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Abstract 

 
The present investigation deals with the problem of estimation of population mean in two-phase (double) 

sampling. Utilizing information on two auxiliary variables, one chain exponential ratio and regression 

type estimator has been proposed and its properties are studied under two different structures of two-
phase sampling. To make the estimator practicable, unbiased version of the proposed strategy has also 

been developed. The dominance of the suggested estimator over some contemporary estimators of 

population mean has been established through numerical illustrations carried over the data set of some 
natural population and artificially generated population. Categorization of the dominance ranges of the 

proposed estimation strategies are deployed through defuzzification tools, which are followed by suitable 

recommendations. 
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1. INTRODUCTION 

Information on variables correlated with the study variable is popularly known 

as auxiliary information. The use of supplementary information on auxiliary variable 

for estimating the finite population mean of the variable under study has played an 

eminent role in sampling theory and practices. Auxiliary information may be 

truthfully utilized at planning, design and estimation stages to develop improved 

estimation procedures in sample surveys. Use of auxiliary information at estimation 

stage was introduced during the 1940’s with a comprehensive theory provided by 

Cochran. Sometimes, information on auxiliary variable may be readily available for 

all the units of population; for example, tonnage (or seat capacity) of each vehicle or 

ship is known in survey  sampling of transportation and number of beds available in 

different hospitals may be known well in advance in health care surveys. If such 
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information lacks, it is sometimes, relatively cheap to take a large preliminary 

sample where auxiliary variable alone is measured, such practice is applicable in 

two-phase (or double) sampling. Two-phase sampling happens to be a powerful and 

cost effective (economical) technique for obtaining the reliable estimate in first-

phase (preliminary) sample for the unknown parameters of the auxiliary variables. 

For example, Sukhatme (1962) mentioned that in a survey to estimate the production 

of lime crop based on orchards as sampling units, a comparatively larger sample is 

drawn to determine the acreage under the crop while the yield rate is determined 

from a sub sample of the orchards selected for determining acreage.  

In order to construct an efficient estimator of the population mean of the 

auxiliary variable in first-phase (preliminary) sample, Chand (1975) introduced a 

technique of chaining another auxiliary variable with the first auxiliary variable by 

using the ratio estimator in the first phase sample. The estimator is known as chain-

type ratio estimator. This work was further extended by Kiregyera (1980, 1984), 

Sahoo et al. (1994), Tracy et al. (1996), Singh and Espejo (2007), Gupta and 

Shabbir (2007), Shukla et al. (2012), Choudhury and Singh (2012) and among 

others where they proposed various chain-type ratio and regression estimators. It 

may be noted that the most of these estimation procedures of population mean in 

two-phase sampling are biased which become a serious drawback for their practical 

applications. Apart from the bias estimates, it may also be observed that dominance 

ranges of the recent developed ones over the conventional ones are not clearly 

mentioned. Simulation study carried over the data set of natural and artificially 

generated population have been utilized to obtain the trend of efficacy of these 

recent developed strategies.  The dominance conditions of the newly developed 

estimators are very essential for their recommendations to the real life problems. 

Motivated with this argument, only Chatterjee et al. (2015) has given a new 

direction to find the dominance range of the estimation strategy through fuzzy tools 

in successive sampling and it may be noted that no attempt has been made yet to 

find the dominance ranges of the estimators in two phase sampling scheme for the 

estimation of population mean in sample surveys.  
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Encouraged and fascinated with the work discussed earlier, we have proposed 

chain exponential ratio and regression type estimator of population mean and 

studied its properties under two different structures of two-phase sampling. 

Considering the realistic situations, we have developed unbiased version of the 

proposed estimators.  Performances of the proposed estimator have been examined 

through theoretical and numerical illustrations, which presents the effectiveness of 

the proposed strategies. To categorize the dominance ranges of the proposed 

estimation strategic, fuzzification and defuzzification rule are employed. 

Recommendations of the proposed estimation strategy have been put forward to the 

survey statisticians. 

2. FORMULATION OF THE CLASS OF ESTIMATOR 

2.1. Sample Structure and Some Existing Estimation Procedures 

Let 
ky , 

kx  and 
kz be  the values of the study variable y, first auxiliary variable 

x and second auxiliary variable z respectively associated with the k
th

 unit of the 

finite population 
1 2 3 NU = (U , U , U , . . ., U ).  We wish to estimate the population 

mean Y of the study variable y in presence of auxiliary variables x and z, when the 

population mean X  of x is unknown but information on z is readily available for all 

the units of population.  

Thus, to estimate Y , a first phase sample  S S U    of size n is drawn by 

simple random sampling without replacement scheme (SRSWOR) from the entire 

population U and observed for the auxiliary variables x  and z to furnish the estimate 

of X.  Again a second-phase sample S of size m  m  n is drawn from the first 

phase sample SRSWOR scheme to observe the study variable y.  

Hence onwards, we use the following notations:  

Z : Population mean of the auxiliary variable z. 

x , z  : Sample means of the respective variables based on the first phase sample of 

size n . 
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x, y,  z :  Sample means of the respective variables based on the second phase 

sample of size m.
yx xzb (n),  b (n):  Sample regression coefficients between the 

variables shown in subscripts and based on the sample sizes indicated in the 

braces.  

yx xz yzs (n), s (n), s (n):  Sample covariance between the variables shown in subscripts 

and based on the second phase sample of size n. 

