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Abstract

Accurate and fast identification of a person from a security point of view is a key procedure. The most
common technique of person identification uses identity cards. In contrary to the common approach we
focus our research on identification based on the body movement such as the gait in this paper. The gait
and the posture belong to the unique characteristics of the person that helps us to facilitate the
identification. The proposed methodology allows us to incorporate personal characteristics into the access
control systems using the color depth camera (RGBD). For the sake of gait analysis, the important task is
to recognize the figure and extract the skeleton data from a video recording. Besides the usage of the
mathematical statistics methods, we are opting to use computer animation and computer vision methods,
which makes the research interdisciplinary. The main novelty of the paper is the definition and extraction
of the feature vector from motion capture data, the analysis methodology and finally the selection of few
statistically dominant motion attributes for the identification purposes. Besides the development of new
approaches in this field, we validate proposed approaches from the perspective of accuracy.
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1. INTRODUCTION

The right and fast identification of people from a security point of view is a key
procedure, in today’s world. Each person is unique. The most common way of
identifying a person is based on identity cards. In a worse case, only the password or
pin use is sufficient. Such identity keys can be easily stolen or falsified. It is,
therefore, necessary to focus on the unique qualities of every person that cannot be
imitated, lost or forgotten.

Biometrics authentication refers to the identification based on the unique features of
a particular person. We can categorize biometric identifiers into two separate groups;
either the physiological or the behavioral characteristics. Physiological characteristics
are related to the body and its shape or structure such as fingerprint [Wang et al. 2010]
or DNA [Tautz 1989]. Behavioral characteristics are related to the pattern of behavior
of a person such as voice, handwriting or leg motion [Yam et al. 2002].

A person’s walk is unique, as confirmed by an experiment [Barclay et al. 1978]
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that was carried out in the 1970s. However, as has been shown later, a person can be
identified with much greater accuracy based on the use of selected symptoms. The
survey [Gianaria et al. 2014] showed that it is possible to achieve up to 96% success.
In particular, they used fixed human skeleton parameters such as the height of the
person or the length of the limbs. In our method, we will use some of their verified
attributes. However, our project focuses mainly on walking. To analyze a walking
cycle statistical methods are commonly utilized. Some approaches are based on
feature learning methods for gait recognition [Feng et al. 2016], others use
probabilistic methods [Bazin and Nixon 2005]. On the other hand, descriptors
describing actual behavior of individuals have already been studied. In particular,
there are descriptors aimed at detecting aggressive behavior [Chen et al. 2008] or
detecting human action [Acar et al. 2012]. These methods share a common key
feature. They try to describe all people as a group and are therefore not suitable for
distinguishing individuals.

A crucial step in analyzing the walking sequence is data acquisition. In our case, it
will be the captured animation of a human skeleton. Our approach to quickly extract
skeleton and human movement based on depth data rely on freely available software
development kit (SDK) for Kinect device [Rahman and Gavrilova 2017; Peterkova
and Stremy 2015]. However, the SDK is well known for its inaccuracy. Another
choice is extracting the skeleton from depth data using an anatomical human
model [Zhu et al. 2015]. The skeleton thus obtained is very precise compared to the
previous option, but it is paid off by a calculation time that is too large for the
practical real-time application, particularly for several people at the same time. An
alternative is the use of color video information [Andriluka et al. 2009]. Color-based
methods are difficult to calibrate and apply in practice under unstable light
conditions. Therefore, we propose a combination of color and depth
information [Dubois and Bresciani 2015] that will enable us to take advantage of
both approaches.

