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Abstract

Based on progressively Type-II censored samples, this paper deals with the estimation of R = P(X < Y )
when X and Y come from two independent inverted exponentiated rayleigh distributions with different
shape parameters, but having the same scale parameter. The maximum likelihood estimator and UMVUE
of R is obtained. Different confidence intervals are presented. The Bayes estimator of R and the
corresponding credible interval using the Gibbs sampling technique are also proposed. Monte Carlo
simulations are performed to compare the performances of the different methods. One illustrative example
is provided to demonstrate the application of the proposed method.

Keywords: Bayesian estimator, Confidence interval, Maximum likelihood estimator, Monte Carlo
simulation, Progressive Type-II censoring, Inverted exponentiated rayleigh distribution.

1. INTRODUCTION

In reliability analysis, a general problem of interest is inference of the
stress-strength parameter R = P(X < Y ). The stress X and the strength Y are treated
as random variables. The system fails, if at any time the applied stress is greater than
its strength. Estimation of the stress-strength parameter has received considerable
attention in the statistical literature, starting with the pioneering work of Birnbaum
[6]. He provided an interesting connection between the classical Mann-Whitney
statistic and the stress-strength model. Since then, work has been accomplished on
the estimation and inference of the stress-strength parameter for different
distributions from the frequentist and Bayesian points of view. The monograph by
Kotz et al. [14] provided a best review of the development of this model till that time.
For some of the recent work on the stress-strength model can be obtained in Kundu
and Gupta [16; 17], Raqab and Kundu [21], Krishnamoorthy et al. [15], Raqab et al.
[22], Kundu and Raqab [18], Lio and Tsai [20].

Type-I and Type-II censoring schemes are the two most popular censoring
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schemes which are used in practice. In Type-I censoring, the test is terminated when
a pre-determined time on test has been reached and in Type-II censoring, the test is
terminated when a pre-chosen number of failures has been observed. Unfortunately
none of these censoring schemes allows the removal of active units during the
experiment. Progressive censoring scheme allows the experimenter to remove active
units during the experiment. Combining the Type-II censoring and progressive
censoring schemes, the progressive Type-II censoring is introduced. Among various
censoring schemes, the Type-II progressive censoring scheme has become very
popular one in the last decade. It can be described as follows: Suppose N units are
placed on a life test and the experimenter decides before hand the quantity n, the
number of failures to be observed. Now at the time of the first failure, R1 of the
remaining N− 1 surviving units are randomly removed from the experiment. At the
time of the second failure, R2 of the remaining N − R1 − 2 units are randomly
removed from the experiment. Finally, at the time of the n-th failure, all the
remaining surviving units Rn = N − n − R1 − . . . − Rn−1 are removed from the
experiment. Therefore, a progressive Type-II censoring scheme consists of n, and
(R1, . . . ,Rn), such that R1 + . . .+Rn = N−n. It is clear that this scheme includes the
conventional Type-II right censoring scheme (when R1 = . . . = Rn−1 = 0 and
Rn = N− n) and complete sampling scheme (when N = n and R1 = . . . = Rn = 0).
For further details on progressively censoring and relevant references, the reader may
refer to the book by Balakrishnan and Aggarwala [5].

Based on progressively Type-II censored samples, this paper deals with inference
for the stress-strength reliability R = P(X < Y ) when X and Y are two independent
inverted exponentiated rayleigh distributions with different shape parameters, but
having the same scale parameter. For some of the recent work on the stress-strength
model based on progressive censored sample can be obtained in Saracoglu et al. [24],
Asgharzadeh et al. [3] and Shoaee and Khorram [25]. The inverted exponentiated
rayleigh distribution (IERD) with the shape and scale parameters α and λ ,
respectively, has the probability density function, cumulative distribution function
and failure rate function as:

f (x) =
2αλ

x3 e−λ/x2
(1− e−λ/x2

)α−1, x > 0, α,λ > 0, (1)