:s2

x
Sample mean square of the variable x  based  on the second  phase sample of 

size n.
 

yx xz yzβ , β , β :
 
Population regression coefficients between the variables shown in 

subscripts. 

To estimate the population mean Y , the classical ratio estimator is presented as   

 
r

y
y = X.

x
  (1) 

where y  and x  are the sample means of variables y and x respectively based on the 

second phase sample S. 

If X  is unknown, we estimate Y  under two-phase sampling set up as                                         

 
1

y
t = x

x
                     (2)                                                                                                                  

where x  is the sample mean of the auxiliary variable x based on the first-phase 

(preliminary) sample S .  

Srivastava (1970) generalized the ratio method of estimation and its structure in two-

phase sampling is given by  

 
α

2

x
t  = y ,

x

 
 
 

  (3) 

where α is a real scalar, which can be suitably determined by minimizing the mean 

square error (M. S. E.) of the estimator 
2t .  

The way in which the estimate of Y is improved using the auxiliary information on 

x can also be extended to improve the estimate of X in the first-phase sample, if 
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another auxiliary variable z closely related to x but remotely related to y is used. 

Thus, assuming that the population mean of the auxiliary variable z is known, Chand 

(1975) proposed a chain-type ratio estimator as  

 
c rd

y
t = x

x
   (4) 

where
rd

x
x = Z,

z





z and Z are the sample mean based on the first phase sample of 

size n and population mean of the auxiliary variable z respectively.  

Singh and Espejo (2007) considered a ratio - product type estimator in double 

sampling as 

  3

x x
t  = y p + 1- p

x x

 
  

 (5)  

where p is a real scalar which may be suitably determined to minimize the mean 

square error of the estimator 4t . 

Singh and Vishwakarma (2007) constructed exponential ratio and  product type 

estimator of population mean in two phase sampling as 

 
4

x - x
t = y exp

x + x

 
  

 (6)

      

 

and

  
5 

x - x
t = y exp

x + x

 
  

 (7)

 

respectively.

 
2.2. Proposed Class of Estimator 

Motivated with the earlier work, we have defined a class of chain exponential 

ratio and  regression type estimators as  

   ld
p

ld

x  - xx
t = y 1-k + k exp

x x + x

   
  

   

 (8)

 

where k is a real constant which can be suitably determined by minimizing the M. S. 

E. of the class of estimators 
pt  and   id xzx = x  + b (n) Z - z .  

 



10 P. Parichha, K. Basu, A. Bandyopadhyay and P. Mukhopadhyay 

 

 

3. FORMULATION OF THE CLASS OF ESTIMATOR … BIAS AND 
MEAN SQUARE ERRORS OF THE PROPOSED CLASS OF 

ESTIMATOR  
pt  

It can be easily noted that the proposed class of estimators  
pt  defined in 

equations (9) is chain exponential ratio and regression type estimator. Therefore, it is 

biased for population mean Y. Hence, we proceed to obtain their biases and mean 

square errors under large sample approximations using the following 

transformations: 

1 2 3 4

2 2

xz xz 5 z z 6

 y =Y(1+e ), x =X(1+e ), x = X(1+ e ), z =Z(1+ e ), 

s =S (1 + e ),  s = S (1+ e )

 


 

where 
iE(e ) = 0  for ( i = 1, 2, . . ., 6), ie  for ( i = 1, 2, . . ., 6) are relative error term. 

Under above transformations the class of estimators pt can be represented as 

   
3 2 xz 4 4 5 4 6

1

p 1 3 2 -1

2 3
xz 4 4 5 4 6

Z
(e -e )- β (e +e e -e e )

Xk
t = Y(1 + e ) (1- k) 1+e 1  + exp

2 e +e Z
1+ - β (e +e e -e e )

2 X

e


   
   

   
   

   
      

(9) 

We have derived the expressions for bias and mean square error of the proposed 

class of estimators pt  and presented them below. 

We have the following expectations of the sample statistics under two - phase 

sampling set up as 
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2 2 2 2 2 2 2 2
1 1 y 2 1 x 3 2 x 4 2 z

1 2 1 yx y x 1 3 2 yx y x

2
2 3 2 x 2 4 3 4 2 xz x z

102 003
4 5 2 4 6 2 2

xz z

2

E(e )= f C , E(e ) = f C , E(e ) = f C , E(e ) = f C

E(e e )= f ρ C C , E(e e ) = f ρ C C ,  

E(e e )= f C , E(e e ) = E(e e )= f ρ C C , 

μ μ
E(e e ) = f , E(e e ) = f , 

ZS ZS

E(e e 201 102
5 2 2 6 2 2

xz z

1 4 2 yz y z

                                                                        (10)

μ μ
) = f , E(e e ) = f , 

XS XS

E(e e )= f ρ C C .