The process of the identification comprises of particular steps devoted to the feature
extraction and the database of subjects search procedure. First, the multiple subjects
during the gait had to be recorded. Then the skeletal representation of the data is
extracted using the particular procedure [Riečický et al. 2018; Ďurikovič and Madaras
2015]. The feature vector is created from the data of each subject and subsequently
stored in the database. The main focus of our work is to find the relevant parameters
to construct the feature vector using in the database.
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2. SKELETON MODEL

To capture the behavioral characteristics of gait we based our data structure on
physiological characteristics of human skeleton depicted in Fig. 1. Our designed
hierarchical data structure is meant to be compatible with Biovision Hierarchy
(BVH) data format. BVH format is commonly used in many animation systems and
software platforms. The proposed skeletal structure is extracted from the sequences
capturing human actors walking data [Kim and Kim 2014]. We extract the 3D
position of joints, representing nodes in the hierarchical structure, from default
posture. The structure contains 5 leaf nodes and the root of the structure is the node
in 3D space denoted as P1. We can represent walking animation as a sequence of
poses attribute to subsequent time frames. Each joint can rotate about preceding
node, therefore we can create an arbitrary pose from default posture using a
particular set of rotations. If we rotate root, we rotate the whole skeleton. If we rotate
shoulder joint, the whole hand is moved. Therefore, we can represent skeleton in
each animation frame using our hierarchical representation. The optimal number of
frames per second (fps) capturing walking cycle of regular gait is 30, see Fig. 1. To
capture the running person we need at least 60 fps to achieve smooth motion.

Fig. 1. Model of skeleton. Left: Joints P1-loins (center), P2-rump, P3-lower back, P4-upper back, P5-neck,
P6-head, P7-left arm, P8-left hand, P9-left elbow, P10-left palm, P11-right arm, P12-right hand, P13-right
elbow, P14-right palm, P15-right hip joint, P16-right knee, P17-right heel, P18-right tiptoe, P19-left hip joint,
P20-left knee, P21-left heel, P22-left tiptoe. Right: Walking frame sequence.
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3. GAIT ATTRIBUTES

We consider three particular parameter categories in order to analyze gait.
Physiological, kinematic and time-dependent parameters. We have analyzed each
group of parameters in order to find appropriate parameters suitable to form a feature
vector. As an example of physiological parameter we can use the length of a limb or
the height of a person which is a scalar value. The kinematic parameter is, for
example, the pace, which could change during the walk. The time-dependent
parameter is, for example, arm rotation, which could be different in each frame.

3.1. Physiological parameters

Physiological parameters of the same person are constant at each time of
movement. They can be calculated from one arbitrary frame. In our method, we used
5 physiological parameters. These include the height of the torso, left and right-hand
lengths, left and right leg lengths. When evaluating these parameters, the distance
between the joints is calculated. Each of the joints is represented as a point P in a
three-dimensional space. So the distance between the two joints is calculated as the
Euclidean distance of two points. The resulting value will be the sum of the distances
between every two adjacent joints of the sequence. Parameters representing the
lengths of particular body part Lw are calculated using the formula:

Lw = ∑
i∈w
‖Pwi+1 −Pwi‖, (1)

where w represents a set of joints from a given limb (see Fig. 1). The indexes of
the joints from these sets are found in the Tab. I. We have calculated these distances
for each frame separately. The resulting value was the average of the values from all
frames to minimize minor inaccuracies.

Table I. Joints sequences. Symbol of the parameter its explanation and the corresponding sequence of joints
for calculation.

Symbol Parameter w

γ Torso height
{

6, 5, 4, 3, 2, 1
}

αP Right hand length
{

12, 13, 14
}

αL Length of left hand
{

8, 9, 10
}

βP Right leg length
{

15, 16, 17
}

βL Length of left foot
{

19, 20, 21
}
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3.2. Kinematic parameters

Kinematic parameters include attributes that can be changed at each step of the
walk. These include, for example, walking speed, step length, etc. Altogether, we
investigated up to 30 parameters that could be relevant to the identification. However,
it turned out that most of them depend on the spatial position of the skeleton.
Therefore, we have excluded such parameters. Finally, we have 10 parameters that
we have further analyzed. The parameter list is listed in the Tab. II.

