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LARGE Estimation of the stress-strength
reliability of progressively censored inverted
exponentiated Rayleigh distributions
A. KOHANSAL

Abstract

Based on progressively Type-1I censored samples, this paper deals with the estimation of R = P(X < Y)
when X and Y come from two independent inverted exponentiated rayleigh distributions with different
shape parameters, but having the same scale parameter. The maximum likelihood estimator and UMVUE
of R is obtained. Different confidence intervals are presented. The Bayes estimator of R and the
corresponding credible interval using the Gibbs sampling technique are also proposed. Monte Carlo
simulations are performed to compare the performances of the different methods. One illustrative example
is provided to demonstrate the application of the proposed method.

Keywords: Bayesian estimator, Confidence interval, Maximum likelihood estimator, Monte Carlo
simulation, Progressive Type-II censoring, Inverted exponentiated rayleigh distribution.

1. INTRODUCTION

In reliability analysis, a general problem of interest is inference of the
stress-strength parameter R = P(X < Y). The stress X and the strength Y are treated
as random variables. The system fails, if at any time the applied stress is greater than
its strength. Estimation of the stress-strength parameter has received considerable
attention in the statistical literature, starting with the pioneering work of Birnbaum
[6]. He provided an interesting connection between the classical Mann-Whitney
statistic and the stress-strength model. Since then, work has been accomplished on
the estimation and inference of the stress-strength parameter for different
distributions from the frequentist and Bayesian points of view. The monograph by
Kotz et al. [14] provided a best review of the development of this model till that time.
For some of the recent work on the stress-strength model can be obtained in Kundu
and Gupta [16; 17], Ragab and Kundu [21], Krishnamoorthy et al. [15], Raqab et al.
[22], Kundu and Ragab [18], Lio and Tsai [20].

Type-I and Type-II censoring schemes are the two most popular censoring
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schemes which are used in practice. In Type-I censoring, the test is terminated when
a pre-determined time on test has been reached and in Type-II censoring, the test is
terminated when a pre-chosen number of failures has been observed. Unfortunately
none of these censoring schemes allows the removal of active units during the
experiment. Progressive censoring scheme allows the experimenter to remove active
units during the experiment. Combining the Type-II censoring and progressive
censoring schemes, the progressive Type-II censoring is introduced. Among various
censoring schemes, the Type-II progressive censoring scheme has become very
popular one in the last decade. It can be described as follows: Suppose N units are
placed on a life test and the experimenter decides before hand the quantity #n, the
number of failures to be observed. Now at the time of the first failure, R; of the
remaining N — 1 surviving units are randomly removed from the experiment. At the
time of the second failure, R, of the remaining N — Ry — 2 units are randomly
removed from the experiment. Finally, at the time of the n-th failure, all the
remaining surviving units R, = N —n—R; — ... — R,_| are removed from the
experiment. Therefore, a progressive Type-II censoring scheme consists of n, and
(R1,...,Ry), such that R; + ...+ R, = N —n. It is clear that this scheme includes the
conventional Type-II right censoring scheme (when R; = ... = R,_; = 0 and
R, = N —n) and complete sampling scheme (when N=n and Ry = ... =R, =0).
For further details on progressively censoring and relevant references, the reader may
refer to the book by Balakrishnan and Aggarwala [5].

Based on progressively Type-II censored samples, this paper deals with inference
for the stress-strength reliability R = P(X < Y) when X and Y are two independent
inverted exponentiated rayleigh distributions with different shape parameters, but
having the same scale parameter. For some of the recent work on the stress-strength
model based on progressive censored sample can be obtained in Saracoglu et al. [24],
Asgharzadeh et al. [3] and Shoaee and Khorram [25]. The inverted exponentiated
rayleigh distribution (IERD) with the shape and scale parameters « and A,
respectively, has the probability density function, cumulative distribution function
and failure rate function as:

flx) = %e‘”xz(l —eMhEl 50, @A >0, 1)
Fx)=1—(1—e*)e, x>0, 0,2 >0,
Hx) = — 2% x>0, a, L >0,

N x3(e’1/"2 - 1)’
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respectively. From now on a IERD with the pdf (1) will be denoted by I[ER(ct,A). The
density function and failure rate function of IERD are shown in Figure 1. The failure
rate function has a non-monotone unimodal shape. In many practical situations, it
is known that the data are coming from a distribution which has a non-monotone
failure rate function. Therefore, if the empirical study suggests that the failure rate
function of the underlying distribution is non-monotone and it has a unimodal shape,
then the IERD may be used to analyse such data sets. In fact, failure rate of the
IERD show similar behavior to some well known lifetime models, namely lognormal,
inverse Weibull and generalized inverted exponential distribution. So in this respect

IERD can be considered as an alternative model to these distributions.
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Fig. 1. Shape of density function (right) and failure rate function (left) of IERD when A = 2

The IERD is a particular member of a general class of inverse exponentiated
distribution (see Ghitany et al. [11]). This class includes inverted exponentiated
exponential distribution and inverted exponentiated Pareto distribution. Abouammoh
and Alshingiti [1] have considered parameter and reliability estimation for inverted
exponentiated exponential distribution. They derived many distributional properties
and reliability characteristics of inverted exponentiated exponential distribution in a
complete sample case. To the best of our knowledge, the class of inverse
exponentiated distribution has not received much attention for censored data.
Recently, Rastogi and Tripathi [23] considered the estimation for an IERD under type
IT progressive censoring. We study the inference of the stress-strength parameter

R =P(X <Y) when X and Y are independent inverted exponentiated rayleigh
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random variables. It is further assumed that we observe progressively Type-II
censored samples from both distributions. We can formulate the problem as follows:
It is assumed that X and Y are independent inverted exponentiated rayleigh random
variables with common scale parameter A and shape parameters o and J,
respectively. There are two progressive censoring schemes, {N,n,R,R»,...,R,} and
{M,m,S1,S,,...,S,} for X and Y, respectively. We observe progressively censored
sample {Xi.un,- .., Xnnen} from X and {Yignar, ..., Yo} from Y based on the
above progressive censored samples, our problem is to estimate
R=P(X<Y)= ﬁ (see, e.g. [24], [25]).

The layout of this paper is as follows: In Section 2, we discuss the MLE of R. It
is observed that the MLE can be achieved by solving a non-linear equation and it can
be obtained using an iterative procedure. The uniformly minimum variance unbiased
estimator (UMVUE) of R is derived in Section 3. The exact, asymptotic and two
bootstrap confidence intervals of R are presented in Section 4. Bayes estimate and
the associated credible interval are discussed in Section 5. Simulation results and data

analysis are presented in Sections 6. Finally, we conclude the paper in Section 7.