 

where 

1 2 3

N
p q r

pqr i i i

i=1

1 1 1 1 1 1
f =  - , f =  - , f =  - ,

n N m N n m

1
μ = (x  - X) (y  - Y) (z  - Z) ; (p, q, r  0)

N


 

Expanding binomially, exponentially, using results from equation (9) and retaining 

the terms up to first order of sample size, we have derived the expressions of bias 

B(.) and mean square error M(.) of the class of estimator pt  as  

 
2 2

yz yx102 003xz x
p p 2 32 2 2 4 2

z z z

S Sμ μS S
B(t )= E t -Y = Y kf  -  - +f -                                             (11)

X S
 

XS XS YX
  

X YX
 

    
    

   

 
2 2 2 2

p p 1 yM t =E t -Y  =Y f C + (k /4)a+kb +c     
                   

(12)

 
where 

 2 2 2
3 2 xz x 2 yz xz y x 3 yx y x 3 xa = f + f ρ C    and   b = -f ρ ρ C C + f ρ C C f C  , 2

3 x 3 yx y xc = f C  -2 f ρ C C  

4. BIAS REDUCTION FOR THE PROPOSED CLASS OF ESTIMATOR  

In some situations of practical importance, bias becomes a serious drawback. 

Therefore, unbiased versions of the proposed classes of estimators are more 

desirable. Motivated with this argument and influenced by the bias correction 

techniques of Tracy et al. (1996) and Bandyopadhyay and Singh (2014) we proceed 

to derive the unbiased version of our proposed class of estimator pt . 

(11)
 

 

(10)
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From equation (12), we observe that the expression of bias of the estimator pt  

contains the population parameters such as 
003 102μ ,  μ , 

yxS , 2 2

yz x yS , S , S , Y, X, yzS

and 2

zS . Since 2

zS  is known while 
003 102μ ,  μ , 

yxS , 2 2

yz x yS , S , S , Y, X and yzS are 

unknown, replacing 
003 102μ ,  μ , 

yxS , 2 2

yz x yS , S , S , Y, X and yzS  by their  respective 

sample estimator  (based on the second phase sample of size m) 
003 102m ,, m yz s ,

2 2

x ys , s , y, x and
yzs , we get an estimator of   pB t as  

 
2 2

yz yx102 003xz x
p 2 32 2 2 4 2

z z z

s sm ms s
b(t )= y k f - -  - + f  -   

x s xs xs yx x yx

    
    

   

  (13) 

where       
m

p q r

i m i m i m

i = 1

pqr

1
m = x - x y - y z - z

m
 .     

Now motivating with the bias reduction techniques of Tracy et al. (1996) and 

Bandyopadhyay and Singh (2014), we have derived the unbiased version of the 

proposed class of estimator  
pt   to the first order of approximations as  

'

pt = 
pt - 

pb(t )  

which becomes  

 

 
2 2

yz yxld 102 003xz x
p 2 32 2 2 4 2

ld z z z

s sx  - x m ms sx
t = y 1-k + k exp y k f - -  - + f  - 

x x + x x s xs xs yx x yx

                    
          

          (14)
 

Thus, the variance of pt   to the first order of approximation are obtained as 

    
2

2 2

p p 1 yV t =M t =Y f C + (k /4)a+kb +c   
 (15) 

Thus, from equations and (12) and (15) it is to be noted that the class of estimators 

pt   is preferable over the class of estimator 
pt  as 

pt  is unbiased (up to first order of 

sample size) class of estimators of Y  while the class of estimator 
pt  is biased.  
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5. MINIMUM VARIANCE OF PROPOSED CLASS OF ESTIMATOR 

It is obvious from the equation (15) that the variance of the proposed class of 

estimator pt   depends on the value of the constant k . Therefore, we desire to 

minimize their variances and discussed them below.  

The optimality condition under which proposed class of estimators pt have minimum 

variance is obtained as  

 k = -2b/a  (16) 

where 

  

Substituting the optimum value of the constant k in equation (15), we have the 

minimum variance of the class of estimator pt as  

 
2

2 2
p 1 yMin. V(t ) = Y f C  - + C

b

a

 
  

     (17)                                                            

                                                                                                       

REMARK 5.1: It is to mentioned that the optimum value of k depends on 

unknown population parameters such as x y zC , C , C , yx xzρ  and ρ . Thus, to make 

the class of estimators practicable, these unknown population parameters may be 

estimated with their respective sample estimates or from past data or guessed from 

experience gathered over time. Such problems are also considered by Reddy (1978), 

Tracy et al. (1996) and Singh et al. (2007). 

 

6. EFFICIENCY COMPARISONS OF THE PROPOSED CLASS OF 

ESTIMATOR pt  

To examine the performances of the proposed class of estimators under two 

different cases of two - phase sampling set up as suggested in this paper, we have 

compared their efficiencies with some existing estimators of population mean such 

as y (sample mean estimator) and  it i = 1, 2, . . ., 5 . The Variance/ M. S. E.s/ 

minimum M. S. E.s of the existing estimators it  are obtained up to the first order of 

approximations under the Cases  of the two phase - sampling set up and presented 

below.  
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  2 2 2
1 1 y 2 x 2 yx y xM t = Y f C +f C -2f ρ C C 

   

  2 2
2 y 1 3 yxMin. M t  = S f  - f ρ 

   

Min.    2 2 2
3 1 yx 2 yx yM t = f 1- ρ + f ρ S 

   

  2 2 23
4 1 y x 3 yx y x

f
M t = Y f C + C  - f ρ C C

4

 
 
   

  2 2 23
5 1 y x 3 yx y x

f
M t = Y f C + C  + f ρ C C

4

 
 
 

 

We have demonstrated the superiority of the suggested estimator over the estimator 

ti  (i = 1, 2, . . ., 5) through numerical illustration and graphical interpretations.  

