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Study of Incomplete Elliptic Integrals Pertaining
to ,y, Function
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Abstract

Elliptic-type integral plays a major role in the study of different problems of physics and technology
including fracture mechanics. Many papers have been written for various families of elliptic-type
integrals. Due to their applications here, we are presenting an organized study of certain generalized
family of incomplete elliptic integral. The obtained results are basic in nature have various generalizations.
While using the fractional integral operator of Riemann-Liouville type, we found several obvious hyper
geometric representations. Which are further used to originate many definite integrals relating to their
modules and amplitude of elliptic type generalized incomplete integrals.
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1. INTRODUCTION AND DEFINITIONS

The incomplete elliptic integrals having a keen interest of mathematician form a long
time. In this way Legendre’s normal form of incomplete elliptic integrals of the first
and second kind are given [1-6]:
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with |k| modulus and amplitude ¢.
In this paper, we take necessary constraint |k2’ < 1 rather than 0 < k< 1. Here the
amplitude ¢ may attend complex values. Specially, when ¢ = 7, the equations (1)
and (2) provides the corresponding complete elliptic integrals. It is very useful in
radiation physics, nuclear technology fracture mechanics etc. (see [7-17]).

We have generalized elliptic function of third kind [6]

*J DE GRUYTER
OPEN

10.2478/jamsi-2018-0009 =
©University of SS. Cyril and Methodius in Trnava




12 R. Shanker Dubey, A. Sharma and M. Jain

0 1
R(0.kEs00,y) =
(kcia) /0 (1 + & sin? 0)% (1 — &2 sin? 9)1/2’7d67 ©

sin.q)

1 [ <1;0<¢ <5
R(¢.k,G:0,7) = dv, 4)
@ ksa.7) 0/ (14 EvD)* /(1T =v2) (1 —k2v2)1/ 27 ’ <yeC,a20 ¢
where € is elliptic characteristic and & > —1.

Also we have elliptic function
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It is seen that by assigning some particular values of &, ¥ and ¢, the above defined

results reduce into known elliptic integral (see [2,6-17]).

The multivariable hyper geometric function defined by Srivastava & Daoust ([16-17])
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With variable and parametric constraints the above mentioned series is absolutely
convergent.
We have by the definition of well-known Riemann-Liouville operator D% f (z) of

fractional calculus (see [6,17]):

M 2T [t e g ], ®

[R(A) > 0515 >0 (j=1,....r) ;max {Jajz"| ..., Ja,z* |} < 1],
where the D? is the Riemann-Liouville fractional differintegral operator (see [3,18-
20])
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which shows the defining integral in (9) exists.
Equation (3) reduces the following result by using the definition (8) applying r = 3
with, A = u— 1 =1 and z = sin ¢, we find that

2220 DU 2 G2 g sin? g, sin 0]
(10)

R(0.k&sa,y) = sin g FL ()]

conditions are already defined in the (3) and (4).

In the same manner

1(9,k,E;7) = sin ¢F11::01;;01;;01 [E;i;:gﬁ;i(1/27%1)2(1/;2’1) (1132 62 ¢, sin® ¢, — & sin® ¢]

an
for details see [6].
By using the definition of Pochhammer symbol, we have
(Darpomian _ T@IF2mt2n41)  T(3) (2)1emen _ (2)1emen (12)
Dorsomion  T@F2m+2042) 2T (3) )i B)rpman
where we used the duplication formula defined bellow:
2%~ 1 1
I'(2z) = NG F(Z)F(z+2) , (13)

with the help of above relation defined by equation (10), we can write the relation as

R(0.kE:a7) = sind.Fi B S g @R sin g, sin g, - 5sin2¢] (14)

(| <100 Zivecazo),

and similarly 7 (¢,k,& ;) can be defined in the similar manner, where F; denotes
the particular case of the multivariable hypergeometric function given by Srivastava-

Daoust for three variables defined in (7).