Table II. List of kinematic parameters with parameter notation and the explanation.
Parameter Description

υ Speed
δL Step length of left leg
δP Step length of right leg
κ Step width

σ2
P6 ,x

Variance of head on x axis
σ2

P6 ,y
Variance of head on y axis

σ2
P20 ,y Variance of left knee on y axis

σ2
P16 ,y

Variance of right knee on y axis
σ2

P7 ,x Variance of left arm on x axis
σ2

P11 ,x Variance of right arm on x axis

Kinematic parameters are not constant as physiological parameters. For one person,
they can change at each step. To calculate them, we will need several frames capturing
at least 2 steps gait cycle from the whole walk. The gait cycle means that the left and
right legs touch the ground twice so that the length of the step can be calculated. The
number of frames captured during the gait cycle cannot be uniquely determined. It
depends on the number of frames per second and the speed of the recorded walk.

3.3. Walking speed

Walking speed is a numeric value indicating the length of the path per time interval.
Specifically, the distance that the point P1 (see Fig. 1) passes. However, we need to
choose a suitable time step. Because the input data contains an integer number of fps
(30, 60, . . . ), one second was the most appropriate choice.

Input data we have contains 30 fps, but it does not have to be the rule. Thus we select
every thirty-one frame from the whole walk sequence. From each of the two selected
consecutive frames, we calculated what distance point P1 passes. These distances
indicate the length of the path the person underwent for each second of the walk. Even
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though the walking speed should be theoretically constant, not all of these values are
the same. In the same second, the observed person can slightly accelerate or slow
down. We have attempted to use the arithmetic mean of this data, which has proven to
be an incorrect choice. In some cases, the tracking person started to slow down at the
end of the walk, causing the results to be distorted. Finally, we determine the resulting
velocity as the median of the obtained data.

3.4. Step length

In our experiments, we use two parameters for step length. One for the left and the
other for the right leg. It turns out that one does not have to do the same long steps
for each of the lower limbs. The length of the step was counted as the distance of two
points in which the foot of the same leg touched the ground. These points are shown
in the Fig. 2. The image shows the touch of the left foot to the floor.

Fig. 2. Step length of left leg. X-axis shows the step start and the end.

To calculate the distance we first need to detect the positions where the foot touched
the ground. However, the floor was not defined. It could be at any height relative to
the coordinate system. Using height coordinates to detect contact with the floor was
not possible.

During walking legs are alternating. For example, the right foot moves while the
left is standing in place and does not change its position. The left foot will move only
when we are touching the floor with the right foot. So at the moment of touching the
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floor, the foot position does not change. This means that the position of the foot is the
same in several consecutive frames. From the Fig. 2 we can see that the density of the
points representing the heel is higher in this particular location.

The positions where the density was the highest are exactly the points where the foot
touched the floor. In this way, we received several consecutive points representing the
touch with the floor. Finally, we calculate the distances between consecutive touch
points representing the particular step length. However, we always needed a sequence
of walks in which the person would have done at least two steps. For the same person,
the length of the steps during the whole walk could be slightly different. We obtain
the resulting value as the median of the calculated data. Along the whole walking
sequence, we captured variable step lengths and create the list of step lengths. As
a resulting length, we choose median computed from the list of captured lengths.
However, it is true that the longer the record of the walk, the more accurate the results
are.

3.5. Step width

This parameter determines what the distance between each heel is. To calculate
this value, we need to detect where the feet touch the ground. Acquired points are
projected onto the floor represented by the XZ plane. Therefore, we can consider
these points as 2D, shown in the Fig. 3 and indexed from 1 to 5.

Fig. 3. Step width - top view. Dots show the left and the right leg movements, the distance between parallel
dot lines can proximate the width of a step in that location.

We have found a linear regression for three consecutive points corresponding to
left and right leg, respectively. Two lines we found are sketched in the Fig. 3 with
a dashed line. We then calculate the distances of the line (1,3,5) from the center of
the line (2,4). In this way, we also obtained variance data caused by the person being
occasionally directed to the sides during the movement. These occasional extremes
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could cause a significant amount of distortion when averaging the values, so we again
used the median of the data.

