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Abstract 

 
In this paper, the Volterra’s population model is studied for population growth of a species within a 

closed system. Modified Adomian decomposition method (MADM) in conjunction with Pade technique 

is formally proposed to obtain an analytic approximation for the solution of the model, which is a 
nonlinear intgro-differential equation. The results of the method are compared with the existing exact 

results, confirming the accuracy and the efficiency of the proposed approach.       
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1. INTRODUCTION 

The Volterra model for population growth of a species within a closed system 

is known as follows [1,2] 

    ,0     ,
ˆ 0

ˆ

0

2 ppdxxpcpbpap
td

dp t

       (1) 

where 0a  is the birth rate coefficient, 0b  is the crowding coefficient, 0c  

is the toxicity coefficient, 0p  is the initial population, and  tpp ˆ  indicates the 

population at time .t̂  By introducing the non-dimensional variables 

,     ,
ˆ

ba

p
u

cb

t
t   

Eq. (1) can be displayed in the following form  

    ,0     , 0
0

2 uudxxuuuu
dt

du t

      (2) 
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where abc  is a non-dimensional parameter. It can be shown that the only 

equilibrium solution to Eq. (2) is the trivial solution   .0tu  Moreover, the 

following analytical solution [2] 

      ,1
1

exp
0 0

0 















   





ddxxuuutu
t

        

demonstrates that   0tu  for all t  if .00 u   

Although a closed form solution has been reported in [1,3], it was illustrated that the 

closed form solution cannot yield any insight into the behavior of the population 

evolution [1]. In recent years, a number of methods have been used for the solution 

of the Volterra’s population model (2). Some of them are listed, here. Dehghan and 

Shahini used a pseudospectral approach based on the rational Legendre and rational 

Chebyshev functions [4]. Mohyud-Din et al. adopted a combination of homotopy 

perturbation method and Pade technique [5]. Wazwaz employed Adomian 

decomposition method in conjunction with Pade technique [6]. Al-Khaled applied 

Sinc-Galerkin method [7]. Ramezani et al. utilized composite spectral functions [8]. 

Parand et al. implemented two collocation approaches based on the radial basis 

functions [9]. Parand et al. also employed the collocation method with sinc and 

rational Legendre functions [10]. El-Nahhas used homotopy analysis method [11]. 

Tabatabaei and Gunerhan utilized differential transform method [12]. The reader is 

also referred to [13-17]. In this paper, a new and effective modification of ADM in 

conjunction with Pade technique is formally proposed to construct an approximate 

solution of the Volterra’s population model. 

This article is organized as follows: In Section 2, the basic ideas of the method 

are presented, and then, some Theorems are given. In Section 3, the method is 

utilized for the solution of the Volterra’s population model. In Section 4, the results 

of the method are compared with the existing exact results. Conclusions are 

provided in the last section.  
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2. MODIFIED ADOMIAN DECOMPOSITION METHOD  

Consider a nonlinear equation as follows 

     ,tfuNuR
dt

du
  (3) 

subject to the following initial condition 

  ,0 u  

where R  is a linear operator, N  is a nonlinear operator, and  tf  is a known 

function. It is assumed that the solution of Eq. (3) can be expressed by a series, say 

   





0
,

n n tutu    (4)  

and the nonlinear term  uN  can be presented as the following series  

   ,,...,,
0 10






n nn uuuAuN  (5) 

where ,...1,0, nAn  are called the Adomian polynomials and are defined by [18] 
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Applying  dtL
t




0

1 .  to both sides of Eq. (3) and considering (4) and (5), leads to 

          












 
0 0 100

11 .,...,,0
n n nnn nn uuuAuRLtfLuu    (6) 

We rewrite (6) as follows [19-21] 
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where p  is an artificial parameter and ,...1,0  , iai  are unknown coefficients. 

Now, we define 

 ,
0

1
0 
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11
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n

n
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     1,2,...     ,,...,, 10
1

1  
 nuuuAuRLu nnnn

   

To avoid evaluation of 1,2,...  , nAn , let compute ,...1,0  , iai  such that .01 u  

This results in  

.032  uu  

Setting ,1p  provides the solution of Eq. (3) with initial condition as  

   .
0

1 





n

n
ntaLtu 

  
 (7)

 

NOTE 1. It should be stated that the superiority of the method over traditional 

ADM is that in some problems, especially singular ones, the method provides a 

solution in the form of a convergent series, whereas the traditional ADM fails [21].  

 

THEOREM 1. If ,01 u  then  

     . 1,2,...     ,0,...,, 10
1

1  
 nuuuAuRLu nnnn

   

PROOF. From the following definition of Adomian polynomials  

  ,...2,1,1
1 1
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and knowing that R  is a linear operator, the proof is clear.  

 

THEOREM 2. The equation 01 u  is equivalent to Eq. (3), when .1p  
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Proof. Applying the operator L  to both sides of ,01 u  yields 
 

         .0000
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n

n
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dt

d
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Therefore 

         constant.     ,000   tfuNuRup
dt

d
 

Now, if we set ,1p  then  

       ,000 tfuNuRu
dt

d
  

which is the original Eq. (3).  