6.1. Empirical Investigations through Natural Population 

We have chosen four natural populations to illustrate the efficacious 

performance of our proposed classes of estimators. The source of the populations, 

the nature of the variables y, x, z and the values of the various parameters are as 

follows.  

Population I - Source: Cochran (1977)  

y: Number of ‘placebo’ children. 

 
y x z

yx yz xz

N = 34, n = 15, m =10, Y = 4.92 , C = 1.0123 , C = 1.2318 , C = 1.0720 ,

ρ = 0.7326 , ρ = 0.6430  and ρ = 0.6837.
 

 

Population II - Source: Shukla (1966) 

y: Measurement of weight of children.  

y x

z yx yz xz

N = 50 , n = 15 , m = 8 , Y = 2.584 , C  = 0.2943 , C  = 0.3410 ,

C = 0.13038, ρ = 0.48, ρ  = 0.37  and ρ = 0.73.
 

 

Population III - Source: Handique et al. (2011) 

y: Forest timber volume in cubic meter (Cum) in 0.1 ha sample plot. 

 

 

 

Population IV - Source: Sukhatme and Sukhatme (1970)

 y: Area (acres) under wheat in 1937.  

y x z

yx yz xz

N = 2500 , n = 700 , m = 80 , Y = 4.63 , C = 0.95 , C = 0.98 , C = 0.64, 

 ρ = 0.79 , ρ = 0.72  and ρ = 0.66. 
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y x z

yx yz xz

N = 34, n = 10 , m = 7 , Y = 201.41 , C = 0.74 , C = 0.76 , C = 0.61, 

ρ  = 0.93 , ρ = 0.9  and ρ = 0.83.
 

To have a tangible idea about the performance of the proposed class of estimator pt

we have computed percent relative efficiencies (PREs) of them and the existing 

estimators ti  (i = 1, 2, . . ., 5) under similar realistic situations and the findings are 

displayed in Table 1  where PREs are designated as PRE
 

 

V y
= ×100

V T
 and  M T  

denote  variance/minimum  M. S. E. of an estimator T.  
 

 Table 1: PRE of various estimators  

 

6.2. Empirical Investigations through Artificially Generated Population 

An important aspect of simulation is that one builds a simulation model to 

replicate the actual system. Simulation allows comparison of analytical techniques 

and helps in concluding whether a newly developed technique is better than the 

existing ones. Motivated by Singh and Deo (2003) and Singh et al.(2001) who have 

been adopted the artificial population generation techniques,  we have generated five 

sets of independent random samples of size N (N = 100) namely 

k k k k1 1 2 2 kx , y , x , y  and z     (k =1, 2, 3, . . ., N) from a standard normal distribution 

with the help of R-software. By varying the correlation coefficients
yx xzρ  and ρ , we 

Estimator Population -I Population -II Population -III Population -IV 

1t  118.9748 90.7093 105.0521 213.8133 

2t  133.9482 114.6789 233.1262 148.5310 

3t  133.9482 114.6789 233.1262 148.5310 

4t
 

132.6546 113.9611 200.9033 135.3565 

5t  
62.6649 66.8650 50.2741 68.4722 

pt   177.9129 122.5387 243.5714 273.9723 
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have generated the following transformed variables of the population U with the 

values of 2

yσ = 50, yμ = 40, 2

xσ = 25, xμ = 50,
2

zσ = 9 and
zμ = 30 as 

   k k k k k k

2 2

1 y y xy 1 yx 1 1 x x 1 k z z xz 1 xz ky =μ +σ ρ x  + 1-ρ y , x =μ +σ x and z =μ +σ ρ x  + 1 -ρ z .       
      

 

Thus, we have derived following efficiency comparisons of our proposed strategy 

with the recent relevant ones with the above artificially generated population 

techniques as: 

 

 Table 2: PRE of various estimators  

 

 

 

 

 

 

 

 

 

 

 

 

7. ANALYSIS OF EMPIRICAL STUDY THROUGH FUZZY TOOLS 

From the above empirical study, it is to be noted that the dominance of the 

proposed strategy over the existing ones have been established through data set of 

real life population and artificially generated population. However, the dominance 

conditions of the proposed strategy over the existing ones have not yet been 

obtained clearly. Therefore, we desire to derive the conditions where proposed 

estimators performs extremely well or dominate mildly the sample mean estimator 

y . This investigation helps us in choosing the suitable population where our 

Estimators PRE 

 
yx

xz

ρ =0.7,  

ρ 0.6
 

yx

xz

ρ =0.9,  

ρ 0.6
 

yx

xz

ρ =0.7,  

ρ 0.8
 

1t  120.9381 149.1971 109.6664 

2t  
136.8180 172.3255 125.5277 

3t  133.3229 167.4536 102.8960 

4t  136.8180 172.3255 125.5277 

5t  133.0126 151.7422 124.6970 

6t  65.4381 62.0817 67.3860 

pt   151.3304 188.2855 139.7335 
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proposed work may be applied effectively which is very essential for the 

recommendations of our proposed work for their practical application. Motivated 

with this argument, we proceed to build up a decision making machinery through 

fuzzy tools which will enable us to measure the degree of efficiency of the estimator 

for different choices of correlations 
yx xz yzρ , ρ  and ρ .  Thus, we have computed the 

PRE of the proposed class estimators 
pt   (under its respective optimum condition as 

discussed in section 5) with respect to the sample mean estimator y̅ and presented 

them in Table 3. 