2. MAXIMUM LIKELIHOOD ESTIMATION OF R

Let X ~IER(a,A) and Y ~ IER(f},A) be independent random variables. Then
it can be easily seen that the reliability functionis R=P(X <Y) = ﬁ. Our interest
is in estimating R based on progressive Type-II censored data on both variables.

To derive the MLE of R, first we obtain the MLEs of «, B and A. Let
{X1:m:Ny - -+ Xnm:v b be a progressively censored sample from IER(ct,A) under the
progressive censoring scheme
{N,n,R\,R>,...,R,}. Similarly, let {Y1.:pm,-- -, Ym:m:m } be a progressively censored
sample from JER(B,A) under the progressive censoring scheme
{M,m,S1,S2,...,S,}. Therefore, from [24] the likelihood function of ¢, 8 and 4 is

given by
wapo) = [ [T =F) oo [T it =0 |
i= Jj=

where

Cq :N(Nle71)'“(1\7*]{17"'7Rn71*n+1),
) ZM(M—Sl—l)---(M—Sl—--~— m,1—m+l).
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The likelihood function of the observed data as follows:

L(data|a, B, A) = 12" e pr AT (['[ ]3> <H ]3> exp {—l ():
y

i=1% j=1Yj

+ v
x (H (1;%/%)"‘“*’““) <ﬁ (1ex/y3>‘3“f““) .

i=1

From (2), the log-likelihood function is

{(a,B,A) = Constant +nlog(c) +mlog(B) + (n+m)log(A) — A (Zxﬁi 12>

_3<Zn:10g X;) Zlog Vj >+Zn:( (Ri+1)_1)10g(1_e%/xi2)

i=1

m

Z (S;+1)— 1) log(1 —e /),

So, the MLEs of «, 8 and A, say a, B and ’i respectively, can be obtained as the

solution of

8€ - n i _)L/xi2 -

w—aﬁ-;(le i+ 1) log(1 — ) =0, 3)
%=@+i(s +1)log(1—e M) =0 o
aB ﬁ ~ g )

j=1

dt _nt+m Lo(a(Ri+1)—1 e

i=1 i Jj= lyj i=1 xl‘z(lfe

1 (B(S;41)—1)e ™%
—/1/)73)

j=1 y?( l—e
From (3) and (4), we obtain
n -~ m

oaA)=— —. 1) = — i
. Lisy (Ri+1)log(1 — e /1) P Y7 (Sj+ Dlog(1—e )

)
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and A can be found as the solution of the non-linear equation k(1) = A, where

k(A) = (n+m) {212 <1 _ (a(Ri+_lz—A;2;—A/xi>

i=1% 1

(s+1)71) AN
Bl

Since, A is a fixed point solution of the above non-linear equation, therefore, it can be

1

resulted using an iterative scheme as k(4(;)) = Aj;.1), where A;) is the j-th iterate of
. The iteration procedure should be stopped when |4 j) —A(j;1)| becomes sufficiently
small. Once we obtain 7L then & and ﬁ can be resulted Therefore, the MLE of R
becomes

a

A+E

R= (6)

3. UMVUE OF R

In this section, the UMVUE of R is derived. Let {Xi.nn,..., Xpm:n} be a
progressively censored sample from /ER(,A) under the progressive censoring
scheme {N,n,Ry,...,R,}. Similarly, let {Yi.mp,...,Ymm:m} be a progressively
censored sample from IER(B,A) under the progressive censoring scheme
{M,m,Si,...,Su}. The joint pdf of Xj.n.n, ..., Xy S

n 1 n l n 1

Tt Xy X153 Xn) = c1(200A)" — ——— |expy —A) —

L:m:N N n iI:le3 ,I:I] 1 —eik/xzz ;X,z
(7

L 2
xexpq Y o(R;+1)log(1 —e My
i=1

where 0 < x; < ... < x, < oo (see [5], for more details). It is immediate from (7) that

U=-Y" (Ri+1)log(1—e* x%) is the complete sufficient statistics for & when A
is known. It is easy to see that

XiTn:N — _10g(1 _ei}“/Xt%n:N)’ i: 1, o, n,
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be a progressive censored sample from an exponential distribution with mean o',
Let

Z :NXl*:n:N’
Z = (N*Rl - 1)(X2*:n:N*X1*:n:N)7

Z, = (N_Rl —.— Ry —n+ 1)(X;:n:N_X;—l:n:N)'

From Cao and Cheng [7], we get that Z;,...,Z, are independent and identically

distributed exponential random variables with mean o'

Moreover
U=Y!,Z=Y},(Ri+1)X}, y has a gamma distribution with the shape parameter

n and the scale parameter ¢, in symbols U ~ I'(n, &), i.e. it has the pdf

ey > 0. (8)

LEMMA 1. Let Vi = —log(1— e M Vimt) and V = ¥ (S 4 1)Y 0y The

conditional pdf of X',y given U = u, is

(u—Nx)"2
Fitplv=u(¥) = N(n=1)—=—, 0 <x<u/N,
and the conditional pdf of Y|',,.,; givenV =v, is
(v—My)"?
fyl*:m:M‘V:"(y) =M(m— 1)T7 0<y<v/M.

PROOF. We will prove the first part, second part follows along the same line.
Note that

x X, U
fi, o) = ffy(”())
where fy:  y(x,u) is the the joint pdf of X7, and U and fy (u) is the pdf of U. It
is obvious that U is a complete sufficient statistics for o« when A is known. Suppose
we denote W =Y ,Z; then clearly W and Z; are independent. The joint pdf of
X{.,.nv and U can be easily obtained from the joint pdf of W and Z;, by using the the
transformation Z; = NX{, .y and U = W +Z;. Finally the result is found using (8). [J

THEOREM 1. Based on the complete sufficient statistics U and V, as defined
before for o and B respectively, the UMVUE of R, say R, for n > 2, and m > 2, can
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be expressed as follows:

vzz;é(—l)k(ﬁ)k% if v<u,

R= C))

G (%)k(,(ﬁ;?) v

k

PROOF. Observe that X} ., and Y}, .,, follow an exponential distribution with

mean (No) ! and (MB)~!, respectively, therefore,

1 if1‘4Y1*:m:M >NX1*:n:N7
O(X7, 1) =
0 if MY} 0r < NXfns

is an unbiased estimator of R. Therefore,
R=El90 1)U =V = = [[ fwmafigv-s()dxdy,

where & = {(x,y) : 0 <x <u/N,0 <y <v/M,Nx <My}, fxsjy=,(x) and fy-y—,(y)
are same as defined in Lemma 1. For v < u

