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Abstract

In the present paper, we introduce and investigate two new subclasses QΣ(n,γ,k) and BΣ(n,β ,k) of
bi-valent functions in the unit disk U. For functions belonging to the classes QΣ(n,γ,k) and BΣ(n,β ,k),
we obtain estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3|.
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1. INTRODUCTION AND PRELIMINARIES

Let A be the class of analytic functions defined on the unit disc U = {z ∈C : |z|< 1}
with the normalized condition f (0)= 0= f ′(0)−1. Let S be the class of all functions
f ∈A which are univalent in ∆. So f (z) ∈S has the form

f (z) = z+
∞

∑
k=2

anzn, z ∈U. (1)

Let f−1(z) be inverse of the function f (z) and it is well known that every function
f ∈S has an inverse f−1(z), defined by

f−1( f (z)) = z, z ∈U

and

f ( f−1(w)) = w, f or |w|< r0( f );r0( f )≥ 1
4
,

where

f−1(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · · . (2)

A function f ∈A is said to be bi-univalent in U if both f (z) and f−1(w) are univalent
in U .
Let Σ denote the class of bi-univalent functions in U given by (1).
Many interesting examples of the functions of the class Σ, together with various other
properties and characteristics associated with bi-univalent functions (including also
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several open problems and conjectures involving bounds of the coefficients of the
functions in Σ), can be found in the earlier work studied by Lewin[17], Brannan and
Clunie [16], Netanyahu[18] and others. They introduced subclasses of Σ, like class
of bi-starlike and convex functions, bi-strongly starlike and convex functions similar
to the well-known subclasses S ∗(α) and K ∗(α) of starlike and convex functions of
order α (0 < α < 1), respectively (see [15]) and obtained non-sharp estimates on the
initial coefficients in the Taylor-Maclaurin series expansion (1) see[16; 9; 10]. More
recently, Srivastava et al. [8; 12; 13], Frasin and Aouf [11], R.M. Ali et al. [14] and
Porwal and Darus [6] introduced some new subclasses of Σ and obtained bounds for
the initial coefficients of the function given by (1).

Motivated by the work of Porwal and Darus [6], we introduce a new subclass
QΣ(k,n,α,γ).

DEFINITION 1.1. A function f given by (1) is said to be in the class QΣ(n,γ,k)

if the following conditions are satisfied:
For n ∈ Z, 0 ≤ γ < 1, α ≥ 1,λ ≥ 0 we introduce the subclass QΣ(n,γ,k) of S of
functions of the form (1) satisfying the condition

f ∈ Σ and

∣∣∣∣∣arg

(
(1−α)In

λ
f (z)+αIn+1

λ
f (z)

z

)∣∣∣∣∣< γπ

2
z ∈U, (3)

f ∈ Σ and

∣∣∣∣∣arg

(
(1−α)In

λ
g(w)+αIn+1

λ
g(w)

w

)∣∣∣∣∣< γπ

2
z ∈U, (4)

where

g(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · · .

And

In
λ

f (z) = z+
∞

∑
k=2

(1+λ (k−1))nakzk, z ∈ ∆, λ ≥ 0, n ∈ Z.

is generalized Sǎlǎgean derivative defined by [2].

This generalized operator is studied by many and mentioned again by [3]. For k =

1, this class is introduced and investigated in [6]. For n = 0 and λ = 1 the class
QΣ(n,γ,k) reduces to Hα

Σ
introduced and studied by Srivastava et al. [8] and for n = 0

the class QΣ(n,γ,k) reduces to BΣ(α,λ ) introduced and studied by Frasin and Aouf
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[11]. In this paper, we investigate the estimates for the initial coefficients a2 and a3

of bi-univalent functions belonging to the class QΣ(n,γ,k). Our results generalize
several well-known results in [1; 4; 5; 10] and these are pointed out. In order to prove
our main result we need the following lemma:

LEMMA 1.1. [3] If p ∈P , then |ck| ≤ 2 for each k, where P is the family of
all functions p(z) analytic in U for which Re p(z)> 0, p(z) = 1+ c1z+ c2z2 + · · · for
z ∈U .