3.6. Variance of head, knee and arm

Variance gives us the size of the range in which the observed values are found. It is
denoted as σ2 and can be calculated using the formula:

σ
2 =

1
N−1

N

∑
i=1

(xi−µ)2, (2)

where N is the number of samples and µ is the mean value. In Fig. 4 we can see the
top view of the walking person. Particular points represent the movement of the head
along the Z axis. The solid line, denoted as µ , represents the mean value. Variable
σ2 is represented by a dotted line and represents the range at which the points are
distributed.

Fig. 4. Variance of head movement. Middle line is the mean value µ of head position, the dots show the
head movement and σ2 is the variance.

This approach is valid only if the monitored person always walks in the direction
of the Z axis. For arbitrary direction, we use the linear regression instead of the mean
value (see Fig. 5). Let us consider a line ŷ that approximates particular points much
better than average µ . Using this line we are able to calculate the size of the mean
quadratic deviation MSE:

MSE =
∑

N
i=1(yi− ŷi)

2

N−2
, (3)

where N is the number of points, yi is y coordinate of the i-th point and ŷi is the mean
value at point i calculated as line ŷi = β0 +β1xi. β0 and β1 are coefficients obtained
by linear regression. The variance of knee and arm is estimated same way tracking
particular joints instead of the head.
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Fig. 5. Linear regression ŷ and mean value µ .

4. ANALYSIS OF PHYSIOLOGICAL AND KINEMATIC PARAMETERS

Firstly, we have focused to find the similarities in the multiple records of the
walking sequence recording same person. We have searched for the scalar values
similar to multiple recordings of the same person. PCA can be utilized to find
relevant axes in multidimensional space. We have multidimensional space of
multiple parameters. PCA is used to find the direction of maximal variance in
physiological and kinematic parameters multidimensional space. The most relevant
parameters have its axes oriented in the direction of maximal variance.

5. TIME DEPENDENT PARAMETERS

In this section, we describe parameters that are time dependent. It will no longer be
a one-dimensional value, as it was with physiological or kinematic parameters, but a
sequence of values depending on time. We may find many parameters that vary with
time. However, we decided to investigate joint acceleration, arm rotation, bending and
leg distances. A complete overview of the parameters is described in Tab. III.

5.1. Acceleration

We have examined the acceleration of the various joints over time. The result was a
signal that shows the magnitude of the acceleration as a function of time. The resulting
acceleration values a are calculated using the formula:

a =
v2− v1

t2− t1
. (4)
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Table III. List of time dependent parameters. Parameter corresponding to relevant joints and their
explanation.

Parameter Description Parameter Description

aP6 head acceleration ωv vertical rotation of arm
aP1 hip acceleration ωh horizontal rotation of arm
aP9 left knee acceleration dP10,14 palms distance
aP13 left elbow acceleration dP9,13 elbows distance
aP10 left palm acceleration dP16,20 knees distance
aP14 right palm acceleration dP17,21 heels distance
aP20 left knee acceleration dP18,22 tiptoes distance
aP16 right knee acceleration ϕn tilt of the head
aP21 left heel acceleration ϕγ tilt of the torso
aP17 right heel acceleration ϕαL left arm bending
aP22 left tiptoe acceleration ϕαP right arm bending
aP18 right tiptoe acceleration ϕβL left leg bending

ϕβP right leg bending

To calculate acceleration, we need to know the speeds of v1 and v2, that can be
calculated using the formula:

v =
‖P2−P1‖

t2− t1
, (5)

where P1 and P2 are points representing joint positions at t1 and t2, v1 and v2 are speeds
in time t1 and t2, respectively.

This way we calculated the magnitudes of acceleration over time. We plotted the
resulting values in a graph where axis x represents time and axis y acceleration,
depicted in Fig. 6.

Fig. 6. Hip joint acceleration.

As we can see from the figure, the signal is not smooth but it is slightly shaken.
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This is because footage consists of only 30 frames per second. If we had a record
of walking with more robust sampling, the signal would be smoother. We used the
triangle smoothing function [O’haver 2016], that uses the weighted average of the
ambient values for signal smoothing. These values were calculated using the formula
in Eq. 6.