REMARK: 7.1. Here we have considered the stability nature of the coefficient of 

variations of the study variable and auxiliary variables (Reddy 1978) and thus we 

have taken the coefficient of variations of y, x and z  to be approximately equal.  
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Table 3: PRE of the proposed class of estimators  

         

  

yz

ρ = 0.2 (fix.)

ρ    ρ

yx

xz

 PRE     

       
 

 ρ = 0.3 (fix.)

ρ      ρ
yz

yx

xz

 

PRE     

             
 

 ρ = 0.4 (fix.)

ρ      ρ
yz

yx

xz

 

PRE     

            
 

 

yz

ρ = 0.5 (fix.)

ρ    ρ

yx

xz

 

PRE

 

0.4      0.3 

           0.4 
           0.5 

           0.6 

           0.7 
           0.8 

           0.9 

0.5      0.3 
           0.4 

           0.5 

           0.6 
           0.7 

           0.8 

           0.9 
0.6      0.3 

           0.4 

           0.5 
           0.6 

           0.7 

           0.8 
           0.9 

0.7      0.3 

           0.4 
           0.5 

           0.6 

           0.7 
           0.8 

           0.9 

0.8      0.3 
           0.4 

           0.5 

           0.6 
           0.7 

           0.8 

           0.9 
0.9      0.3 

           0.4 

           0.5 

           0.6 

           0.7 

           0.8 
           0.9 

106.62 

109.99 
113.71 

117.83 

122.41 
127.53 

133.28 

106.22 
110.29 

114.89 

120.11 
126.05 

132.87 

140.77 
105.38 

110.03 

115.37 
121.54 

128.75 

137.24 
147.35 

104.24 

109.31 
115.23 

122.21 

130.50 
140.50 

152.74 

102.91 
108.27 

114.62 

122.21 
131.40 

142.68 

156.83 
101.49 

107.03 

113.67 

121.70 

131.56 

143.87 

159.61 

0.4      0.3 

           0.4 
           0.5 

           0.6 

           0.7 
           0.8 

           0.9 

0.5      0.3 
           0.4 

           0.5 

           0.6 
           0.7 

           0.8 

           0.9 
0.6      0.3 

           0.4 

           0.5 
           0.6 

           0.7 

           0.8 
           0.9 

0.7      0.3 

           0.4 
           0.5 

           0.6 

           0.7 
           0.8 

           0.9 

0.8      0.3 
           0.4 

           0.5 

           0.6 
           0.7 

           0.8 

           0.9 
0.9      0.3 

           0.4 

           0.5 

           0.6 

           0.7 

           0.8 
           0.9 

109.87 

113.05 
116.56 

120.43 

124.73 
129.52 

134.87 

109.78 
113.66 

118.03 

122.98 
128.60 

135.03 

142.44 
109.29 

113.76 

118.89 
124.82 

131.70 

139.79 
149.36 

108.52 

113.45 
119.20 

125.97 

133.99 
143.63 

155.36 

107.54 
112.81 

119.06 

126.51 
135.50 

146.52 

160.26 
106.45 

111.96 

118.56 

126.54 

136.32 

148.51 
164.03 

0.4      0.3 

           0.4 
           0.5 

           0.6 

           0.7 
           0.8 

           0.9 

0.5      0.3 
           0.4 

           0.5 

           0.6 
           0.7 

           0.8 

           0.9 
0.6      0.3 

           0.4 

           0.5 
           0.6 

           0.7 

           0.8 
           0.9 

0.7      0.3 

           0.4 
           0.5 

           0.6 

           0.7 
           0.8 

           0.9 

0.8      0.3 
           0.4 

           0.5 

           0.6 
           0.7 

           0.8 

           0.9 
0.9      0.3 

           0.4 

           0.5 

           0.6 

           0.7 

           0.8 
           0.9 

114.61 

117.64 
120.97 

124.66 

128.75 
133.29 

138.36 

114.80 
118.53 

122.73 

127.48 
132.87 

139.03 

146.10 
114.63 

118.97 

123.95 
129.70 

136.38 

144.20 
153.44 

114.19 

119.03 
124.68 

131.33 

139.20 
148.64 

160.08 

113.55 
118.78 

124.98 

132.39 
141.33 

152.26 

165.85 
112.78 

118.30 

124.93 

132.96 

142.81 

155.06 
170.63 

0.4      0.3 

           0.4 
           0.5 

           0.6 

           0.7 
           0.8 

           0.9 

0.5      0.3 
           0.4 

           0.5 

           0.6 
           0.7 

           0.8 

           0.9 
0.6      0.3 

           0.4 

           0.5 
           0.6 

           0.7 

           0.8 
           0.9 

0.7      0.3 

           0.4 
           0.5 

           0.6 

           0.7 
           0.8 

           0.9 

0.8      0.3 
           0.4 

           0.5 

           0.6 
           0.7 

           0.8 

           0.9 
0.9      0.3 

           0.4 

           0.5 

           0.6 

           0.7 

           0.8 
           0.9 

121.20 

124.11 
127.31 

130.86 

134.80 
139.18 

144.06 

121.65 
125.26 

129.34 

133.96 
139.21 

145.20 

152.07 
121.79 

126.03 

130.92 
136.58 

143.15 

150.84 
159.91 

121.67 

126.45 
132.07 

138.68 

146.53 
155.93 

167.31 

121.35 
126.58 

132.81 

140.28 
149.30 

160.33 

174.03 
120.89 

126.47 

133.21 

141.41 

151.47 

164.01 
179.95 
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Table 3 continued . . . 

