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Abstract 

 
Reliability of the technological processes or reliability of devices used in different industries is an 

important part of designing safety critical systems. The failure of such systems leads to economic losses, 

health damage or environmental pollution. An important role in the development of safety critical systems 
is therefore the reliability analysis, the assessment of the risks associated with the use of the technical 

means and the consequent reduction of this risk. The actual level of risk considered tolerable will vary 

depending on a number of factors such as the level of human control over the circumstances, the 
voluntary or unintentional nature of the risk, the number of people at risk in each individual case, the 

degree of responsibility placed on safety and critical systems reflects the need for quality design and 

ensure of software safety. Various standards and methods are used to achieve the desired level of safety. 
One of the methods used for reliability analysis is the use of a block diagram of reliability. 
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1. INTRODUCTION 

The safety system includes all components (hardware, hardware, software, 

personnel) needed to perform one or more safety features. The necessary task is a 

review and evaluation of the various safety requirements imposed on software from 

hardware to software architecture [6,8]. Failure of a safety feature may significantly 

increase the risk of a safety threat to personnel and / or the surrounding environment 

[2,7,9].  The safety-related system may include an autonomous device that is 

designed to perform an individual safety function (for example, a fire system) or 

may be integrated into another device (for example, a machine speed control system 

in the machine). The development of dependable software also needs to include 

protection measures against external worst-case scenario network attacks that could 

compromise the availability and security of the system [11]. 

The functional safety of the application software is part of the overall safety 

system that meets the requirements of the proper functioning of the system or device 
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in response to input signals [1,3,5]. Functional safety is achieved when each of these 

safety functions is performed and the required performance level of each function is 

achieved.  

 

2. EVALUATING THE RELIABILITY OF SOFTWARE SAFETY AND 
CRITICAL SYSTEMS 

One of the options to ensure functional safety is to evaluate the reliability of 

the safety-critical software [4]. Allows you to determine the probability of trouble-

free operation within a specified time of operation. 

Operation between individual failures - the random variable 𝑇(𝑖)– can be represented 

by the sum of two random variables [6]:  

 𝑇𝑖 = 𝑇(𝑖−1) + ∆𝑇(𝑖)         (1) 

Gradually, applying the relation (1) to all the operating periods between the 

disturbances, we get the relation: 

 

𝑇(𝑖) = 𝑇(0) +∑∆ 𝑇(𝜈)
𝑖

𝑣=1

     
       (2) 

 

The random variable 𝑇𝑛 runs until the n-th program fails 

 

 
𝑇𝑛 =∑𝑇(𝑖)

𝑛

𝑖=0

  = ∑[𝑇(0) + ∑𝑇(𝜈)
𝑛

𝑣=0

]

𝑛

𝑖=0

   
     (3) 

                                                              

We introduce the following assumptions: 

1. All random variables ∆𝑇(𝜈) are independent and have the same 

mathematical expectations m_Δt and the standard deviation 𝜎∆𝑡; 

2. The random variable 𝑇(0)  is negligibly small compared to the sum  

∑ Δ𝑇(𝜈)𝑖
𝑣=1 .  

The basis of second assumptions may be the following conclusion. At the full 

initial period of runtime of the program errors occur very often, i.e., time  𝑇0  is 



JAMSI, 13 (2017), No. 2 31 

 

 

small. For the sum (3) grows rapidly with increasing n and the ratio 𝑇0 is rapidly 

decreasing. We will assume that 𝑇(0) ≈ Δ𝑇(0).  

In accordance with the second assumption of relationship (2), we get: 

 
    𝑇(𝑛) =∑Δ𝑇(𝜈)

𝑛

𝜐=0

 
 (4) 

 

𝑇𝑛 =∑ ∑Δ𝑇(𝜈)
𝑖

𝑣=0

𝑛

𝑖=0

  = nΔ𝑇(0) + (𝑛 − 1)∆𝑇(1) +⋯+ ∆𝑇(𝑛) 
(5) 

At  the same of values  ∆𝑇0  of operation between (n-1) and n-th fault, the random of 

value 𝑇(𝑛) acquires the arithmetic mean: 

 𝑚𝑡
(𝑛)

= 𝑀[𝑇(𝑛)] = 𝑛𝑚∆𝑡     
(6) 

and the standard deviation is:  

 𝜎𝑛(𝑡) = 𝜎∆𝑡√𝑛   
(7) 

The random variable 𝑇𝑛 is the arithmetic mean: 

 

 
𝑚𝑡𝑛 = 𝑚∆𝑡

𝑛(𝑛 + 1)

2
     

 (8) 

The standard deviation is: 

 

 

𝜎𝑡𝑛 = 𝜎∆𝑡√
1

6
𝑛(𝑛 + 1)(2𝑛 + 1)     

 (9) 

                                                                                   

For the calculation of the values  𝑚𝑡
(𝑛)
, 𝑚∆𝑡  𝑎𝑛𝑑 𝜎𝑡𝑛 it is necessary to find statistical 

evaluation of the numerical characteristics of the random difference  ∆𝑇(𝑖) = 𝑇(𝑖) −

𝑇(𝑖−1)    according to the program error data during the observed period  ti.  