~ — v/M M)/N
R:N(n DR ; / / (u—Nx)"~ 2( — My)"™™ 2dxa'y
Vm

urzf]
M(m—1) [v/M _ _ My
:1—W/0 (v—My)"2(u—My)"dy {Put: —= =1}
! m—2 vt n—1
:1f(m71)/ (1= 21 = Zyigy
0 u

1 —(m— L TN T L AVRLAY"
1) [ R ()
a0
:1_2(_1) (;) mk—1y °

k

m—1
Similarly for v > u, R = Yo ](—1) (V)k(&’;fl)). O
k
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4. CONFIDENCE INTERVALS

4.1. Exact confidence interval

Let {Xi:nNs---, Xnm:v} be a progressively censored sample from IER(ct,A)
under the progressive censoring scheme {N,n,Rj,...,R,}. Similarly, let
{Yium:pts - - Y } bE @ progressively censored sample from IER(f,A) under the
progressive censoring scheme {M,m, S1,...,S,}. Let X35y = —otlog(1 — e~/ Xinn),

_A’/sz:m:M)

i=1,-,n(orY; = —PBlog(l—e , j=1,---,m). Tt is easy to see that

Xy i=1,--,n(or Y\, j=1,---,m) is a progressive censoring sample from a

standard exponential distribution. Let us consider the following transformations:

i—1
ZT :le*ltlil\h Zi* =N-— Z(Rk+ 1)(XiT::N_ i*—*lzntN)v i=2,--,n,
k=1
-1

J
DT :MYI*::;:M> D;’ =M- Z(Sk+ 1)<Y;:1:M_Y;j1:m:M)? J=2,,m
k=1

From Cao and Cheng [7], we get that Z},--- ,Z (or D}, ---,Dy,) are independent and
identically distribution as standard exponential.

Let Vx =27y and Ux =2Y}' , Z{ (or Vy = 2D7 and Uy = 22’};2 Dj). Then Vy and
Ux (or Vy and Uy) are independent random variables and

Vx ~ X(zz) and Uy ~ X(zzn_z) (or Vy ~ )((22> and Uy ~ xém_2>).

LEMMA 2. Let Ty(A) = %5, Ti = Ux + Vi, Ty (A) = Gty and To = Uy +
Vy. We can find that

Tx(A) ~ F(2n—2,2), Ty ~ x*(2n), Ty (A) ~ F(2m —2,2) and Ty ~ x*(2m).

It is obvious that Tx (A) and Ty (A) are independent. Furthermore, Johnson et al. [13]
indicated that Tx (1) and Ty (or Ty (1) and T») are independent. (]

LEMMA 3. Tx(A) (or Ty (L)) is strictly decreasing in A.

~A/a}
PROOF. Let £(1) = log(1—e"/%i)

N 0<a <a;,i=2,...,n. This function is
log(1—e /1)
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strictly decreasing in A since the first derivative of (1) is

[ P —A/af 5 —Aa?
de(4) = ! — |log(1 —971/03672 —log(1 —efx/af)ei]z
di log?(1—e~*/ai) | a?(1— e r/af) @ (1 —eHat)
1 [ 1 e Ma; 1 e~ Mail
T o2 ey |l —a) vy el S e
log(I—e /) |~ 1—e M a;(1—e ") L—e M4 ai(1—et/a)
. [ 1 e M 1 e Ml
< — |lo > —lo 5
log?(1—e 2/4t) | gl 1—e*/af )a%(1 — e~ h/at) &l 1—e*af )a%u —eHaty
4 1 e HME e
RETIN: - logl——75) Y | <0
ajlog™(1—e ) l—e e | 1—e M4 1—e i

Moreover, after simplifying Tx (1), this expression becomes
U _Ynzi-z
(n—1)Vx (n—1)Z;
1 n 10g<1 _efl/xt%n:N) 1
= (R. + 1) —
N(n—1) ,; '

n—1 log(1 —e A/ Xtun) n—1

Tx () =

Hence, it is easy to see that Tx (A) is a strictly decreasing function of A.

LEMMA 4. When A is known, the MLE of R can be obtained as

RuL = (10)

1 mTl/(Z .
nD>/B

It is obvious that Ty and T, are independent. Alternatively, Tx (L), Ty (A) and Ry are

independent. Also, by using Lemma 2, we have

R 1-R

]/?\Min, or F= i
1+5F I-R R

where F has Fisher distribution with (2n,2m) degrees of freedom, in symbols F ~
F(2n,2m).

THEOREM 2. Suppose that {Xi.un,. .., XunN} be a progressively censored
sample from IER(a,A) and {Yi.np1,- - - s Ymmm } e a progressively censored sample
Sfrom IER(B,A). Then
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(i). forany 0 <y<1,
(maX{Tx_l (F(Hm)/z@n*2,2)),TY_I(F(1+\/W)/2(2"1*272))},

min{TX*I(F(l_m)/z(zn_2,2)),T;1(F(1_m)/2(2m_z,z))})

is a 100(1 — )% confidence interval for A, where Fy(p,q) is 100y-th percentile of
F(p.q).

(ii). for any 0 < y < 1, the following inequalities determine a 100(1 — y)% joint
confidence region for (A,R),

max{T;I(QHW)/Z(zn_2,2)),T;‘(QHW)/Z(zm_z,z))} <
< min{TX’I(FU_m)/z(Zn—2,2)),TY’1(F(1_m)/z(Zm—LZ))},

1 SRS 1

1-R,
Fi_(1—1=y)2(2m,2n) 1+ EMZ‘ZLFI,(HM)/Z(zm,zn)

1-R,
14 ——ML
Ryr,

PROOF.