 

Development of the Fuzzy Logic Controller (FLC) is accomplished by studying the 

empirical data furnished in Table 3 where the FLC produces the degree of efficiency 

for a given range of
.
 

yzxzxy and , . They are taken as to be the three input fuzzy 

variables having 8 , 6 and 7 linguistics respectively (listed in Tables 4.a , 4.b & 4.c). 

ρ = 0.6 (fix.)

ρ    ρ
yz

yx

xz

 PRE     

 

                          

 

 ρ = 0.7 (fix.)

ρ      ρ
yz

yx

xz

 PRE     

 

                          

 

 ρ = 0.8 (fix.)

ρ      ρ
yz

yx

xz

 PRE     

 

                          

 

 
xzρ = 0.9 (fix.)

ρ    ρ
yx yz

 
PRE     

 

                          

 

0.4       0.3 
            0.4 

            0.5 

            0.6 
            0.7 

            0.8 

            0.9 
0.5       0.3 

            0.4 

            0.5 
            0.6 

            0.7 

            0.8 
            0.9 

0.6       0.3 

            0.4 
            0.5 

            0.6 

            0.7 
            0.8 

            0.9 

0.7       0.3 
            0.4 

            0.5 

            0.6 
            0.7 

            0.8 

            0.9 
0.8       0.3 

            0.4 

            0.5 
            0.6 

            0.7 

            0.8 
            0.9 

0.9       0.3 

            0.4 
            0.5 

            0.6 

            0.7 

            0.8 

            0.9 

           

130.26 
133.05 

136.16 

139.61 
143.45 

147.72 

152.49 
130.94 

134.46 

138.46 
143.01 

148.19 

154.11 
160.91 

131.36 

135.55 
140.41 

146.04 

152.62 
160.32 

169.40 

131.56 
136.34 

141.98 

148.66 
156.61 

166.14 

177.70 
131.56 

136.84 

143.18 
150.82 

160.09 

171.44 
185.57 

131.41 

137.11 
144.06 

152.55 

163.03 

176.13 

192.81 

0.4       0.3 
            0.4 

            0.5 

            0.6 
            0.7 

            0.8 

            0.9 
0.5       0.3 

            0.4 

            0.5 
            0.6 

            0.7 

            0.8 
            0.9 

0.6       0.3 

            0.4 
            0.5 

            0.6 

            0.7 
            0.8 

            0.9 

0.7       0.3 
            0.4 

            0.5 

            0.6 
            0.7 

            0.8 

            0.9 
0.8       0.3 

            0.4 

            0.5 
            0.6 

            0.7 

            0.8 
            0.9 

0.9       0.3 

            0.4 
            0.5 

            0.6 

            0.7 

            0.8 

            0.9 

 

142.75 
145.44 

148.46 

151.85 
155.63 

159.87 

164.61 
143.66 

147.10 

151.05 
155.57 

160.76 

166.72 
173.58 

144.35 

148.51 
153.37 

159.07 

165.75 
173.62 

182.93 

144.85 
149.66 

155.40 

162.25 
170.46 

180.35 

192.39 
145.17 

150.56 

157.10 
165.05 

174.76 

186.74 
201.69 

145.34 

151.23 
158.50 

167.46 

178.61 

192.65 

210.61 

0.4       0.3 
            0.4 

            0.5 

            0.6 
            0.7 

            0.8 

            0.9 
0.5       0.3 

            0.4 

            0.5 
            0.6 

            0.7 

            0.8 
            0.9 

0.6       0.3 

            0.4 
            0.5 

            0.6 

            0.7 
            0.8 

            0.9 

0.7       0.3 
            0.4 

            0.5 

            0.6 
            0.7 

            0.8 

            0.9 
0.8       0.3 

            0.4 

            0.5 
            0.6 

            0.7 

            0.8 
            0.9 

0.9       0.3 

            0.4 
            0.5 

            0.6 

            0.7 

            0.8 

            0.9 

 

160.38 
162.95 

165.88 

169.21 
172.97 

177.22 

182.02 
161.48 

164.84 

168.75 
173.30 

178.57 

184.68 
191.76 

162.44 

166.56 
171.48 

177.32 

184.25 
192.47 

202.27 

163.23 
168.09 

174.00 

181.16 
189.83 

200.37 

213.28 
163.88 

169.42 

176.27 
184.72 

195.17 

208.16 
224.51 

164.39 

170.54 
178.27 

187.96 

200.16 

215.67 

235.71 

0.4       0.3 
            0.4 

            0.5 

            0.6 
            0.7 

            0.8 

            0.9 
0.5       0.3 

            0.4 

            0.5 
            0.6 

            0.7 

            0.8 
            0.9 

0.6       0.3 

            0.4 
            0.5 

            0.6 

            0.7 
            0.8 

            0.9 

0.7       0.3 
            0.4 

            0.5 

            0.6 
            0.7 

            0.8 

            0.9 
0.8       0.3 

            0.4 

            0.5 
            0.6 

            0.7 

            0.8 
            0.9 

0.9       0.3 

            0.4 
            0.5 

            0.6 

            0.7 

            0.8 

            0.9 

 