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS QΣ(N,γ,K)

THEOREM 2.1. Let f (z) given by (1) be in the class QΣ(n,γ,k), k ∈ N, n ∈ Z,
0≤ γ < 1, α ≥ 1,λ ≥ 0. Then

|a2| ≤
2α√

(1+λ )2n(1+λα)2 + γ[2(1+2λ )n(1+2λα)− (1+λ )2n(1+λα)2]
, (5)

and

|a3| ≤
2γ

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
+

4γ2

2[(1−α)(1+λ )n +α(1+λ )n+1]
.

(6)

PROOF. It follows from (3) and (4) that

(1−α)In
λ

f (z)++αIn+1
λ

f (z)
z

= (p(z))γ (7)

(1−α)In
λ

g(w)++αIn+1
λ

g(w)
w

= (q(w))γ (8)

where p(z) = 1+ p1z+ p2z2 + · · · and q(w) = 1+ q1w+ q2w2 + · · · in P . Now on
equating the coefficients in (7) and (8), we have

[(1−α)(1+λ )n +α(1+λ )n+1]a2 = γ p1 (9)

[(1−α)(1+2λ )n +α(1+2λ )n+1]a3 = γ p2 +
γ(γ−1)

2
p2

1 (10)

−[(1−α)(1+λ )n +α(1+λ )n+1]a2 = γq1 (11)
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and

[(1−α)(1+2λ )n +α(1+2λ )n+1](2a2
2−a3) = γq2 +

γ(γ−1)
2

q2
1. (12)

From (9) and (11) we get

p1 =−q1 (13)

and

2[(1−α)(1+λ )n +α(1+λ )n+1]a2
2 = γ

2(p2
1 +q2

1) (14)

From (10), (12) and (14), we get

2[(1−α)(1+2λ )n +α(1+2λ )n+1]a2
2

= (p2 +q2)γ +
γ(γ−1)

2
(p2

1 +q2
1)

= (p2 +q2)γ +
γ(γ−1)

2
2[(1−α)(1+λ )n +α(1+λ )n+1]

α2 a2
2.

Therefore, we have

a2
2 =

γ2(p2 +q2)

(1+λ )2n(1+λα)2 + γ[2(1+2λ )n(1+2λα)− (1+λ )2n(1+λα)2]
(15)

Applying Lemma 1.1 for (15), we get

|a2| ≤
2α√

(1+λ )2n(1+λα)2 + γ[2(1+2λ )n(1+2λα)− (1+λ )2n(1+λα)2]
.

which gives us desired estimate on |a2| as asserted in (5).

Next in order to find the bound on |a3|, by subtracting (12) from (10), we get

2[(1−α)(1+2λ )n+α(1+2λ )n+1](a3−a2
2) = γ(p2−q2)+

γ(γ−1)
2

(p2
1−q2

1) (16)

It follows from (13), (14) and (16)

a3 =
γ(p2−q2)

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
+

γ2(p2
1 +q2

1)

2[(1−α)(1+λ )n +α(1+λ )n+1]
(17)
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Applying Lemma 1.1 for (17), we get

|a3| ≤
2γ

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
+

4γ2

2[(1−α)(1+λ )n +α(1+λ )n+1]
.

This completes the proof of Theorem 2.1.

3. COEFFICIENT BOUNDS FOR THE FUNCTION BΣ(N,β ,K)

DEFINITION 3.1. A function f given by (1) is said to be in the class BΣ(n,β ,k)

if the following conditions are satisfied:
For n ∈ Z, 0 ≤ β < 1, α ≥ 1,λ ≥ 0, we introduce the subclass BΣ(n,β ,k) of S of
functions of the form (1) satisfying the condition

f ∈ Σ and Re

(
(1−α)In

λ
f (z)+αIn+1

λ
f (z)

z

)
> β z ∈U, (18)

f ∈ Σ and Re

(
(1−α)In

λ
g(w)+αIn+1

λ
g(w)

w

)
> β z ∈U, (19)

where

g(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · · .

And In
λ

f (z) is generalized Sǎlǎgean derivative defined by [2].

For k = 1 and n = 0, the class BΣ(n,β ,k) reduces the class HΣ(n,β ,λ ) and HΣ(β ,λ )

studied by Porwal and Darus [6] and Frasin and Aouf [11], respectively. For n = 0,
λ = 1, this class reduces to HΣ(λ ) studied by Srivastava et al. [8].

THEOREM 3.1. Let f (z) given by (1) be in the class BΣ(n,β ,k), n∈ Z, 0≤ β <

1, α ≥ 1, λ ≥ 0. Then

|a2| ≤

√
2(1−β ))

2[(1−α)(1+2λ )n +α(1+2λ )n+1]2
(20)

and

|a3| ≤
4(1−β )2

[(1−α)(1+λ )n +α(1+λ )n+1]2
+

2(1−β )

[(1−α)(1+2λ )n +α(1+2λ )n+1]
.

(21)
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PROOF. It follows from (18) and (19) that there exists p(z) ∈ P and q(z) ∈ P

(1−α)In
λ

f (z)++αIn+1
λ

f (z)
z

= β +(1−β )p(z) (22)

(1−α)In
λ

g(w)++αIn+1
λ

g(w)
w

= β +(1−β )q(w) (23)

where p(z) = 1+ p1z+ p2z2 + · · · and q(w) = 1+ q1w+ q2w2 + · · · in P . Now on
equating the coefficients in (22) and (23), we have

[(1−α)(1+λ )n +α(1+λ )n+1]a2 = (1−β )p1 (24)

([(1−α)(1+2λ )n +α(1+2λ )n+1]a3 = (1−β )p2 (25)

−[(1−α)(1+λ )n +α(1+λ )n+1]a2 = (1−β )q1 (26)

and

[(1−α)(1+2λ )n +α(1+2λ )n+1](2a2
2−a3) = (1−β )q2 (27)

From (24) and (26) we get

p1 =−q1 (28)

and

2[(1−α)(1+λ )n +α(1+λ )n+1]a2
2 = (1−β )2(p2

1 +q2
1) (29)

From (25) and (27), we get

2[(1−α)(1+2λ )n +α(1+2λ )n+1]2a2
2 = (p2 +q2)(1−β ) (30)

From (29) and (30), we get

|a2|2 ≤
(1−β )(|p2|2 + |q2|2)

2[(1−α)(1+2λ )n +α(1+2λ )n+1]2
(31)

and

|a2
2| ≤

2(1−β ))

2[(1−α)(1+2λ )n +α(1+2λ )n+1]2
. (32)

Which is the bound on |a2| as given in (20).
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Next, in order to find the bound on |a3| by subtracting (29) from (25), we obtain

2[(1−α)(1+2λ )n +α(1+2λ )n+1](a3−2a2
2) = (1−β )(p2−q2) (33)

a3 = a2
2 +

(1−β )(p2−q2)

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
(34)

On substituting the value |a2
2| from (31), we have

a3 =
(1−β )2(|p2|2 + |q2|2)

2[(1−α)(1+λ )n +α(1+λ )n+1]2
+

(1−β )(p2−q2)

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
(35)

On applying Lemma 1.1 for the coefficients p1, q1, p2 and q2, we obtain

|a3| ≤
4(1−β )2

[(1−α)(1+λ )n +α(1+λ )n+1]2
+

2(1−β )

[(1−α)(1+2λ )n +α(1+2λ )n+1]
.

(36)
This completes the proof of Theorem 3.1.
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27 (2004), 25-28.

J. Patel, Inclusion relations and convolution properties of certain subclasses of analytic functions defined
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