(i). By using Lemma 2 and Lemma 3, we have
I—y=V1-rVi-7v
= P{F(1—\/1Ty)/2(2”—272) <Tx(4) < F(1+\/1Ty>/2(2"—2’2)}
X P{me)/z(zm—zaz) <Ty(A) < F(1+m>/z(2m—2a2)}
= P{F(lf\/ﬁ)/z(znfzvz) STx(A) < Fug iy 2(2n=2,2),
Fy_ 2 (2m—2,2) < Ty(A) < F(1+m)/2(2m—2,2)]
= P[Ti  (Fuy 12 (20— 2,2) <A < T (B 152 (2n—2,2)),
Ty ' (Fligyimp2(2m—2,2)) <A < TY_I(F(lf\/ﬁ/)/Z(szlz))}
:P[max{TJFI(I:(1+M)/2(2"—272))7Tyfl(F(1+\/ﬁ)/2(2m—2a2))} <1

< min{TX’I (Fu— i p(2n—2,2)), Ty (F(l,m)/z(zm—z,z))}]
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(ii). By using Lemma 2, Lemma 3 and Lemma 4, we have
l—y=v1-yy/1-v /17
:p[ gty 2(2n—2,2) S Tx(A) < Fyy g 5(2n 2 2)}

X P[Fy g 2m=2.2) STy(A) S Fy g 2m—2.2)]

P|:F(17«/lfy)/2(2n72m) <F< F(1+ /1,7)/2(2n,2m):|
:P[F(17m>/2(2n—2,2) < Tx(A) < Fyyy g p(2n—2,2),
Fo_yr=522m—=2,2) <Ty(A) < Fjy | y7=5)p(2m —2,2),

R 1-Ru
Fii—y1=y)2(2n,2m) < TR Ry < Fug g 220, Zm)}

- p[T);'(F(Hm)/Z(zn—LZ)) <A ST (B gy p(2n—2,2)),

Ty_l(F(1+4¢ﬁ)/2(2m_2 2)) <A< T_I(Fu—(‘/ﬁ/)/z(zm_zvz))a

1—-R RML
H_\/ﬁ /2(2m 2n) < T l_R < Fl m)/2(2m,2n)}

_ p[max{T};I(F(Hm)/z(zn_z,z)),T; (F(Hm)/z(Zm—Z,Z))} <2

Smin{T);l(F(lf{*/ﬁ/)/z(z”_272))7TY71(F(lf{‘/ﬂ)/z(zm_zg))}

1 1
<R<

1+ RMLFI _ip2(2m,2n) 141

VAR (14 yT=y)2(2m, 2n)"

4.2.  Asymptotic confidence interval

In this subsection, the asymptotic distribution of 6 = (a, B ,/i) and therefore the
asymptotic distribution of R are obtained. We denote the expected Fisher information
matrix of 6 = (a,,4) as J(0) = —E(I(0)), where I(0) = [[;], i, j=1, 2, 3 is
the observed information matrix. The observed Fisher information matrix has second

partial derivatives of log-likelihood function as the entries, which can be obtained as



JAMSI, 13 (2017), No. 1 61

follows

0%/ n 2%/ m 2%

I]] &az _—E, 122 8[32 == ﬁz, I]Z (9058[3 0_1217
920 n (Ri_'_l)efl/xl

I = I

B 7 900 ,.;xlz(l_efz/x%) b

, 9% I (Sj+1)e M

23 = =132,
IBIA - Z 21— M)

j L nm g (ol et i (8,41 = 1)e

33 = A2 A2 “ X?(l _efl/x js| (1 —e A/)’?)2

LEMMA 5. Suppose that {Xi..:n, - .., Xun:N } be a progressive censored sample
from IER(a, L) with censored scheme (N,n,Ry,...,R,). Then

. gil/xizznz i— i
(i) Bl —] = 5Ly aiaB(2,0ma — 1) [w(ana+1) = w(2)],
X[:n:N(l_e “mN)
)L/Xzan
E =
(ii). E[ Xt (- My ]

LAyl aiaB(2,0ma —2){[w(2) — y(ana)] + v'(2) — v/ (ana)},

2
where y(x) = £T(x), y'(x) = £T(x), Bx,y) = TEOL ny=n—d+1- LI 4R,
Ci1= Hi{:] Na, ig = Hl:l,l#i ﬁ

PROOF. It is known that if {Xj..v, ..., Xu:mn } 1S @ progressive censored sample
from IER(ot, A), then the pdf of X;.,.y is (see [5]):

Sxin() = Ci1 Z ajaf (X)[1—F (x)]%!

e_l/x —A/2\am—1
=20aACi_ IZa,d (1—e )*Ma

(i). Using the table of the integrals from Gradshteyn and Ryzhik [10] (formulae
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4.253(1)), we have

71/ iin:N oo ,l/x
E _ /
[Xt%n:N(l _e_/l/xi:n:N)] 0 x2(1 e—A/x? )lenN dx

i oo e72l/x )
= ZaACi,l Z a[’d‘/[; g (1 — e—l/x )O!TId—de
ocC
— i1 Zald/ ylog(y)(1—y)*M—2dy

- aii_l Z aiaP (2, 0mq — D[y (ana+1) —w(2)].
d=1

(ii). Using the table of the integrals from Gradshteyn and Ryzhik [10] (formulae
4.261(21)), we have

—AX Y
£ d
[Xié:‘n:N(l _e_l/xt%nN / x4 7),/x2 lenN (x)dX

6,721/)6
= Zoc/lC,-_l Z ai7d/
0

d=1

x7 (1 _ e*l/xz)aﬂdf?adx

OCC, 1

= Za,d/ (log(y))*(1 —y)*M—3dy

aCl 1

Z“tdﬁ (2,amq = 2){[y(2) — w(ana)*+¥'(2) — v/ (ana)}.

With the previous lemma,

=, JzF%, Jp=0=1,

s == LR+ 1 ldgla,dﬁ (2,0ma = Dlw(@ng +1) - y(2)] =,

= L6406 K asaB@ B DB+ 1)~ v0) =

= o 3 Rt 1) 1) Y a2 ons (2 wiany
+¥'(2)— v/ (ama)} fzg,l 1)Cj1;aj,dﬁ(2’ﬁ'7d2)

n—+m

< A[w(2) = w(Bna)l* +v'(2) — v (Bna)} + R
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THEOREM 3. Asn — oo, m — oo, and n/m — p then

[Va(@—a) Va(B—B) vm(A —1)]" 2 N3(0,A7 (o, . 1)),

where A(a, B,A) and A=Y («, B, ) are symmetric matrices and

oo Jo by by b
n Vnm 1 nm  nm ny/nm
_ J J -1 _ b b
Alwpb=1 S om | AT @B =RR s o |
‘]373 b b bj
m nz

and |A(0, B, A)| = —= (Junats3 — Ity — Jhn)

by =Jndss —J3,  bia=Ji3Js, bz = —Ji3,
by =Ji1Jss —J, by =—JiiJs, by =Ji1n.