186.35 
188.70 

191.47 

194.72 
198.47 

202.78 

207.72 
187.57 

190.75 

194.59 
199.19 

204.62 

211.02 
218.54 

188.72 

192.76 
197.75 

203.82 

211.17 
220.02 

230.69 

189.79 
194.68 

200.83 

208.47 
217.89 

229.51 

243.93 
190.76 

196.47 

203.77 
213.00 

224.61 

239.27 
257.97 

191.61 

198.10 
206.52 

217.32 

231.17 

249.06 

272.52 
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Entire range of 
xy  [0.2≤ 

xy  ≤0.9] is divided into 8 equal parts and that for 
xz  

[0.4≤ 
xz  ≤0.9] into 6 equal parts and for 

yz  [0.3≤ 
yz  ≤0.9] into 7 equal parts. To 

each part a linguistic is assigned suitably for all three cases. Also the PRE is taken as 

the output fuzzy variable having the set of 16 linguistics (listed in Table 5) in the 

descending degree of efficiency. The range [101 ≤ PRE≤ 276], as it is furnished in 

Table 5,  is divided into 16 equal parts as shown in  the table. 

 

Table 4.a Table 4.b 

 

                          Table 4.c 

Ling Range A(mid.pt) C(half  width) 

vwc2 .25 - .35 .3 .05 

wc2 .35 - .45 .4 .05 

c21 .45 - .55 .5 .05 

c22 .55 - .65 .6 .05 

c23 .65 - .75 .7 .05 

c24 .75 - .85 .8 .05 

vsc2 .85 - .95 .9 .05 

 

 

 

Ling Range 
A 

(mid.pt) 

C (half 

width) 

 

Ling Range 
A 

(mid.pt.) 

C (half 

width) 

vwc .15 - .25 0.2 .05 Mc .35 - .45 .4 .05 

wc .25 - .35 .3 .05 c1 .45 - .55 .5 .05 

c1 .35 - .45 .4 .05 c2 .55 - .65 .6 .05 

c2 .45 - .55 .5 .05 Sc .65 - .75 .7 .05 

c3 .55 - .65 .6 .05 Hc .75 - .85 .8 .05 

c4 .65 - .75 .7 .05 Vhc .85 - .95 .9 .05 

sc .75 - .85 .8 .05 

hsc .85 - .95 .9 .05 
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 Table 5 

Ling Range A(mid.pt) C(half  width) 

T1 101 – 111 106 5 

T2 112 – 122 117 5 

T3 123 – 133 128 5 

T4 134 – 144 139 5 

T5 145 – 155 150 5 

T6 156 – 166 161 5 

T7 167 – 177 172 5 

T8 178 – 188 183 5 

T9 189 – 199 194 5 

T10 200 – 210 205 5 

T11 211 – 221 216 5 

T12 222 – 232 227 5 

T13 233 – 243 238 5 

T14 244 – 254 249 5 

T15 255 – 265 260 5 

T16 266 - 276 271 5 

 

The Mamdani Inference Model is adopted here as it is the most commonly used 

fuzzy methodology and was one among the first few control systems built using 

fuzzy set theory.  Ebrahim Mamdani (1975) proposed and used it to control a steam 

engine and boiler combination by synthesizing a set of linguistic control rules 

obtained from experienced human operators. Mamdani’s effort originated from Lotfi 

Zadeh’s paper on fuzzy algorithms for complex systems and decision processes 

(1973). 
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The following standard operator set is used in this model: 

Operators Type Default Function 

AND BINARY MIN(a,b) 

OR BINARY MAX(a,b) 

IMPLICATION BINARY MIN(a,b) 

ALSO BINARY MAX(a,b) 

NOT UNARY 1-a 

STRONGLY UNARY a^2 

MODERATELY UNARY a^(1/2) 

SLIGHTLY UNARY 4.a.(1-a) 

DEFUZZIFICATION DEFUZZIFICATION Centre Of Area 

 

A three-parameter (a, b, c) bell shaped continuous membership grade function is 

chosen for each linguistic of both input and output variables (This is a direct 

generalization of Cauchy Distribution) so that membership functions can be fine 

grained according to the necessity. The parameters a, b, c denote respectively the 

middle point of bell shaped curve (where the grade is max), the degree of 

peakedness (resembling the Kurtosis in Normal distribution) which taken to be 1 and 

half width of the membership function. c is kept constant=0.05 for 
xy  , 

xz  and 

yz .  C takes values 5 for PRE and b is kept constant=1 throughout.  

The function is defined by-   
2

1
( ; , , )

1

b
f x a b c

x a

c






 

The set of values for the parameters are computed from the set of data generated in 

Table 3. 
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Table 6.a 

Sl.

No. 

Left 

end 

Of 

xy  

Right 

end 

Of 

xy  

Mid 

Point 

(a) 

Linguistics Interpretation 

Half 

Width 

1 .15 .25 0.2 Vwc Very weekly correlated positive 0.05 

2 .25 .35 .3 Wc weekly positively correlated 3 0.05 

3 .35 .45 .4 c1 moderately correlated 1 0.05 

4 .45 .55 .5 c2 moderately correlated 2 0.05 

5 .55 .65 .6 c3 moderately correlated 3 0.05 

6 .65 .75 .7 c4 moderately correlated 4 0.05 

7 .75 .85 .8 Sc strongly correlated 0.05 

8 .85 .95 .9 Hsc Highly strongly correlated 0.05 

 

Table 6.b 

Sl.