F(x) = 1− (1− e−λ/x2
)α , x > 0, α,λ > 0,

H(x) =
2αλ

x3(eλ/x2 −1)
, x > 0, α,λ > 0,
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respectively. From now on a IERD with the pdf (1) will be denoted by IER(α,λ ). The
density function and failure rate function of IERD are shown in Figure 1. The failure
rate function has a non-monotone unimodal shape. In many practical situations, it
is known that the data are coming from a distribution which has a non-monotone
failure rate function. Therefore, if the empirical study suggests that the failure rate
function of the underlying distribution is non-monotone and it has a unimodal shape,
then the IERD may be used to analyse such data sets. In fact, failure rate of the
IERD show similar behavior to some well known lifetime models, namely lognormal,
inverse Weibull and generalized inverted exponential distribution. So in this respect
IERD can be considered as an alternative model to these distributions.

Fig. 1. Shape of density function (right) and failure rate function (left) of IERD when λ = 2
.

The IERD is a particular member of a general class of inverse exponentiated
distribution (see Ghitany et al. [11]). This class includes inverted exponentiated
exponential distribution and inverted exponentiated Pareto distribution. Abouammoh
and Alshingiti [1] have considered parameter and reliability estimation for inverted
exponentiated exponential distribution. They derived many distributional properties
and reliability characteristics of inverted exponentiated exponential distribution in a
complete sample case. To the best of our knowledge, the class of inverse
exponentiated distribution has not received much attention for censored data.
Recently, Rastogi and Tripathi [23] considered the estimation for an IERD under type
II progressive censoring. We study the inference of the stress-strength parameter
R = P(X < Y ) when X and Y are independent inverted exponentiated rayleigh

JAMSI, 13 (2017), No. 1 51 

 



random variables. It is further assumed that we observe progressively Type-II
censored samples from both distributions. We can formulate the problem as follows:
It is assumed that X and Y are independent inverted exponentiated rayleigh random
variables with common scale parameter λ and shape parameters α and β ,
respectively. There are two progressive censoring schemes, {N,n,R1,R2, . . . ,Rn} and
{M,m,S1,S2, . . . ,Sm} for X and Y , respectively. We observe progressively censored
sample {X1:n:N , . . . ,Xn:n:N} from X and {Y1:m:M, . . . ,Ym:m:M} from Y based on the
above progressive censored samples, our problem is to estimate
R = P(X < Y ) = α

α+β
(see, e.g. [24], [25]).

The layout of this paper is as follows: In Section 2, we discuss the MLE of R. It
is observed that the MLE can be achieved by solving a non-linear equation and it can
be obtained using an iterative procedure. The uniformly minimum variance unbiased
estimator (UMVUE) of R is derived in Section 3. The exact, asymptotic and two
bootstrap confidence intervals of R are presented in Section 4. Bayes estimate and
the associated credible interval are discussed in Section 5. Simulation results and data
analysis are presented in Sections 6. Finally, we conclude the paper in Section 7.

2. MAXIMUM LIKELIHOOD ESTIMATION OF R

Let X ∼ IER(α,λ ) and Y ∼ IER(β ,λ ) be independent random variables. Then
it can be easily seen that the reliability function is R = P(X < Y ) = α

α+β
. Our interest

is in estimating R based on progressive Type-II censored data on both variables.

To derive the MLE of R, first we obtain the MLEs of α , β and λ . Let
{X1:n:N , . . . ,Xn:n:N} be a progressively censored sample from IER(α,λ ) under the
progressive censoring scheme
{N,n,R1,R2, . . . ,Rn}. Similarly, let {Y1:m:M, . . . ,Ym:m:M} be a progressively censored
sample from IER(β ,λ ) under the progressive censoring scheme
{M,m,S1,S2, . . . ,Sm}. Therefore, from [24] the likelihood function of α , β and λ is
given by

L(α,β ,λ ) =

[
c1

n

∏
i=1

f (xi)[1−F(xi)]
Ri

]
×
[

c2

m

∏
j=1

f (y j)[1−F(y j)]
S j

]
,

where

c1 = N(N−R1−1) · · ·(N−R1−·· ·−Rn−1−n+1),

c2 = M(M−S1−1) · · ·(M−S1−·· ·−Sm−1−m+1).
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The likelihood function of the observed data as follows:

L(data|α,β ,λ ) = c1c22n+m
α

n
β

m
λ

n+m

(
n

∏
i=1

1
x3

i

)(
m

∏
j=1

1
y3

j

)
exp

{
−λ

(
n

∑
i=1

1
x2

i
+

m

∑
j=1

1
y2

j

)}

×

(
n

∏
i=1

(
1− e−λ/x2

i

)α(Ri+1)−1
)(

m

∏
j=1

(
1− e−λ/y2

j

)β (S j+1)−1
)
.