PROOF. By using the asymptotic properties of MLEs and the multivariate central

limit theorem,
[(@—a) (B—B) A—2A)]" 2 N3(0,J (e, B,2)),

where J(e,B,4) and J™! (e, B, 1) are symmetric matrices and

Jiu 0 Jiz ) by b1z bi3
J a, 7)~ = J. J. ) J_l a, 72' =17/~ 2 1\ b b ’
( B ) 22 J23 ( :B ) |J(a,B,)L)| 22 D23
J33 b33
van 0 0
and |J(c, B, A)| = n’m|A(a,B,2)|. Let C = v/n 0 | then

0
0 0 m
Cl(@—a) (B—B) (2 —2A)" -2 N3(0,CI (e, B,2)CT),

where C[(@—a) (B—B) (A—A)]" =[ya(@—a) a(B—pB) vm(A—2)]" and

by b _bis

1 m nm ny/nm

cJ Ya T — — by by
PPN Rl
33

Therefore, the result follows. OJ
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THEOREM 4. Asn — oo, m — oo, and n/m — p then

Vn(R—R) -2 N(0,B),

where
1

B= o A(@ B A By | P2 T B —20Bbre .

PROOF. On using Theorem 3 and applying delta method, we can describe the

asymptotic distribution of R = g(@, B 71), where g(o,B,A) = ﬁ as the following

~

Va(R—R) =% N(0,B),
where B = bTA~!(a, B, )b, with b= [§% 2% %7 — wgplB —a 0, and
A~!(a, B, 1) is defined in Theorem 3. Therefore

1
(nm)|A(et, B, A)[(e+B)*

Thus, the proof is obtained. [

B=b"A"!(at,$,2)b= by + B2b11 —2aBbra|.

From Theorem 4, we construct the asymptotic confidence interval of R. Using the
MLEs of o, and A, B can be estimated. Therefore, a 100(1 — y)% asymptotic
confidence interval for R can be presented of the form,

- VB 5 VB

(R_Z17%W7R+Zlfz

3 W )7
where zy is 100y-th percentile of N(0,1).

4.3.  Confidence interval based on bootstrap procedures

Since the sampling distribution of R is not available if A is unknown, the
bootstrapping method can be an alternative instead of the method described in
previous subsection to develop an approximated confidence interval of the parameter
R. Also, it is evident that the confidence interval based on the asymptotic results do
not perform very well for small sample size. For this, we propose two confidence
intervals based on the non-parametric bootstrap methods: (i) percentile bootstrap
method (we call it Boot-p) based on the original idea of Efron [9] and (ii) bootstrap-t
method (we refer it as Boot-t) based on the idea of Hall [12].
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(i) Boot-p Method
1. Generate a bootstrap sample of size n, {x},...,x;} from {x{,...,x,} and generate
a bootstrap sample of size m, {y7,...,y%} from {yi,...,yn}. Basedon {x},...,x}}

and {y},...,y; }, compute the bootstrap estimate of R say R*, using (6).

2. Repeat 1 NBOOT times.

3. Let G*(x) = P(R* < x) be the cumulative distribution function of R*. Define
1?3,, (x) = G*~!(x) for a given x. The approximate 100(1 — ¥)% confidence interval

of R is given by
(RBP(f)’RBPO 5
(ii) Boot-t Method

1. From the samples {xi,...,x,} and {y1,...,ym}, compute R.

2. Same as in Boot-p method, first generate bootstrap sample {x,...,x;} and
{»{,.-.,¥},} and then compute R*, the bootstrap estimate of R. Also, compute the

statistic:

T =

Compute V (R*) using Theorem 4.
3. Repeat steps 1 and 2 NBOOT times.
4. Let H(x) = P(T* < x) be the cumulative distribution function of 7*. For a given x,

define

Re(x) =R+n"2H ' (x)\/V(R).

The approximate 100(1 — v)% confidence interval of R is given by:

Y\ 5 Y
))-

(ﬁm(ELRBz(l—E
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5. BAYES ESTIMATION OF R

In this section, we develop the Bayesian inference of R under the assumption
that the parameters ¢, 3 and A are random variables. We mainly discuss the Bayes
estimates and the associated credible intervals of R. It is assumed that o, 8 and A

have independent gamma priors with the PDF’s:

m(a) oc e 01 a>0,a; >0,b; >0,
M (B) o< B2l 2P, B >0,a,>0,b, >0,
(L) oc AB1gb3h A>0,a3>0,b;3 >0,

respectively. Based on the observed sample, the joint posterior density function of ¢,

B and A is

L(data|a, B,A)m (o) mo(B)73(A)
Jo" Jo Jo L(dataler, B,A) i (o) 7o (B) w3 (A )dadfdA

From (11), it is obvious that the Bayes estimate will not be analytically obtained.

n(a,B,A|data) = (11)

Consequently, we adopt the Gibbs and Metropolis sampling techniques to compute
the Bayes estimate of R and the corresponding credible interval of R. The posterior
pdfs of & and f are as follows:
4 1
o|B,A,data~T(n+ay,b; —|—;(R,'+ 1)10g(m)),

m

1
~T i+1)log(———=
Bl &, data ~ T(m+az, bz + 3 (8 + Dlog(-—=75),

j=1
o 1
7(Aler, B, data) o< A"HH exp s+ Y, 5t
1 =1Yj

X (f[u_e’t/x?)l) (ﬁ(pe—%’?)l).
i=1 =1

The posterior pdf of A is not known. So to generate random number from the posterior

and

=
e

i

pdf of A, we use the Metropolis-Hastings method. Therefore, the algorithm of Gibbs
sampling is as follows:

1. Start with an initial guess (o), B(o)» A(0))-

2. Sett=1.

3. Generate A(;) from m(A|oy,_1), B—1),data).
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4. Generate a(;) from I'(n+ay, by + X (Ri + l)log( - 5))-

7))

wn“

5. Generate f3;) from I'(m+az, by + Y1, (S; + 1) log(w
l—e

(07
6. Compute R(;) = ﬁ.
7.Sett =r+1.

8. Repeat steps 3-7, T times.

Now the approximate posterior mean, and posterior variance of R become

T
E(R|data) = Z R Var(R|data) = Z E(R|data))?.

Based on 7 and R values, using the method proposed by Chen and Shao [8], a
100(1 — 7)% HPD (Highest Posterior Density) credible interval can be constructed as
(R[%T],R[(l_%m), where Ry and Ry are the [YT)-th smallest integer and the
[(1—%)T)-th smallest integer of {R, = 1,2,...,T}, respectively.

Here we obtain the Bayes estimation of R under the assumptions that the
parameters o and 3 are random variables and the parameter A is known. It is
assumed that ¢ and 8 have independent gamma priors with parameters (a;,b;) and
(az,by), respectively. The posterior pdf’s of o and B can be shown to be
I(n + ai,by + A1(x)) and T(m + a,by + Ay(y)), respectively, where,
A1(x))=T1/(2et) and Ax(y)) = T»/(2f3). Since the priors & and f are independent,
the posterior pdf of R becomes

pitar—1 (1 _ r)1n+a2—1
[r(b1 +A; (X)) + (1 — r)(b2 +A2(y))]”+’”+“l+“2 )

0<r<l,

Jr(r) =8

where

 T(n+m+a;+a) e -
S= T(n+a)(m+a) (by + A1 (X)) (by + Ay (y))" 2.

