JAMSI, 13 (2017), No. 1 5

Analytic approximation of Volterra’s population
model

J. BIAZAR AND K. HOSSEINI

Abstract

In this paper, the Volterra’s population model is studied for population growth of a species within a
closed system. Modified Adomian decomposition method (MADM) in conjunction with Pade technique
is formally proposed to obtain an analytic approximation for the solution of the model, which is a
nonlinear intgro-differential equation. The results of the method are compared with the existing exact
results, confirming the accuracy and the efficiency of the proposed approach.
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1. INTRODUCTION

The Volterra model for population growth of a species within a closed system
is known as follows [1,2]

0~ ap-bp* —cp[[plxkix.  p(0)= pi, )

where a > 0 is the birth rate coefficient, b >0 is the crowding coefficient, ¢ > 0
is the toxicity coefficient, p, is the initial population, and p = p(f) indicates the

population at time f. By introducing the non-dimensional variables

t—i u=—
b/c’ a/b’

Eqg. (1) can be displayed in the following form

K%:u—u2 —u_[)tu(x)dx, u(0)=u,, @)

»J DE GRUYTER

10.1515/jamsi-2017-0001 . OFEN
©University of SS. Cyril and Methodius in Trnava




6 J. Biazar and K. Hosseini

where & =c/ab is a non-dimensional parameter. It can be shown that the only

equilibrium solution to Eq. (2) is the trivial solution u(t)=0. Moreover, the

following analytical solution [2]

u(t)=u, exp{i I; (1— u(z)- Ioﬁ(x)dx)d rj,

demonstrates that u(t)> 0 forall t if uy >0.

Although a closed form solution has been reported in [1,3], it was illustrated that the
closed form solution cannot yield any insight into the behavior of the population
evolution [1]. In recent years, a number of methods have been used for the solution
of the Volterra’s population model (2). Some of them are listed, here. Dehghan and
Shahini used a pseudospectral approach based on the rational Legendre and rational
Chebyshev functions [4]. Mohyud-Din et al. adopted a combination of homotopy
perturbation method and Pade technique [5]. Wazwaz employed Adomian
decomposition method in conjunction with Pade technique [6]. Al-Khaled applied
Sinc-Galerkin method [7]. Ramezani et al. utilized composite spectral functions [8].
Parand et al. implemented two collocation approaches based on the radial basis
functions [9]. Parand et al. also employed the collocation method with sinc and
rational Legendre functions [10]. EI-Nahhas used homotopy analysis method [11].
Tabatabaei and Gunerhan utilized differential transform method [12]. The reader is
also referred to [13-17]. In this paper, a new and effective modification of ADM in
conjunction with Pade technique is formally proposed to construct an approximate
solution of the Volterra’s population model.

This article is organized as follows: In Section 2, the basic ideas of the method
are presented, and then, some Theorems are given. In Section 3, the method is
utilized for the solution of the Volterra’s population model. In Section 4, the results
of the method are compared with the existing exact results. Conclusions are

provided in the last section.
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2. MODIFIED ADOMIAN DECOMPOSITION METHOD

Consider a nonlinear equation as follows

%4— R(u)+ N(u)= f(t), ©)

subject to the following initial condition
u0)=¢,

where R is a linear operator, N is a nonlinear operator, and f(t) is a known

function. It is assumed that the solution of Eq. (3) can be expressed by a series, say

u(t)=>"" un(t) (4)

and the nonlinear term N(u) can be presented as the following series

N()=" " Ao, uy.e.ou, ) ()

where A, n=0,1,... are called the Adomian polynomials and are defined by [18]

N(u,) n=0,
Ao = %Z:(i +1,, Ao 1o

du, '

Applying L = J:()dt to both sides of Eq. (3) and considering (4) and (5), leads to

S 0, =0(0)+ L (F0) - R 0 e 37 A g, tys,) (6)
We rewrite (6) as follows [19-21]
S =u0)+ LT e ()
L (00~ LRI v 2 At
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where p is an artificial parameter and a;, i=0,1,... are unknown coefficients.

Now, we define
= L)L (X7t ) (Rl ) + Ay ()
Uy, =L (R, )+ A, (Ug,Uy,..0U,), n=1,2,...