No. 

Left 

end 

Of 

xz  

Right 

end 

Of 

xz  

Mid 

Point 

(a) 

Linguistics Interpretation 
Half 

Width 

1 .35 .45 .4 Mc mildly correlated 0.05 

2 .45 .55 .5 c1 moderately correlated 1 0.05 

3 .55 .65 .6 c2 moderately correlated 2 0.05 

4 .65 .75 .7 Sc strongly correlated 0.05 

5 .75 .85 .8 Hc highly correlated 0.05 

6 .85 .95 .9 Vhc Very highly correlated 0.05 

 

A 8x6x7 Fuzzy Association Matrix (FAM) is constructed which is the basis of FLC 

engine and the ‘Centre of Area’ method (which resembles the expected value 

computation in probability distribution) is adopted for defuzzification which is most 

widely used method and defined by- 

COA

A A

z = zμ(z)dz μ(z)dz   
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All computations are done with the help of standard fuzzy software named 

XFuzzyVs3.0from IMSE-CNM which is available on internet (vide:xfuzzy-

team@imse.cnm.es).  

7.1. Categorization of Efficacy of Proposed Work 

The above analysis of empirical study using fuzzy tools gives the advantage to 

find out the specific ranges of 
xy ,

xz  and 
yz where our suggested estimator 

dominates 

i. extremely 

ii. mildly  and 

iii. equally 

the sample mean estimator y.  To elucidate these particular regions of 
xy ,

xz   & 

yz , the same graph of  PRE  in different views are presented below: 

     

       Fig. 1. Horizontal Front View ρxz = 0.65                       Fig. 2.  Horizontal Rear View ρxz = 0.65 
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      Fig. 3. Horizontal Front Rear View ρxz = 0.8              Fig. 4. Horizontal Front View ρxz = 0.8                                                                                                                                                              

Surface plot of PRE of the proposed class of estimators pt   (under its respective 

optimum condition as discussed in section 5) against 
yx, yz xzρ ρ , ρ from different 

angles.  

(It may be noted from the Figs. 1 - 4 that 
yx xz yzRYX = ρ , RXZ = ρ  and RYZ = ρ .) 

8. CONCLUSION 

The following interpretations can be read out from the present study: 

The following conclusions may be read-out from the present study.  

(a) Table 1 exhibits that for high positive values of the correlation coefficients, the  

proposed class of estimators 
pt   yield impressive gains in efficiency over the 

existing estimators 
it (i=1, 2, . . ., 5).  This pattern indicates that proposed class 

of estimators are more efficient than the existing ones which enhances their 

recommendations to survey statistician for their usage in real life problem.   

 (b) From table 2, it is observed that for fixed values of xzρ , the  percent relative 

efficiencies of the class of estimators 
pt 

 
are increasing with the increasing 

values of yxρ .  This behavior indicates that our proposed classes of estimators 

performs satisfactorily if highly correlated auxiliary variable present in 

population.  
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(c) From the above graphical representations of figures 1-4, it may be seen that PRE 

against
yx yzρ  and ρ  gives a clear idea about the efficiency of our proposed class 

of estimator 
pt   over the sample mean estimator y  under its respective optimal 

condition. It itself describes the specific ranges of 
yx yzρ  and ρ  at where our 

estimator 
pt   dominates (extremely, mildly or equally) y . From the different 

views of the graph (taken from top and different sides), it is clear that the portion 

of the graph which is almost horizontal denotes that the proposed class of 

estimators 
pt   is equally efficient with y.  Whereas the uprising portions denote 

the mildly efficient range and the peaks of the graph along with their 

neighbourhoods denote the extremely efficient range of the class of estimators 

pt  . 
 

The following conclusions may be drawn about the performance of 
pt  with respect 

to the sample mean estimator y . 

i. Fig. 1 and Fig. 2 indicates that the class of estimators pt  is mildly efficient 

than y  when
yx yz xz0.15 ρ 0.47,  0.39 ρ 0.67 and ρ = 0.65.      

ii. It is cleared from Fig. 1, Fig. 2  that the class of estimators pt  is moderately  

efficient y  when
yx yz xz0.47 ρ 0.79,  0.67 ρ 0.81 and ρ = 0.65.     

iii. It can be observed from Fig.1,Fig.2 that the class of estimators 
pt   is 

extremely efficient when 
yx yz xz0.79 ρ 0.95,  0.81 ρ 0.95 and ρ = 0.65.     

iv. Also from Fig. 3 and Fig. 4 the class of estimators pt  is moderately  efficient 

y  when
yx yz xz0.31 ρ 0.47,  0.25 ρ 0.67 and ρ = 0.8.     

v. It can be observed from Fig. 3, Fig. 4 that the class of estimators pt   is 

extremely efficient when 
yx yz xz0.47 ρ 0.95,  0.67 ρ 0.95 and ρ = 0.8.     
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Thus it is erected that the use of an auxiliary character is highly rewarding in terms 

of the proposed class of estimators. Moreover, the proposal of the class of estimators 

in the present study is justified as it unifies several desirable results including 

producing unbiased estimates (up to first order of sample size) and finding the 

dominance range of the proposed strategy. Looking at the nice behaviour of the 

proposed strategy, they are recommended to the survey statisticians for their 

applications in real life problems. 
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