Since the Bayes estimate of R under the squared error loss function can not be
obtained analytically, we approximate it via the method of Lindley [19]. Alternatively,
using the approximation of Lindley [19] and following the approach of Ahmad et al.
[2], it can be seen that the approximate Bayes estimate of R, say Rgs, under the squared
error loss function is
Rps = R{ 1+ = oR’
B2(m+ay—1)(n+b;—1)

&(n+a —1)—3(m+a2—2)] } (12)
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where

a & n+a;—1 J B m+a—1
—, = ————, an = .
o+p by +A(x) by +Ax(y)

The 100(1 — y)% Bayesian interval for R is given by (L,U), where L and U are the

lower and upper bounds, respectively, satisfying

R=

P[R < L|data] = 75/ and P[R < U|data] = 1 — % (13)

6. DATA ANALYSIS AND COMPARISON STUDY

In this section, we present some results based on Monte Carlo simulations and
real data to compare the performance of the different methods described in the

preceding sections.

6.1.  Numerical experiments and discussions

In this subsection, the Monte Carlo simulation is conducted to compare the
performance of MLE, UMVUE and Bayes estimator under different progressive
censoring schemes. We compare the performances of the different estimators in
terms of biases, and mean squares errors (MSE). We also compare different
confidence intervals, namely the asymptotic confidence intervals, two bootstrap
confidence intervals and the HPD credible intervals in terms of the average
confidence lengths, and coverage percentages. We use different parameter values,
different hyper parameters and different sampling schemes. We used three sets of
parameter values @) = (¢ =2, =2,1=0.5), @, = (¢ =2, =2,A =1.5) and
0; =(a=2,=2,A=2.5) mainly to compare the MLEs and different Bayes
estimators. For computing the Bayes estimators and HPD credible intervals, we

assume 3 priors as follows:

Prior 1: a; =0, b;=0, j=1,2.3,
Prior 2: aj=1, bj=2, j=1,2,3,
Prior 3: aj=2, bj=3, j=1,2.3.

Prior 1 is the non-informative gamma prior and Priors 2 and 3 are informative gamma
priors. We also use three censoring schemes as given in Table 1.
For different parameter values, different censoring schemes and different priors, we

report the average biases, and MSE of the MLE and Bayes estimates of R over 1000
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Table I. Censoring schemes.
(n,N) CS.
ri (10,30)  (0,0,0,0,0,0,0,0,0,20)
rn (10,30)  (20,0,0,0,0,0,0,0,0,0)
r3 (10,30)  (2,2,2,2,2,2,2,2,2,2)

Table II. Biases and MSE of the MLE and Bayes estimates of R.

0; C.S MLE Priorl Prior2 Prior3
|Bias| MSE | |Bias| MSE | |Bias| MSE | |Bias| MSE
(ri,r1) | 0.0094 0.0200 | 0.0045 0.0158 | 0.0015 0.0141 | 0.0001 0.0128
(r2,r2) | 0.0025 0.0225 | 0.0021  0.0160 | 0.0007 0.0133 | 0.0006 0.0116
®; | (r3,r3) | 0.0029 0.0229 | 0.0021 0.0151 | 0.0009 0.0143 | 0.0009 0.0122
(r1,r2) | 0.0022 0.0215 | 0.0018 0.0155 | 0.0014 0.0137 | 0.0008 0.0119
(r1,r3) | 0.0073  0.0219 | 0.0049 0.0156 | 0.0039 0.0140 | 0.0038 0.0121
(r2,r3) | 0.0055 0.0218 | 0.0018 0.0163 | 0.0013 0.0141 | 0.0004 0.0123
(r1,r1) | 0.0079  0.0230 | 0.0028 0.0156 | 0.0022  0.0134 | 0.0006 0.0133
(r2,r2) | 0.0070 0.0222 | 0.0042 0.0159 | 0.0018 0.0131 | 0.0003 0.0108
®y | (r3,r3) | 0.0046 0.0222 | 0.0010 0.0160 | 0.0009 0.0140 | 0.0007 0.0126
(r1,r2) | 0.0085 0.0216 | 0.0075 0.0160 | 0.0011 0.0143 | 0.0004 0.0126
(r1,r3) | 0.0079  0.0217 | 0.0053  0.0154 | 0.0047 0.0139 | 0.0022  0.0127
(r2,r3) | 0.0095 0.0205 | 0.0057 0.0162 | 0.0054 0.0136 | 0.0033 0.0131
(r1,r1) | 0.0035 0.0210 | 0.0023 0.0162 | 0.0013 0.0136 | 0.0011 0.0133
(r2,r2) | 0.0044 0.0222 | 0.0033 0.0163 | 0.0025 0.0134 | 0.0013 0.0119
O3 | (r3,r3) | 0.0027 0.0218 | 0.0026 0.0148 | 0.0011 0.0143 | 0.0008 0.0124
(ri,r2) | 0.0089 0.0211 | 0.0047 0.0156 | 0.0043 0.0138 | 0.0018 0.0132
(r1,r3) | 0.0063 0.0215 | 0.0061 0.0168 | 0.0038 0.0137 | 0.0027 0.0129
(r2,r3) | 0.0042  0.0220 | 0.0035 0.0160 | 0.0015 0.0135 | 0.0003 0.0124

replications. The results are reported in Table II. In our simulation experiments for
the bootstrap method, we have computed the confidence intervals based on 250 re-
sampling. The Bayes estimates and the corresponding credible intervals are based on
1000 sampling, namely 7" = 1000.

From Table II, we observe that the MLE compares very well with the Bayes
estimator in terms of biases and MSEs. Comparing the two Bayes estimators based
on two informative gamma priors clearly shows that the Bayes estimators based on
prior 3 perform better than the Bayes estimators based on prior 2, in terms of both
biases and MSEs. The Bayes estimators based on both priors perform better than the
ones obtained using the non-informative prior 1.

We also computed the 95% confidence intervals for R based on the asymptotic
distribution of the MLE. Furthermore, the Boot-p, Boot-t confidence intervals and the
HPD credible intervals are computed. In Table III, we presented the average
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Table III.  Average confidence/credible length and coverage percentage for estimators of R.