 

 

  𝑚∆𝑡
∗ =

1

𝑛𝐻
  ∑Δ𝑡𝑖 =

𝑛𝐻

𝑖=0

 
1

𝑛𝐻
  ∑[𝑡𝑖 − 𝑡𝑖−1]

𝑛𝐻

𝑖=1

; 
(10) 
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[𝜎∆𝑡

2 ]∗ =
1

𝑛𝐻 − 1
∑[Δ𝑡𝑖 −𝑚∆𝑡

∗ ]2

𝑛𝑖

𝑖=0

 , 

(11) 

 

where 𝑛𝐻 - number of program failure during operation (0, 𝑡𝐻). 

Since, in the case 𝑡 >  𝑡𝐻  of the number of faults  𝑛𝐻 ≫ 1  from formulas  (8) and 

(9), we get: 

 

𝑚𝑡𝑛 ≈ 𝑚∆𝑡  
𝑛2

2;
  , 𝜎𝑡𝑛 ≈ 𝜎∆𝑡  √

𝑛3

3
    

(12) 

Since the random values 𝑇𝑛 and 𝑇𝑛with respect to formulas (4) and (5) are equal to 

the sum of many random variables, the values 𝑇(𝑛) and 𝑇𝑛 can be considered as 

normally distributed with arithmetic mean and scatter. As the operation is positive, 

practically a limited normal distribution (0, ∞) is used. Normally the normalization 

factor is ≈ 1 . 

For  𝑛 > 𝑛𝐻 the probability distribution of the probability of operation between the 

other (n-1) and n-th faults is: 

 

 
𝑓(𝑛)(𝜏) =  

1

𝜎∆t√2𝜋𝑛
 𝑒𝑥𝑝 [−

1

2

(𝜏 − 𝑛𝑚∆𝑡)
2

𝑛𝜎∆𝑡
2 ] ,   

 (13) 

 

where 𝜏 is calculated from the moment of the last (n-1) fault. 

Corresponding function of probability distribution between failures: 

 

 
𝐹(𝑛)(𝜏) =

1

2
+ Φ(

𝜏 − 𝑛𝑚∆𝑡

𝜎∆𝑡√𝑛
) ,  

(14) 

 

where Φ(u) – table function, Φ(𝑢) = −
1

√2𝑛
∫ 𝑒𝑥𝑝 (−

𝑣2

2
)

𝑢

0
 𝑑𝑣. 

 

To calculate the probability of a trouble-free operation of the program, it is more 

convenient to use the agreed probability function (probability that the random 

operating time in the fault will be greater than the specified operating time, 

calculated from the moment of the last fault (n-1)): 
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𝑝(𝑛)(𝜏) =

1

2
− Φ(

𝜏 − 𝑛𝑚∆𝑡

𝜎∆𝑡√𝑛
)     

(15) 

 

The probability of trouble-free operation within the specified operating time (τ1, τ2)   

after the (n-1) fault is calculated as: 

 

 
𝑝(𝑛) (𝜏1, 𝜏2) =

𝑝𝑛(𝜏2)

𝑝𝑛(𝜏1)
   

(16) 

 

Due to the previous program failure assumptions, they create a diminishing random 

current. The main function of the current, i.e. the average number of failures that 

have occurred during operation (0, t) at 𝑡 >  𝑡𝐻 is: 

 

 

Ω(𝑡) =  ∑𝐹𝑛(𝑡) =  ∑

[
 
 
 
1

2
+ Φ

(

 
𝑡 −

𝑛2𝑚Δ𝑡

2

𝜎Δ𝑡√
𝑛3

3 )

 

]
 
 
 ∞

𝑛=1

∞

𝑛=1

     

(17) 

Parameter fault current programs (calculated according to the service) 

 

 
𝜛(𝑡) = ∑𝑓𝑛

∞

𝑛=1

 (𝑡)    
(18) 

The density of the time division to the n-th event is: 

 

 

𝑓𝑛(𝑡) =
√3

𝑛𝜎∆𝑡√2𝜋𝑛
 𝑒𝑥𝑝 [−

3

2

(𝑡 −
1
2
𝑛2𝑚∆𝑡)

2

𝑛3𝜎∆𝑡
2 ]    

(19) 

From the relation (14) for 𝑡 > 𝑡𝐻   , we have the expression for the program fault 

current parameter: 

 

 

𝜔(𝑡) = ∑
√ 3
2𝑛

𝑛𝜎∆𝑡√𝜋

∞

𝑛=1

𝑒𝑥𝑝

[
 
 
 

−
3

2𝑛

(𝑡 −
𝑛2

2
𝑚∆𝑡)

2

𝑛2𝜎∆𝑡
2

]
 
 
 

     

(20) 
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Given the complexity of the terms (17) and (20), it is appropriate to approximate 

them by simpler terms. Practically, it makes sense to use the least squares method. 