(2)

From (2), the log-likelihood function is

`(α,β ,λ ) = Constant+n log(α)+m log(β )+(n+m) log(λ )−λ

(
n

∑
i=1

1
x2

i
+

m

∑
j=1

1
y2

j

)

−3

(
n

∑
i=1

log(xi)+
m

∑
j=1

log(y j)

)
+

n

∑
i=1

(
α(Ri +1)−1

)
log(1− e−λ/x2

i )

+
m

∑
j=1

(
β (S j +1)−1

)
log(1− e−λ/y2

j ).

So, the MLEs of α , β and λ , say α̂ , β̂ and λ̂ , respectively, can be obtained as the
solution of

∂`

∂α
=

n
α
+

n

∑
i=1

(Ri +1) log(1− e−λ/x2
i ) = 0, (3)

∂`

∂β
=

m
β
+

m

∑
j=1

(S j +1) log(1− e−λ/y2
j ) = 0, (4)

∂`

∂λ
=

n+m
λ
−

(
n

∑
i=1

1
x2

i
+

m

∑
j=1

1
y2

j

)
+

n

∑
i=1

(
α(Ri +1)−1

)
e−λ/x2

i

x2
i (1− e−λ/x2

i )
(5)

+
m

∑
j=1

(
β (S j +1)−1

)
e−λ/y2

j

y2
j(1− e−λ/y2

j )
.

From (3) and (4), we obtain

α̂(λ ) =− n

∑
n
i=1(Ri +1) log(1− e−λ/x2

i )
, β̂ (λ ) =− m

∑
m
j=1(S j +1) log(1− e−λ/y2

j )
,
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and λ̂ can be found as the solution of the non-linear equation k(λ ) = λ , where

k(λ ) = (n+m)

{
n

∑
i=1

1
x2

i

(
1−

(
α(Ri +1)−1

)
e−λ/x2

i

1− e−λ/x2
i

)

+
m

∑
j=1

1
y2

j

(
1−

(
β (S j +1)−1

)
e−λ/y2

j

1− e−λ/y2
j

)}−1

.

Since, λ̂ is a fixed point solution of the above non-linear equation, therefore, it can be
resulted using an iterative scheme as k(λ( j)) = λ( j+1), where λ( j) is the j-th iterate of
λ̂ . The iteration procedure should be stopped when |λ( j)−λ( j+1)| becomes sufficiently
small. Once we obtain λ̂ , then α̂ and β̂ can be resulted. Therefore, the MLE of R

becomes

R̂ =
α̂

α̂ + β̂

. (6)

3. UMVUE OF R

In this section, the UMVUE of R is derived. Let {X1:n:N , . . . ,Xn:n:N} be a
progressively censored sample from IER(α,λ ) under the progressive censoring
scheme {N,n,R1, . . . ,Rn}. Similarly, let {Y1:m:M, . . . ,Ym:m:M} be a progressively
censored sample from IER(β ,λ ) under the progressive censoring scheme
{M,m,S1, . . . ,Sm}. The joint pdf of X1:n:N , . . . ,Xn:n:N is

fX1:n:N ,...,Xn:n:N (x1, . . . ,xn) = c1(2αλ )n

(
n

∏
i=1

1
x3

i

)(
n

∏
i=1

1

1− e−λ/x2
i

)
exp

{
−λ

n

∑
i=1

1
x2

i

}
(7)

× exp

{
n

∑
i=1

α(Ri +1) log(1− e−λ/x2
i )

}
,

where 0 < x1 < .. . < xn < ∞ (see [5], for more details). It is immediate from (7) that
U =−∑

n
i=1(Ri +1) log(1− e−λ/x2

i ) is the complete sufficient statistics for α when λ

is known. It is easy to see that

X∗i:n:N =− log(1− e−λ/X2
i:n:N ), i = 1, . . . ,n,
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be a progressive censored sample from an exponential distribution with mean α−1.
Let

Z1 = NX∗1:n:N ,

Z2 = (N−R1−1)(X∗2:n:N−X∗1:n:N),

...