0
C.S Boot-t Boot-p MLE Bayes
Priorl Prior2 Prior3
(ri,r1) | 0.5505(0.950) | 0.4740(0.944) | 0.4554(0.948) | 0.4413(0.947) | 0.4304(0.950) | 0.4239(0.949)
(r2,r2) | 0.5801(0.958) | 0.4812(0.952) | 0.4511(0.949) | 0.4235(0.940) | 0.4202(0.954) | 0.4171(0.956)
(r3,r3) | 0.5802(0.959) | 0.4757(0.948) | 0.4549(0.941) | 0.4490(0.944) | 0.4233(0.941) | 0.4192(0.956)
(r1,r2) | 0.5681(0.957) | 0.4700(0.942) | 0.4477(0.943) | 0.4470(0.947) | 0.4269(0.947) | 0.4186(0.950)
(ri,r3) | 0.5595(0.956) | 0.4807(0.940) | 0.4583(0.954) | 0.4389(0.945) | 0.4380(0.954) | 0.4261(0.952)
(r2,r3) | 0.5794(0.957) | 0.4810(0.944) | 0.4569(0.943) | 0.4344(0.942) | 0.4239(0.948) | 0.4142(0.946)
[
C.S Boot-t Boot-p MLE Bayes

Priorl Prior2 Prior3
) | 0.5663(0.958) | 0.4634(0.949) | 0.4564(0.956) | 0.4479(0.954) | 0.4462(0.941) | 0.4232(0.955)
) | 0.5627(0.956) | 0.4868(0.941) | 0.4483(0.947) | 0.4243(0.953) | 0.4128(0.942) | 0.4068(0.943)
r3) | 0.5602(0.958) | 0.4778(0.955) | 0.4563(0.941) | 0.4399(0.945) | 0.4369(0.955) | 0.4225(0.947)
)
)
)

T, 0.5636(0.956) | 0.4681(0.946) | 0.4571(0.954) | 0.4566(0.942) | 0.4480(0.950) | 0.4464(0.949)

i, 0.5574(0.953) | 0.4889(0.951) | 0.4581(0.950) | 0.4335(0.953) | 0.4314(0.949) | 0.4261(0.948)

r,r3 0.5462(0.952) | 0.4825(0.948) | 0.4547(0.945) | 0.4325(0.947) | 0.4318(0.942) | 0.3901(0.940)
(3]

C.S Boot-t Boot-p MLE Bayes

Priorl Prior2 Prior3
( ) | 0.5562(0.958) | 0.4770(0.957) | 0.4459(0.942) | 0.4445(0.951) | 0.4430(0.952) | 0.4233(0.951)
( ) | 0.5468(0.956) | 0.4806(0.954) | 0.4478(0.947) | 0.4230(0.943) | 0.4141(0.953) | 0.4137(0.940)
(r3,r3) | 0.5557(0.954) | 0.4824(0.952) | 0.4545(0.942) | 0.4337(0.952) | 0.4325(0.950) | 0.4235(0.953)
(ri,m)
(r1,r3)
(r2,r3)

0.5687(0.952) | 0.4874(0.943) | 0.4562(0.946) | 0.4518(0.951) | 0.4460(0.945) | 0.4424(0.946)
0.5483(0.957) | 0.4942(0.950) | 0.4570(0.948) | 0.4429(0.950) | 0.4329(0.949) | 0.4252(0.950)
0.5672(0.958) | 0.4879(0.940) | 0.4399(0.953) | 0.4341(0.951) | 0.4338(0.946) | 0.4134(0.945)

confidence or credible lengths, and the corresponding coverage percentages. The
nominal level for the confidence intervals or the credible intervals is 0.95 in each
case. From Table III, we observe that the bootstrap confidence intervals are wider
than the other confidence interval. We also observe that the HPD intervals provide
the smallest average confidence credible lengths for different censoring schemes, and
for different parameter values. The asymptotic confidence interval MLE is the
second best confidence intervals. It is also observed that Boot-p confidence intervals
perform better than the Boot-t confidence intervals. From Table III, it is evident that
the Boot-t credible intervals provide the most coverage probabilities in most cases
considered. Comparing the two HPD credible intervals based on two informative
gamma priors clearly shows that the HPD credible intervals based on prior 3 perform
smaller than the HPD credible interval based on prior 2. The HPD credible intervals
based on both priors perform smaller than the ones obtained using the
non-informative prior 1.

Now we consider the case when the common scale parameter A is known. In this
case, we obtain the MLE and UMVUE of R using (10) and (9), respectively. Since

we have no prior information on R, we prefer to use the non-informative priori.e a; =
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by = ap = by =0 to compute Bayes estimates. Applying the same prior distributions,
the Lindley approximation Bayes estimates are computed using (12). Also, using
(13) the Bayesian interval based on Lindley approximation is obtained. We report
the average biases and MSEs based on 1000 replications. The results are reported in
Table IV. From Table IV, comparing the MLE, UMVUE and Bayes estimator, we
observe that MLE provides the smallest biases and MSEs and the UMVUE:s are the

best second estimators.

Table IV. Biases and MSE of the MLE, UMVUE and Bayes estimators of R and average confidence length

and coverage percentage when A is known.

A=05
C.S MLE UMVUE Lindley Lindley
|Bias| MSE | |Bias| MSE | |Bias| MSE
(r1,r1) | 0.0002 0.0112 | 0.0012 0.0116 | 0.0022  0.0135 0.4117(0.951)
(r2,r2) | 0.0001 0.0117 | 0.0008 0.0124 | 0.0043  0.0125 0.4171(0.952)
(r3,r3) | 0.0020 0.0112 | 0.0040 0.0115 | 0.0045 0.0131 0.4296(0.952)
(r1,r2) | 0.0019 0.0124 | 0.0032 0.0125 | 0.0056 0.0135 0.4248(0.947)
(r1,r3) | 0.0016 0.0114 | 0.0019 0.0124 | 0.0023  0.0125 0.4257(0.943)
(r2,r3) | 0.0005 0.0117 | 0.0007 0.0124 | 0.0051  0.0133 0.4242(0.946)
A=15
C.S MLE Lindley UMVUE Lindley
|Bias| MSE | |Bias| MSE | |Bias| MSE
(r1,r1) | 0.0006 0.0111 | 0.0049 0.0117 | 0.0090 0.0129 0.4136(0.951)
(r2,r2) | 0.0026 0.0111 | 0.0027 0.0124 | 0.0036 0.0125 0.3975(0.942)
(r3,r3) | 0.0012 0.0112 | 0.0036 0.0118 | 0.0081  0.0122 0.4054(0.944)
(r1,r2) | 0.0014 0.0118 | 0.0040 0.0120 | 0.0066 0.0128 0.4197(0.949)
(r1,r3) | 0.0009 0.0117 | 0.0027 0.0119 | 0.0043  0.0133 0.4080(0.947)
(r2,r3) | 0.0006 0.0119 | 0.0015 0.0121 | 0.0036 0.0137 0.4076(0.950)
A=25
C.S MLE Lindley UMVUE Lindley
|Bias| MSE | |Bias| MSE | |Bias| MSE
(ri,r1) | 0.0009 0.0112 | 0.0024 0.0116 | 0.0026 0.0130 0.4054(0.949)
(r2,r2) | 0.0002 0.0119 | 0.0010 0.0120 | 0.0018 0.0123 0.4088(0.952)
(r3,r3) | 0.0009 0.0115 | 0.0017 0.0127 | 0.0067 0.0128 0.4117(0.946)
(r1,r2) | 0.0001 0.0118 | 0.0017 0.0119 | 0.0033  0.0131 0.4194(0.947)
(r1,r3) | 0.0016 0.0109 | 0.0042 0.0110 | 0.0048  0.0126 0.4096(0.946)
(r2,r3) | 0.0016 0.0119 | 0.0040 0.0121 | 0.0051  0.0132 0.4155(0.950)
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6.2.  Data analysis