Xi =
Yi−2 +2Yi−1 +3Yi +2Yi+1 +Yi+2

9
, (6)

where Y represents the input and X output signal. After using the smoothing function,
we received a signal that can be seen in the Fig. 7.

Fig. 7. Hip joint acceleration - smoothed signal.

5.2. Arms rotation

Another parameter we studied was the rotation of the arms. Walking person
usually moves his shoulders. One shoulder moves upwards, while the other
downwards. Concurrently, one moves forward and the other moves backwards.
These are the two basic moves we perform with our shoulders as we walk. If we
imagine a straight line passing through both arms, it would change its angle with
respect to the floor and also to any vertical plane. That is why we call these
movements as horizontal and vertical rotation of the arms, respectively. The
illustration of the moves can be seen in the Fig. 8.

We use P8 and P12, see Fig. 1 and calculate the directional vector:

~v =
(
P12,x−P8,x, P12,y−P8,y, P12,z−P8,z

)
, (7)
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Fig. 8. Horizontal (a) a vertical (b) arms rotation.

where Pi,x, Pi,y and Pi,z represent the coordinates x,y,z of Pi, i ∈ {12,8}. Subsequently,
we calculated cosine of angle between vector ~v and the horizontal plane (Eq. 8) and
the cosine angle between vector~v and the vertical plane (Eq. 9).

ωh = |~nh|· |~v|, (8)

ωv = |~nv|· |~v|, (9)

where vector ~nh was a normal vector of floor (0, 1, 0). For vertical rotation, vector
~nv represented the normal vector of the plane Y X , i.e. (0, 0, 1). Change of the cosine
angles between individual frames plot to a graph, which can be seen in the Fig.9. The
signal is also smoothed by the triangle smoothing function.

Fig. 9. Magnitude of vertical rotation of arms.
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5.3. Distances

If we observe walking person, we may notice that the distance from the left palm
to the right one is changing. We have decided to examine whether this change in
the distance could be a characteristic feature for someone. During the investigation,
we also focused on changing the elbows, knees and foot’s distance. In addition, we
studied the heel and tiptoe of the foot. So, overall, we have got up to 5 parameters.

Individual joints are defined as points in space and the Euclidean distance is
calculated for the given joints in each frame. We plot the resulting values in the graph
with the corresponding frame time, see Fig. 10. Where the axis y represents the
distance value and the axis x is time expressed by the number of frames. There was
almost no noise in this signal and it was not necessary to filter it.

Fig. 10. Heels distance

5.4. Tilt and bending

Next we analyze the attributes such as a bending of an arm, a leg, a tilting of the
neck and the whole body.

The hand and the leg have three joints in our case. Let us denote these joins as A, B

and C, see Fig. 11. The resulting bend was calculated as the ratio of the length of the
limb to the distance between the points A and C. For example, the right leg bending
was calculated using Eq. 10.

ϕβP =
βP

‖P15−P17‖
, (10)
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Fig. 11. Leg bending.

where βP is the length of the right leg. We applied this calculation to each slide. The
result is a graph that can be seen in Fig. 12, where axis y represents the ratio of the
distances ϕβP and axis x time by the number of frames.

Fig. 12. Right leg bending.

The tilt of the whole body was calculated as the distance of the vertical line passing
through point P1 from point P6, see Fig. 1. This way we found the movement of the
head in relation to the center of body. The resulting graph, however, rather resembled
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a mixture of random values than the periodic signal. For this reason, we consider the
signal irrelevant.

6. ANALYSIS OF TIME DEPENDENT PARAMETER

When analyzing time-dependent parameters, we have 10 records of the same
person. From each record, we calculate all 25 parameters listed on the Tab. III. The
purpose of the analysis was to find out which of these parameters could be used to
uniquely identify a person.