To avoid evaluation of A,, n=1,2,..., let compute &;, i=01,... such that u; =0.

This results in
u, =u; =---=0.
Setting p =1, provides the solution of Eq. (3) with initial condition as
u(t)=¢+L" (Z:fo a,,t”) @

NOTE 1. It should be stated that the superiority of the method over traditional
ADM s that in some problems, especially singular ones, the method provides a

solution in the form of a convergent series, whereas the traditional ADM fails [21].

THEOREM 1. If u; =0, then
Uy =L (R, )+ A, (Ug,Uy,eU,))=0, n=1,2,...

PROOF. From the following definition of Adomian polynomials

1 -1, dA1——i
An=;2:0(|+1)ui+1 du: , n=12,.

and knowing that R is a linear operator, the proof is clear.

THEOREM 2. The equation u, =0 is equivalent to Eq. (3), when p=1.
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Proof. Applying the operator L to both sides of u, =0, yields

£0)- L p* (27 at” - Rty )~ N(u,) =0,

But

L= % Up =&+ L7 (Z:joant”)
Therefore

%(p(u0 —&))+R(Ug )+ N(uy) = f(t), &=constant
Now, if we set p =1, then

%(%)4’ R(uo)+ N(uo): f(t)’

which is the original Eq. (3).

THEOREM 3. There exists a number p [0,+oo], defined by

PR
lim sup\ak\]/k '

K—>+o0
such that the series solution (7), converges absolutely, if |t| < p, and diverges, if

|t| > p.

PROOF. See [22].
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3. SOLUTION OF VOLTERRA’S POPULATION MODEL BY MODIFIED
ADM

t
By applying L™ = L(bt to both sides of Eq. (2) and considering

ult)=3"7u (0, u0)=27 A0 ulu)=3 7B, (x.)
one obtains
Z:wo u,(t)=u(0)+= L—l(zn Ju - oA” Jzn ,Ba(xt dxj (8)

The first few Adomian polynomials are as follows

At)=ug(t)  Bo(x.t)=uo(x)uo(t),
A(t)=2u, (thuy (t). B, (X t)=ug (X, (t)+ Uy (g (t)

We rewrite (8) as follows
PINORTORTES JUEXS ST JEXY
+1L’1(Zn0 ) nOAn IZ xtdx)

K

where p is an artificial parameter and a;, 1=0,1,... are unknown coefficients. We

now define
1 +00 n 1 2 1 3
Up(t)=u(0)+L (anoant ):u0+a0t+5alt 3+
_ +00 n l _ t

==L (5 ")+ 20 0ol A0 - oo

1 t
un+1(t)=_L-l[un(t)_An(t)_ josn(x,t)dx), n=12,.

K
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To avoid calculation of A, (t) and B,(xt), n=1,2,.. let us determine

a,, i=0.1,... such that u, (t)=0. Therefore

2

Ul(t):(u—o—u—o— paOJt+(2—lKa0 —u?oao _U 1 palJtz +...=0.

K K 2k 2

It can be shown that

Uy (uy 1) uo(pxuO —2u2 +3u, —1)
=" &=- 2,2
" K2p

l

Setting p =1, yields the solution of the Volterra population model as follows

B Uo (U _1)t Uo("“o —2ug +3u, _1)t2 . 9)

K 2x2

It should be noted that for u, = 0.1 and & = 0.1, the solution u(t) is reduced to

u(t)=0.1+0.9t + 3.55t? + 6.316666668t> —5.537499993t* — 63.709166661°

—156.0804167t® —18.47323414t" +1056.288569t% +-- -,

that is the same as those reported in [5,6].

THEOREM 4. Volterra’s population model is equivalent to a nonlinear

ordinary differential equation of the form
Ry"(0)-y'O)+ () + vty t)=0 y(0)=0, y(0)=u, (10)
PROOF. Setting

y(t)= [u(xkx, (1)

y'(t)=ult) y"(t)=u't) (12)
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Substituting (11) and (12) into Eq. (2) leads to

Ky"(t) - y'(©)+(y'@©) + y(t)y't)=0, y(0)=0, y'(0)=u,.

This completes the proof.

NOTE 2. It is easy to show that applying the method to nonlinear ordinary
differential equation (10) results in the previous solution (9). It is shown in
Appendix A.