Here we present a data analysis of the strength data reported by Badar and Priest
[4]. This data, represent the strength measured in GPA for single carbon fibers, and
impregnated 1000-carbon fiber tows. These data have been used previously by Ragab
and Kundu [21], Kundu and Gupta [17] and Kundu and Raqab [18]. The data are
presented in Table V.

First, it was checked whether IERD can be used or not to analyze the two data sets,
separately. The estimated parameters, for the first data set, are
a = 74.6415, 2 = 276710 and for the second data set are
B = 16.6928, A = 27.7890. The Kolmogorov-Smirnov distances between the
empirical distribution functions and the fitted distribution functions are 0.0826 and
0.0944 and corresponding p-values are 0.8623 and 0.6590, respectively. Also, for the
data set 1 and 2, the PP-plots are given in Figure 2. Based on the p-values, one can

not reject the hypothesis that the data are coming from the above distribution.
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Fig. 2. The PP-plots for the first (left) and second (right) data set

Based on the complete data set, the proposed iterative procedure is used to compute
the MLE. We plot the profile log-likelihood function of A in Figure 3. Since it is an
unimodal function, it has the unique maximum. So, we start the iterative procedure
with the initial values of A at such maximum 27.730. By this initial value, MLEs
of A, a and B are (27.731,75.2858,16.6029) and the MLE of R is 0.8193. Also, the
corresponding 95% confidence interval become (0.7556,0.8829). The Bayes estimate
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of R with respect to improper priors is 0.8170 and the associated 95% credible interval

is (0.7597,0.8691).

Profile log-likelihood

Fig. 3.
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The profile log-likelihood function of A for the real data

For illustrative purposes, two different progressively censored samples have been

generated from the above data sets. The generated data and corresponding censored

schemes have been presented in Table V. Based on Scheme 1, the MLE (by using the

profile log-likelihood function) and Bayes estimates are 0.8972 and 0.8737,

respectively. The associated 95% asymptotic confidence interval and the credible
interval are (0.8001,0.9714) and (0.7984,0.9593), respectively. Similarly, based on
Scheme 2, the MLE and Bayes estimates are 0.9098 and 0.8968, respectively. The
associated 95% asymptotic confidence interval and the credible interval are
(0.7776,0.9697) and (0.8033,0.9903), respectively. Clearly, the estimates obtained
using Scheme 1, are closer to the estimates obtained by complete sample.
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Table V. Real Data.

Real data set

Data Set 1 (X)

1.865 1944 1958 1966 1997 2.006 2021 2.027 2.055 2063 2.098
2.140  2.179 2224 2240 2253 2270 2272 2274 2301 2301 2.359
2382 2382 2426 2434 2435 2478 2490 2511 2514 2535 2.554
2566 2570 2586 2.629 2.633 2.642 2648 2.684 2.697 2726 2.770
2773  2.800 2.809 2818 2.821 2.848 2880 2954 3.012

Data Set 2 (Y)

1.901 2.132 2203 2228 2257 2350 2361 2396 2397 2445 2454
2474 2518 2522 2525 2532 2575 2614 2616 2618 2.624 2.659
2.675 2738 2740 2.856 2917 2928 2937 2937 2977 299  3.030
3.125 3.139  3.145 3220 3.223 3235 3243 3264 3272 3294 3.332
3346 3377 3408 3435 3493 3501 3.537 3554 3562 3.628 3.852
3.871 3.8386 3971 4.024 4.027

Censored schemes and the corresponding data
Scheme 1: R = [4,4,4,4,4,4,4,4,4,7] , S = [4,4,4,4,4,4,4,4,4,14]
i,j 1 2 3 4 5 6 7 8 9 10
X 1.966 2.055 2224 2274 2382 2490 2566 2642 2770 2.821
Vi 2454 2532 2624 2856 2977 3.145 3264 3377 3.537 3.871

Scheme 2: R = [19,0,5,0,6,0,16] , S = [19,0,5,0,6,0,23]
i 1 2 3 4 5 6 7
x 1966 2021 2027 2098 2880 2954 3012
yj 3628 3852 3871 3886 3971 4024 4.027

7. CONCLUSIONS

In this paper, the estimation of the stress-strength parameter for IERD under
progressive Type-II censoring has been considered. When the scale parameter is
unknown different methods for estimating R = P(X < Y) are used. It is observed that
the MLE of R can not be obtained in the closed form, therefore, an iterative
procedure is applied to compute it. Also, we obtained the exact confidence interval of
R. Moreover, we use the observed Fisher information matrix to obtain the asymptotic
confidence interval. It is observed that even when the sample size is quite small the
asymptotic confidence intervals work quite well. Also, two bootstrap confidence
intervals were proposed that their performance is quite satisfactory. The Bayes
estimate of R and the corresponding credible interval can be obtained using the Gibbs
sampling technique. It is observed that the MLE compares very well with the Bayes
estimator in terms of biases and MSEs. Moreover, when the scale parameter is
known, MLE, UMVUE and different Bayes estimators are computed. We observe
that MLE provides the smallest biases and MSEs and the UMVUEs are the best
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second estimators. Also, the Lindley approximation behaves quite differently from
the other. Monte Carlo simulations and data analysis are performed to check the
performances of the different estimators.

This work has the potential to be applied in the context of reliability theory and
censored data analysis. Further researches can be done in this direction by extending
the progressive censored to the progressive hybrid and adaptive progressive hybrid
censored IERD.
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