We compared each parameter using the cross correlation of two signals [Telford
et al. 1990]. We were able to calculate the match between the two signals. The match
can be expressed by a numerical value in the range

〈
-1,1

〉
, where 1 represents a 100%

match.
Consequently, we were able to create a 10× 10 matrix for each of the parameters,

where we compared every record with each other based on a specific parameter. Each
of these matrices was symmetric because the match between record 1 and record 2
must be the same as the match between record 2 and record 1. The diagonal was
always 1 because it was a comparison of two identical records. Overall, we have
received 25 matrices and our goal was to find those where the diagonal elements were
as close as possible to 1. For this purpose, we used multidimensional scaling [Borg
and Groenen 2013] method (MDS) to help us select these matrices.

From our input matrices, however, we needed to choose those with the lowest scatter
of data. This meant that the size of the resulting dimension should be small. Using
the MDS we can compute a matrix containing the coordinates of the points in the new
space. The smaller the size, the parameter was more relevant. Based on the calculated
eigenvalues, we can sort input parameters. The first eigenvalue was always the largest
and it was the dominant axis of the new space. The Tab. IV contains the parameters
sorted according to the eigenvalues from the smallest to the largest.

Based on this analysis, we were able to select parameters that are the most similar
to records of one person. We chose to select those whose value is e1 < 0.1.
Consequently, we needed to find out which of these parameters are different for
different people. The procedure was the same as in the previous case, with the
difference that we used 8 records from 8 different people. In this case, however, we
were looking for parameters whose value e1 would be as large as possible to
determine which parameters differentiate people. The results of the above analysis
are written in the Tab. V.

JAMSI, 14 (2018), No. 1 51 

 



Table IV. Time dependent parameters. Parameter notation, the parameter explanation and the relevant
eigenvalue.

Parameter Description e1

1 aP20 left knee acceleration 0.0586
2 ϕβP bending of right leg 0.0600
3 dP18,22 distance of tiptoes 0.0617
4 aP22 acceleration of left tiptoe 0.0651
5 dP17,21 heels distance 0.0658
6 aP17 right heel acceleration 0.0706
7 aP18 right tiptoe acceleration 0.0733
8 ϕβL left leg bending 0.0805
9 dP16,20 knees distance 0.0831

10 aP21 left heel acceleration 0.0836
11 aP1 hips acceleration 0.1077
12 aP6 head acceleration 0.1114
13 aP13 right elbow acceleration 0.1147
14 aP16 right knee acceleration 0.1156
15 aP9 left elbow acceleration 0.1385
16 aP14 right palm acceleration 0.1399
17 aP10 left palm acceleration 0.1426
18 dP9,13 elbows distance 0.1809
19 ϕγ tilt of torso 0.2010
20 dP10,14 palms distance 0.2036
21 ϕαP bending of right arm 0.3648
22 ωh horizontal arm rotation 0.3923
23 ϕαL bending of left arm 0.3935
24 ωv arm rotation vertical 0.4794
25 ϕn tilt of the head 0.5272

Table V. Sorted time-dependent parameters that are different for different people. Parameter notation, the
parameter explanation and the relevant eigenvalue.

Parameter Description e1

1 dP17,21 heels distance 0.4325
2 dP16,20 knees distance 0.4000
3 aP17 right heel acceleration 0.2251
4 aP21 left heel acceleration 0.2124
5 ϕβL bending of left leg 0.2119
6 ϕβP bending of right leg 0.1597
7 aP20 left knee acceleration 0.1273
8 dP18,22 tiptoes distance -
9 aP22 left tiptoe acceleration -

10 aP18 right tiptoe acceleration -
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7. CONCLUSIONS

Novelty of our work is in the determination of parameter that most relevantly
describes the individual in the context of gait. We have 32 records capturing gait of 8
different people. From the original 32 records, 11 of them were stored in the
database. Each person had at least one record. Our goal was to assign the remaining
21 records to the right person.