4. RESULTS AND DISCUSSION

Let us consider Eq. (2) with initial condition u(0) =0.1and x =0.1. It was

shown in the previous section, for such a problem using modified Adomian

decomposition method the following analytic solution can be obtained
u(t)= 0.1+ 0.9t +3.55t% + 6.316666668t > —5.537499993t* —63.70916666t°
~156.0804166t° —18.47323414t" +1056.288569t° + ---.

As we know, another way of representing the behavior of u(t) is to use Pade
approximants. Pade approximants provide results with no greater error bounds than

approximation by polynomials [6]. The Pade approximant [4/4] of u(t) is as follows

0.1+0.4687931825t +0.9249573976t°+ 0.9231294949t°+ 0.4004235135t *
1-4.312068175t +12.55818755t> ~13.88063941t° +10.86830490t*

[4/4]=

Using the maximize function of the Maple package, it can be shown that

Uy, =0.7651130842,

occurs at

t =0.4645100343.

critical
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Figure 1 indicates the Pade approximant [4/4] of u(t) versus independent variable

t. As it is observed, the graph demonstrates the rapid rise along the logistic curve
followed by the slow exponential decay after reaching the maximum point. Figure 2
presents the Pade approximant [4/4] of u(t) for u(0)=0.1and different values of
k. From this Figure, it is clear that as « increases, U(t) decreases, whereas the
exponential decay increases. Table 1 shows a comparison between the exact values
of U, given by [2]

u.. =l+xlIn ,
e 1+x—u,

and the results of the present method. From Table 1, the accuracy and the efficiency
of the proposed method in solving the Volterra’s population model is evident. It
should be mentioned that the results can be improved by calculating further terms of

solution series.

0.6
0.5
u(d

D44

0.3

-

Figure 1: Pade approximant [4/4] of u(t) for u(O) =0.1and x=0.1versus t.
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Figure 2: Pade approximant [4/4] of u(t)for u(O) =0.1and k¥ =0.02,0.1,0.2, and 0.5.

Table 1: Results of the present method in comparison to the exact values of u

(u(0)=0.1).

K Critical t Approximation U, Exact U,
0.02 0.1118531315 0.9038380646 0.9234271721
0.1 0.4645100343 0.7651130842 0.7697414907
0.2 0.8168581260 0.6579123129 0.6590503816
05 1.626662229 0.4852823500 0.4851902915
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5. CONCLUSION

A nonlinear integro-differential equation called the Volterra’s population
model has been studied successfully. A combination of modified Adomian
decomposition method introduced by the authors and Pade technique has been used
to extract an analytic approximation for the solution of the model. The method has
also been examined on an equivalent nonlinear ordinary differential equation,

confirming the previous results obtained. It was observed that

1. As x increases, u(t) decreases, whereas the exponential decay increases.

2. The results of the present method are in agreement with the exact values of u,_,

It is worth mentioning that the proposed method only requires the calculation of the
first Adomian polynomial and suggests a promising technique for solving nonlinear
problems.

Appendix A

In a manner similar to that described in Section 2, we can define
_ ’ -1 +0 1 1 l
Yo = Y(0)+y'(0) + L (Zn a,t" ) 0t+2a0t +6a1t +Ea2t +-
= Foo 1 _ ' ' '
y, =—pL 1(Zn:oantn)+; L l(Yo _(YO)Z - YOYO)

where L7 = f f(_)dtdt. Now, setting y, =0, leads to
0J0

2 2
Uy Ug 1 Uy u, 1
-2 _Zpa, t?+|—a, -—2a, - —>-=pa, t>+---=0.
1= (2;« 2% 2pa°J (61{ O T3k ™ ek 6p1]
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It can be shown that

Up(up —2) __uo(pku0 —2u2 +3u, —1)
Kp K_ZpZ

Setting p =1, gives the solution of Eq. (10) as follows

(U, —1),[2 ~ uo(Ku0 — 202 +3u, —1)

: 3+
2K 6x

y(t) = ugt - ~
Since u(t)=y'(t), therefore

2
u(t)=u, - UO(u,i_l)t— uo(Ku0 —it:2+3uo —1)t2 o

that is the same as that obtained in the previous section.
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