigma}(N, \beta, K)$

DEFINITION 3.1. A function f given by (1) is said to be in the class $\mathscr{B}_{\Sigma}(n, \beta, k)$ if the following conditions are satisfied:
For $n \in Z, 0 \leq \beta<1, \alpha \geq 1, \lambda \geq 0$, we introduce the subclass $\mathscr{B}_{\Sigma}(n, \beta, k)$ of S of functions of the form (1) satisfying the condition

$$
\begin{align*}
& f \in \Sigma \quad \text { and } \quad \mathscr{R} e\left(\frac{(1-\alpha) I_{\lambda}^{n} f(z)+\alpha I_{\lambda}^{n+1} f(z)}{z}\right)>\beta \quad z \in U, \tag{18}\\
& f \in \Sigma \quad \text { and } \quad \mathscr{R} e\left(\frac{(1-\alpha) I_{\lambda}^{n} g(w)+\alpha I_{\lambda}^{n+1} g(w)}{w}\right)>\beta \quad z \in U, \tag{19}
\end{align*}
$$

where

$$
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

And $I_{\lambda}^{n} f(z)$ is generalized Sălǎgean derivative defined by [2].

For $k=1$ and $n=0$, the class $\mathscr{B}_{\Sigma}(n, \beta, k)$ reduces the class $\mathscr{H}_{\Sigma}(n, \beta, \lambda)$ and $\mathscr{H}_{\Sigma}(\beta, \lambda)$ studied by Porwal and Darus [6] and Frasin and Aouf [11], respectively. For $n=0$, $\lambda=1$, this class reduces to $\mathscr{H}_{\Sigma}(\lambda)$ studied by Srivastava et al. [8].

THEOREM 3.1. Let $f(z)$ given by (1) be in the class $\mathscr{B}_{\Sigma}(n, \beta, k), n \in Z, 0 \leq \beta<$ $1, \alpha \geq 1, \lambda \geq 0$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta))}{2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]^{2}}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right]^{2}}+\frac{2(1-\beta)}{\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]} \tag{21}
\end{equation*}
$$

Proof. It follows from (18) and (19) that there exists $p(z) \in P$ and $q(z) \in P$

$$
\begin{align*}
& \frac{(1-\alpha) I_{\lambda}^{n} f(z)++\alpha I_{\lambda}^{n+1} f(z)}{z}=\beta+(1-\beta) p(z) \tag{22}\\
& \frac{(1-\alpha) I_{\lambda}^{n} g(w)++\alpha I_{\lambda}^{n+1} g(w)}{w}=\beta+(1-\beta) q(w) \tag{23}
\end{align*}
$$

where $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ and $q(w)=1+q_{1} w+q_{2} w^{2}+\cdots$ in \mathscr{P}. Now on equating the coefficients in (22) and (23), we have

$$
\begin{gather*}
{\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right] a_{2}=(1-\beta) p_{1}} \tag{24}\\
\left(\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right] a_{3}=(1-\beta) p_{2}\right. \tag{25}\\
-\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right] a_{2}=(1-\beta) q_{1} \tag{26}
\end{gather*}
$$

and

$$
\begin{equation*}
\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]\left(2 a_{2}^{2}-a_{3}\right)=(1-\beta) q_{2} \tag{27}
\end{equation*}
$$

From (24) and (26) we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right] a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{29}
\end{equation*}
$$

From (25) and (27), we get

$$
\begin{equation*}
2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]^{2} a_{2}^{2}=\left(p_{2}+q_{2}\right)(1-\beta) \tag{30}
\end{equation*}
$$

From (29) and (30), we get

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{(1-\beta)\left(\left|p_{2}\right|^{2}+\left|q_{2}\right|^{2}\right)}{2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]^{2}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2}^{2}\right| \leq \frac{2(1-\beta))}{2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]^{2}} \tag{32}
\end{equation*}
$$

Which is the bound on $\left|a_{2}\right|$ as given in (20).

Next, in order to find the bound on $\left|a_{3}\right|$ by subtracting (29) from (25), we obtain

$$
\begin{gather*}
2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]\left(a_{3}-2 a_{2}^{2}\right)=(1-\beta)\left(p_{2}-q_{2}\right) \tag{33}\\
a_{3}=a_{2}^{2}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]} \tag{34}
\end{gather*}
$$

On substituting the value $\left|a_{2}^{2}\right|$ from (31), we have

$$
\begin{equation*}
a_{3}=\frac{(1-\beta)^{2}\left(\left|p_{2}\right|^{2}+\left|q_{2}\right|^{2}\right)}{2\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right]^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]} \tag{35}
\end{equation*}
$$

On applying Lemma 1.1 for the coefficients p_{1}, q_{1}, p_{2} and q_{2}, we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{\left[(1-\alpha)(1+\lambda)^{n}+\alpha(1+\lambda)^{n+1}\right]^{2}}+\frac{2(1-\beta)}{\left[(1-\alpha)(1+2 \lambda)^{n}+\alpha(1+2 \lambda)^{n+1}\right]} \tag{36}
\end{equation*}
$$

This completes the proof of Theorem 3.1.

ACKNOWLEDGEMENT

The work here is partially supported by UKM Grant: GUP-2017-064.

REFERENCES

S. S. Ding, Y. Ling and G. J. Bao, Some properties of a class of analytic functions, J. Math. Anal. Appl., 195(1)(1995), 71-81.
F. M. Oboudi, On univalent functions defined by a generalized Sǎlăgean operator, Int. J. Math. Math. Sci., 27 (2004), 25-28.
J. Patel, Inclusion relations and convolution properties of certain subclasses of analytic functions defined by generalized Sǎlăgean operator, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 33-47.
M. Chen, On the function satisfying $\mathscr{R} e \frac{f(z)}{z}>\alpha$, Bull. Inst. Math. Acad. Sinica, 3 (1975), 65-70.
T. H. Macgregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
S. Porwal and M. Darus, On a class of bi-univalent functions, Journal of Egyptian Mathematical Society, 21 (2013), 190-193
N. Tuneski, Some simple sufficient condition for starlikeness and convexity, Appl. Lett, 22 (2009), 693-697.
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010),1188-1192.
D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S Faour(Eds), Mathematical Analysis and its Applications, Kuwait, February 18-21, 1985, in: KFAS Proceeding Series, vol. 3, Pergamon Press(Elsevier Science Limited). Oxford, 1988, pp. 53-60: see also Studia Univ. Babes-Bolyai Math. 31 no. 2 (1986), 70-77.
T.S. Taha, Topics in univalent function theory, Ph.D thesis, University of London, 1981.
B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011),15691573.

Q-H. Xu, Y-Ch. Gui and H. M. Srivastava, Coefficient estimates for certain subclass of analytic and biunivalent functions, Appl. Math. Lett., 25 (2012),990-994.
Q-H. Xu, H-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comp., 218 (2012), 11461-11465.
R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent MaMinda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344-351.
P. L. Duren, Univalent functions, Springer-Verlag, Berlin-New York, 1983.
D. A. Brannan and J. Clunie (Eds), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July1-20, 1979), Academic Press, New-York and London, 1980.
M. Lewin, On a coefficient problem for bi-functions, Proc. Amer. Math. Soc., 18 (1967), 63-67.
E. Netanyahu, The minimal distance of the image boundary from origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32 (1969), 100-112.

M. Darus

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi email: maslina@pkrisc.cc.ukm.my

Saumya Singh

Department of Mathematics, O. P. Jindal University, Raigarh, India, email: saumya.singh@opju.ac