In accordance with this method, the approximate function (for 𝜛(𝑡) is appropriate to 

use 𝐴𝑒𝑥𝑝(−𝑣𝑡))is best represented at intervals (𝑡𝐻 , 𝑡1) with a function that is 

determined by the relation (15): 

 

 

 
𝐼1 = ∫

{
 

 

𝐴𝑒𝑥𝑝(−𝑣𝑡) −∑
√ 3
2𝑛

𝑛𝜎∆𝑡√𝜋

∞

𝑛=1

𝑒𝑥𝑝

[
 
 
 

−
3

2𝑛

(𝑡 −
𝑛2

2
𝑚∆𝑡)

2

𝑛2𝜎∆𝑡
2

]
 
 
 

  

}
 

 𝑡1

𝑡𝐻

𝑑𝑡 = 𝑚𝑖𝑛  

     

(21) 

When the partial derivations of the integral „I1“ equal zero at „A“ and  „υ“, we obtain 

a system of equations for determining these numerical characteristics. Analogously, 

it can also be done when approximating the Ω(𝑡) function of 1 − 𝐵𝑒𝑥𝑝(−𝛾𝑡). 

 

2.1. Program for readiness evaluation 

When evaluating the program's readiness, we discuss the process of restoring 

the program's operational capability. Running time between other program 

restorations: 

  𝑇0
(𝑖)
= 𝑇(𝑖) + 𝑇𝐵

(𝑖)
      (22) 

where   𝑇(𝑖), 𝑇𝐵
(𝑖)

  - Independent random variables.  

The value 𝑇0
(𝑖)

 is determined according to the formula (22). Due to the accumulation 

of program restoration experience, the magnitude can be expressed in the following 

form: 

 𝑇0
(𝑖)
= 𝑇𝐵

(𝑖−1)
− ∆𝑇(𝑖)           (23) 

Then, using the relationship (18) to all other restorations, we get: 
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𝑇𝐵
(𝑖)
= 𝑇𝐵

(0)
−∑∆

𝑖

𝑉=1

𝑇𝐵
(𝑉)
       

 (24) 

After replacing the terms in accordance with the expressions (22) and (23) in (24), 

we obtain: 

 

    𝑇0
(𝑖)
= 𝑇(0) + 𝑇𝐵

(𝑖)
+∑[∆𝑇(𝑉) − ∆𝑇𝐵

(𝑉)
]

𝑖

𝑉=1

       
(25) 

Random running time variable until the n-th disorder programs 

 

 

 𝑇𝑜𝑛 =∑𝑇0
(𝑖)

𝑛

𝑖=0

=∑[𝑇0
(0)
+∑∆𝑇0

(𝑉)

𝑖

𝑉=1

]

𝑛

𝑖=0

      
(26) 

where indicated 

 𝑇0
(0) = 𝑇(0) + 𝑇𝐵

(0) ;    𝑇0
(𝑉) = ∇𝑇(0) − 𝑇𝐵

(0) .         (27) 

 

Let us assume the independence ∆𝑇0
(𝑉)

, the equivalence of their arithmetic mean and 

dispersion and the small value 𝑇0
(0)

 as compared to the sum ∆𝑇0
(𝑉)

 at large values. 

Additionally, usually 𝑇𝐵
(𝑖) ≪ 𝑇(𝑖)  can be used. When we give 𝑇0

(0) ≈ ∆𝑇0
(0)

  , we 

get: 

 

𝑇0𝑛 =∑∑∆𝑇0
(𝑉)

𝑖

𝑉=0

=

𝑛

𝑖=0

𝑛∆𝑇0
(0) + (𝑛 − 1)∆𝑇0

(1) +⋯

+ ∆𝑇0
(𝑛)

 

(28) 

For the same ∆𝑇0
(𝑉)

 , the random variable 𝑇 0𝑛  has an arithmetic mean: 

 
  𝑚𝑡𝑜𝑛 = 𝑚∆𝑡0

𝑛(𝑛 + 1)

2
 ;   

(29) 

 and the standard deviation: 

 

𝜎𝑡0𝑛 = 𝜎∆𝑡0 √
1

6
𝑛(𝑛 + 1)(2𝑛 + 1),    

(30) 

where 𝑚∆𝑡0, 𝜎∆𝑡0  – arithmetic mean and standard deviation  ∆𝑇0 .  
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Considering that according to the formulas (29), (30) 