 

THEOREM 3. There exists a number  ,,0   defined by  

,
suplim

1
1 k

k
k

a


  

such that the
 
series solution (7), converges absolutely, if ,t  and diverges, if 

.t   

 

PROOF. See [22]. 
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3. SOLUTION OF VOLTERRAʼS POPULATION MODEL BY MODIFIED 
ADM 

By applying  dtL
t




0

1 .  to both sides of Eq. (2) and considering  
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   (8) 

The first few Adomian polynomials are as follows  

         ,,     , 000
2
00 tuxutxBtutA   

               ,,     ,2 01101101 tuxutuxutxBtututA   

  

We rewrite (8) as follows  

     ,)0(
0 0

1

0

1 












 
n n

n
nn

n
nn tapLtaLutu

 

      ,,
1

0 000

1








  














t

n nn nn n dxtxBtAtuL
  

where p  is an artificial parameter and ,...1,0  , iai  are unknown coefficients. We 

now define 
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To avoid calculation of  tAn  and   1,2,...  ,, ntxBn , let us determine 

,...1,0  , iai  such that   .01 tu  Therefore  
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It can be shown that 
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Setting ,1p yields the solution of the Volterra population model as follows  

 
   

.
2

1321 2

2

0
2
00000

0 




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uuuu
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




    (9) 

It should be noted that for 1.00 u  and ,1.0 the solution  tu  is reduced to 

that is the same as those reported in [5,6]. 

 

THEOREM 4. Volterra’s population model is equivalent to a nonlinear 

ordinary differential equation of the form  

               .0     ,00     ,0 0

2
uyytytytytyty       (10) 

PROOF. Setting  

    ,
0

dxxuty
t

     (11) 

yields 

       .     , tutytuty     (12) 

 

  5432 663.709166635.5374999986.3166666655.39.01.0 ttttttu   

,91056.28856418.47323417156.080416 876  ttt    
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Substituting (11) and (12) into Eq. (2) leads to        

               .0     ,00     ,0 0

2
uyytytytytyty        

This completes the proof. 

 

NOTE 2. It is easy to show that applying the method to nonlinear ordinary 

differential equation (10) results in the previous solution (9). It is shown in 

Appendix A.                

 

4. RESULTS AND DISCUSSION 

Let us consider Eq. (2) with initial condition 1.0)0( u and .1.0  It was 

shown in the previous section, for such a problem using modified Adomian 

decomposition method the following analytic solution can be obtained 

As we know, another way of representing the behavior of  tu  is to use Pade 

approximants. Pade approximants provide results with no greater error bounds than 

approximation by polynomials [6]. The Pade approximant [4/4] of  tu  is as follows 

Using the maximize function of the Maple package, it can be shown that 

occurs at 

 

  5432 663.709166635.5374999986.3166666655.39.01.0 ttttttu   

.91056.28856418.47323416156.080416 876  ttt  

.
010.8683049113.8806394512.558187554.312068171

350.40042351490.92312949760.92495739250.468793181.0
]4/4[

432

432

tttt

tttt






42,0.76511308max u   

43.0.46451003criticalt   
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Figure 1 indicates the Pade approximant [4/4] of )(tu versus independent variable 

.t  As it is observed, the graph demonstrates the rapid rise along the logistic curve 

followed by the slow exponential decay after reaching the maximum point. Figure 2 

presents the Pade approximant [4/4] of )(tu for 1.0)0( u and different values of 

.  From this Figure, it is clear that as   increases, )(tu decreases, whereas the 

exponential decay increases. Table 1 shows a comparison between the exact values 

of maxu  given by [2]         

,
1

ln1
0

max
u

u






                   

and the results of the present method. From Table 1, the accuracy and the efficiency 

of the proposed method in solving the Volterra’s population model is evident. It 

should be mentioned that the results can be improved by calculating further terms of 

solution series. 

 

 Figure 1: Pade approximant [4/4] of  tu  for   1.00 u and 1.0 versus .t                      
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Figure 2: Pade approximant [4/4] of  tu for   1.00 u and ,2.0,1.0,02.0  and .5.0   

Table 1: Results of the present method in comparison to the exact values of 
maxu  

(   1.00 u ).                  

     Critical t  Approximation maxu  Exact maxu  

0.02 150.11185313  460.90383806  210.92342717  

0.1 430.46451003  420.76511308  070.76974149  

0.2 600.81685812  290.65791231  160.65905038  

0.5 91.62666222  000.48528235  150.48519029  
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5. CONCLUSION 

A nonlinear integro-differential equation called the Volterra’s population 

model has been studied successfully. A combination of modified Adomian 

decomposition method introduced by the authors and Pade technique has been used 

to extract an analytic approximation for the solution of the model. The method has 

also been examined on an equivalent nonlinear ordinary differential equation, 

confirming the previous results obtained. It was observed that     

 

1. As   increases,  tu  decreases, whereas the exponential decay increases.  

2. The results of the present method are in agreement with the exact values of .maxu      

 

It is worth mentioning that the proposed method only requires the calculation of the 

first Adomian polynomial and suggests a promising technique for solving nonlinear 

problems. 

 

Appendix A     

 

In a manner similar to that described in Section 2, we can define 

      ,
12

1

6

1

2

1
00 4

2
3

1
2

000

1
0  





 tatatatutaLtyyy
n

n
n

  

    ,1
00

2

00
1

0

1
1 yyyyLtapLy

n

n
n

 



 


 

where   ..
0 0

1 dtdtL
t t

   Now, setting ,01 y  leads to 

.0
6

1

636

1

2

1

22

3
1

2
0

0
0

0
2

0

2
00

1 




























 tpa

u
a

u
atpa

uu
y


 

 

 



16 J. Biazar and K. Hosseini  

 

 

 

It can be shown that 
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Setting ,1p gives the solution of Eq. (10) as follows   
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Since    ,tytu   therefore 
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that is the same as that obtained in the previous section.  
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