During testing, we relied on data obtained from the analysis. We tested whether
we can uniquely assign the gait to the right person. We tested various combinations
of parameters. The results of the comparison are listed the Tab. VI. In addition to the
selection of parameters, we also changed their weights in the test. We tried to give
more weight to the more relevant parameter than the less relevant. Weight was a real
number that multiplied the strength of each parameter. Parameters that were not
listed in the table had a weight set to 0. It has turned out, that even for the parameters
that have been identified as least relevant (e.g. arm rotation), we have managed to
correctly assign up to 62% of walking records. This meant that each parameter,
regardless of its relevance, uniquely describes the gait of person. In addition, further
research has shown that different group of parameters is able to describe each group
of people differently. For example, for individuals 1-4, some parameters have greater
significance than for people 5-8. For another set of parameters, this was the opposite.
This means that each person performs one of the movements of the limbs in a unique
way that is specific to that person only. For each person, however, this limb or joint is
different. This makes it very difficult to find a universal parameter that would identify
the person with a 100% success rate. Success rate indicates how two particular
feature vectors are similar to each other. For example, 100% success rate says, that
the feature vector obtained during the gait analysis of investigated person is exactly
same as a particular vector in the database of recorded subjects and therefore it is
expected, that the person is identical. However, the key to clear identification may lie
in the possible combinations of parameters, which would be perfectly balanced.
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Table VI. Result validation. List of nonzero parameter weights used in identification process and the
corresponding success rate.

Parameter weights Success rate

V (γ) = 1, V (αP) = 1, V (αL) = 1, V (βP) = 1, V (βL) = 1 100%
V (γ) = 3, V (αP) = 3, V (αL) = 3, V (βP) = 3, V (βL) = 3, V (dP16,20 ) =

1, V (dP17,21 ) = 1
95%

V (γ) = 2, V (αP) = 2, V (αL) = 2, V (βP) = 2, V (βL) = 2, V (dP16,20 ) =

1, V (dP17,21 ) = 1, V (σ2
P6 ,y

) = 1, V (σ2
P20,y) = 1, V (σ2

P16,y
) = 1

66%

V (γ) = 5, V (αP) = 5, V (αL) = 5, V (βP) = 5, V (βL) = 5, V (dP16,20 ) =

1, V (dP17,21 ) = 1, V (σ2
P6 ,y

) = 1, V (σ2
P20,y) = 1, V (σ2

P16,y
) = 1

80%

V (dP16,20 ) = 1, V (dP17,21 ) = 1 33%
V (σ2

P6,y
) = 1, V (σ2

P20,y) = 1, V (σ2
P16 ,y

) = 1 57%
V (dP16,20 ) = 1, V (dP17,21 ) = 1, V (σ2

P6 ,y
) = 1, V (σ2

P20,y) = 1, V (σ2
P16,y

) =

1
57%

V (ωh) = 1, V (ωv) = 1 62%
V (aP1 ) = 1, V (aP10 ) = 1, V (aP14 ) = 1, V (aP17 ) = 1, V (aP21 ) = 1, 57%
V (aP1 ) = 1 47%
V (aP1 ) = 1, V (aP6 ) = 1, V (aP9 ) = 1, V (aP13 ) = 1, V (aP21 ) = 1,
V (aP17 ) = 1

71%

V (ϕβL ) = 1, V (ϕβP ) = 1, V (dP10,14 ) = 1, V (dP9,13 ) = 1, V (dP16,20 ) =

1, V (dP17,21 ) = 1, V (aP1 ) = 1, V (aP9 ) = 1, V (aP13 ) = 1, V (aP10) = 1,
V (aP14 ) = 1, V (aP20 ) = 1, V (aP16 ) = 1, V (aP21 ) = 1, V (aP17 ) = 1

62%

In this work, we have described the parameters of the gait, the ways we calculated
them and the methods we examined their relevance. Finally, we used these results to
validate their accuracy. We came to the conclusion that the unique parameters are ones
that are constant in time. They are body proportions such as height, length of arms and
legs. All other parameters were behavioral, and it could be somewhat imitated. We
found out that the gait hides a unique biometric signature that could help to identify a
person.
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