 
 𝑚∆𝑡𝑜 = 𝑚∆𝑡 −𝑚∆𝑡𝑛;   𝜎∆𝑡0 = √𝜎∆𝑡

2 + 𝜎∆𝑡𝐵
2  ,  

(31) 

We get:  

 
 𝑚𝑡𝑜𝑛

=
1

2
𝑛(𝑛 + 1)(𝑚∆𝑡 −𝑚∆𝑡𝐵

);     
(32) 

 

    𝜎𝑡0𝑛 =  √
1

6
𝑛(𝑛 + 1)(2𝑛 + 1)(𝜎∆𝑡

2 + 𝜎∆𝑡𝐵
2 )  

(33) 

At 𝑛 ≫ 1 

 
 𝑚𝑡𝑜𝑛 ≈

𝑛2

2
(𝑚∆𝑡 −𝑚∆𝑡𝐵 );     𝜎𝑡0𝑛

=  √
𝑛2

3
(𝜎∆𝑡

2 + 𝜎∆𝑡𝐵
2 )       

(34) 

 

The values 𝑚𝑡𝑜𝑛 and 𝜎𝑡0𝑛 are evaluated according to the statistical data at the 

recovery time (remove the error) of the programs analogous to the values  𝑚∆𝑡 and 

𝜎∆𝑡
2 . 

 

 

 𝜔0(𝑡) = ∑𝑓0𝑛(𝑡)

∞

𝑛=1

,     (35) 

After calculation  𝑚𝑡𝑜𝑛 and   𝜎𝑡0𝑛  it can be found the recovery flow parameter:  

 
  𝐻(𝑡) = 𝑝 {⋃𝐴𝑛

∞

𝑛=1

} = ∑𝑝{𝐴𝑛}

∞

𝑛=0

 ,    
(36) 

The 𝐻(𝑡) is a preparedness function, which expresses the probability of the program 

occurring in the operational state at time t. 

For each 𝐴𝑛 , fault and reset occurred in the moment t and the program is 

operational at time t.  

To estimate the probability of occurrence of 𝐴𝑛, let us consider a small 

interval(Θ, Θ + dΘ),  that precedes t. The probability that the last nth renewal will 
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end at this interval and the program does not fail several times in the remaining time 

(𝑡 − Θ) is equal: 

 𝑓0𝑛(Θ)𝑑Θ[1 − 𝐹
(𝑛+1)(𝑡 − Θ)]       (37) 

 

The equal 𝐹(𝑛+1)(𝑡 − Θ)  is a function of the time division between the end of the 

nth renewal and the (n + 1) disorder.  

When integrating this function according to Θ from 0 to t we get:  

 

 

𝑝{𝐴𝑛} = ∫[1 − 𝐹(𝑛+1)(𝑡 − Θ)]

𝑡

0

> 𝑑Θ      (38) 

Replacing the expression for probability 𝑝{𝐴𝑛}we get: 

 

  𝐻(𝑡) = 1 − 𝐹(1)(𝑡) +∑∫[1 − 𝐹𝑛+1(𝑡 − 𝜃)]𝑓0𝑛(𝜃)𝑑𝜃

𝑡

0

.

∞

𝑛=1

    

   (39) 

Given that the practical value has only a value 𝑡 > 𝑡𝐻, where several tens of failures 

have occurred and taking into account that 𝑛 ≥ 𝑛𝑖 ≫ 1, we get: 

 

 

     𝐻(𝑡)

= ∑∫[
1

2
− Φ(

𝑡 − Θ − 𝑛𝑚Δ𝑡

𝜎Δ𝑡√𝑛
)]

𝑡

0

∞

𝑛=1

∙ 〈
√ 3
2𝑛

𝑛𝜎∆𝑡√𝜋
𝑒𝑥𝑝

{
 

 

−
3

2𝑛

[𝜃 −
𝑛2

2
(𝑚∆𝑡 −𝑚∆𝑡𝑛)]

2

𝑛2(𝜎∆𝑡
2 + 𝜎∆𝑡𝐵

2 )
}
 

 

〉 𝑑𝜃 

  (40) 

 

Since t → ∞ of the H (t) → ∞ value, it is appropriate to approximate the complex 

expression (40) by simpler expressions. 

For example, for  𝐻(𝑡) = 1 − 𝐶 ∙ exp (−𝛿𝑡), it is suitable to find C and δ  using the 

least squares method by analogy (21). In this way, for easy use, it will be possible to 

use simple relationships that take into account the improvement of programs and the 

training of staff. 
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CONCLUSION 

 

The planning and design of safety-critical systems is performed by various 

methods. One method for assessing the reliability of a safety-critical software is to 

determine the probability of trouble-free operation within the specified time of 

operation. Determining the probability of trouble-free operation enables safety 

critical systems to determine which probability of malfunctioning software meets the 

requirements set for a particular level of critical safety. 
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