We know the definition of binomial expansion:

(EERED)

7", (lz2] < 1;4 € C) (15)

and

(1+2)7* = i (), (—2)", (Jzl < 1;A €C). (16)

By the help of the binomial expansion, we can say that
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n=0

We have by the definition of Beta function B (a, ):

/O'ﬂ/2 201 g o528 16d6*7 B(ap), (min{R(a).R(B)}>0:B(a,/3) - M)

I'(a+p)
(19)

with help of these formulas and relations, we can easily establish Theorem 1.

2. THEOREMS AND COROLLARIES.

THEOREM 1. If ,y, is a Wright function [21], whose series representation is
given by
v (a1,01) o (ap,p) x} B i Hi;ll"(aj—i—ajr) x; 20
oY Lo cetoasi G I Ty + Byr) 7
where o; and B; (i=1,...,p;j=1,...,q) are real and positive, and 1+ Z?:lﬁj —
Z?:l o > 0.
Also consider that {7,7,A,u} > 0,(t+n > 0; A+ >0) and
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then
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where R(p) > —land|{| <1 [or [{| = land R(p +2A) > —1].
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PROOF. To establish the result defined in Theorem 1, we use the values of

(‘P S E o Y) and ,y, L:l Zl)) """ tp’zp))fx from equations (3) and (18)
1:P1 q-Pq)

respectively, we get the required result after simplification by using the formulas

which are defined above.

COROLLARY 1. With the help of definition new elliptic function defined in

equation (5), we can establish the following result
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(24)
with help of Theorem 1 we can determine the above Corollary 1, by putting @ = 1.

COROLLARY 2. With the help of elliptic integral of third kind (see [6]), we can

establish the following result
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(25
with help of Theorem 1 we can determine the above Corollary 2, by putting &t = 1 and
Y = 0.

THEOREM 2. The following families of integrals hold true

2 ap,0q) ... (ap.oy —rn
S sin@= D g cos™ 1 gy [0 k| R (0, ks y) do = § T (a,b)

2:1:1:1 | (3:LL1), (a: LI 1) (an,00),(@n,06): (3 —=%1) 1 (5,1): (a1); 2
Fa:0:0:0 {é:lﬁl,l),ww:l,l,l) (b1 )b )i kA5 =S

(26)
[|K*| < 1:min{R (a),R (b),R(a;),R(b:;)} >0,i=12,..;7€C]|.

and
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only if the second member of each of the integral formulas defined in equations (26)

and (27) occurs.

PROOF. After replacing the R (¢, k,&;a,A) from equation (10) and the value
of Wright function from equation (20) in to the integral of the affirmation equation
(26) of Theorem 2, if we use the trigonometric integral (19) as it is, we can find the
integral formula (26) as given above.

COROLLARY 1. With help of definition of new elliptical function defined in

equation (5), we can establish the following result

T2 sin2@=1) g cos1 ¢y, [;b:g:) (“,,l;;p 1(¢,k,5:7)do = iH%i?fZ:;B(a,b)
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This Corollary can be found with help of Theorem 2 by putting o« = 1.

COROLLARY 2. With help of elliptical integral of third kind (see[6]), we can
establish the following result
/2
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0 (30)
_1 21 [ (1) @l LD:(501); (7 Di(L1; 5
= 28(a,b) Fyp0 (3:1.1,0) (a+b:1,1,1): —1—i— *,1,-¢

This Corollary can be find with the help of Theorem 2 by putting & = 1 and y = 0.
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REMARK 2. On changing the following variables

dx
= arcsinx and dp = —— withx € (0,1 31

equation (26) can be rewritten as

Jy x2la=1) (1- )cz)}F1 R (arcsinx, k,& ;o) dx

q a1 [(Bnn) @i (3=r) s (50 (@): , (32)
= 2B(a,b) 5500 (3:1,10), (a+b:1,1,1): = — 5 — K1,-81,

(K| < 1:min{R (c),R(B)} >0;7y€C]

Here equation (32) can be equated with equation (27) stated by Theorem 2.
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