Zn = (N−R1− . . .−Rn−1−n+1)(X∗n:n:N−X∗n−1:n:N).

From Cao and Cheng [7], we get that Z1, . . . ,Zn are independent and identically
distributed exponential random variables with mean α−1. Moreover
U = ∑

n
i=1 Zi = ∑

n
i=1(Ri +1)X∗i:n:N has a gamma distribution with the shape parameter

n and the scale parameter α , in symbols U ∼ Γ(n,α), i.e. it has the pdf

fU (u) =
αn

Γ(n)
un−1e−αu, u > 0. (8)

LEMMA 1. Let Y ∗j:m:M =− log(1−e−λ/Y 2
j:m:M ) and V = ∑

m
j=1(S j +1)Y ∗j:m:M .The

conditional pdf of X∗1:n:N given U = u, is

fX∗1:n:N |U=u(x) = N(n−1)
(u−Nx)n−2

un−1 , 0 < x < u/N,

and the conditional pdf of Y ∗1:m:M given V = v, is

fY ∗1:m:M |V=v(y) = M(m−1)
(v−My)m−2

vm−1 , 0 < y < v/M.

PROOF. We will prove the first part, second part follows along the same line.
Note that

fX∗1:n:N |U=u(x) =
fX∗1:n:N ,U

(x,u)

fU (u)
,

where fX∗1:n:N ,U
(x,u) is the the joint pdf of X∗1:n:N and U and fU (u) is the pdf of U . It

is obvious that U is a complete sufficient statistics for α when λ is known. Suppose
we denote W = ∑

n
i=2 Zi then clearly W and Z1 are independent. The joint pdf of

X∗1:n:N and U can be easily obtained from the joint pdf of W and Z1, by using the the
transformation Z1 = NX∗1:n:N and U =W +Z1. Finally the result is found using (8). �

THEOREM 1. Based on the complete sufficient statistics U and V , as defined

before for α and β respectively, the UMVUE of R, say R̃, for n ≥ 2, and m ≥ 2, can
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be expressed as follows:

R̃ =


1−∑

n−1
k=0(−1)k( v

u )
k (n−1

k )
(m+k−1

k )
if v < u,

∑
m−1
k=0 (−1)k( u

v )
k (m−1

k )
(n+k−1

k )
if v > u.

(9)

PROOF. Observe that X∗1:n:N and Y ∗1:m:M follow an exponential distribution with
mean (Nα)−1 and (Mβ )−1, respectively, therefore,

φ(X∗1 ,Y
∗
1 ) =


1 if MY ∗1:m:M > NX∗1:n:N ,

0 if MY ∗1:m:M < NX∗1:n:N ,

is an unbiased estimator of R. Therefore,

R̃ = E[φ(X∗1 ,Y
∗
1 )|U = u,V = v] =

∫∫
A

fX∗1 |U=u(x) fY ∗1 |V=v(y)dxdy,

where A = {(x,y) : 0 < x < u/N,0 < y < v/M,Nx < My}, fX∗1 |U=u(x) and fY ∗1 |V=v(y)

are same as defined in Lemma 1. For v < u

R̃ =
N(n−1)

un−1
M(m−1)

vm−1

∫ v/M

0

∫ My/N

0
(u−Nx)n−2(v−My)m−2dxdy

= 1− M(m−1)
un−1vm−1

∫ v/M

0
(v−My)m−2(u−My)n−1dy {Put :

My
v

= t}

= 1− (m−1)
∫ 1

0
(1− t)m−2(1− vt

u
)n−1dt

= 1− (m−1)
∫ 1

0
(1− t)m−2

n−1

∑
k=0

(−1)k
(

n−1
k

)
(

vt
u
)kdt

= 1−
n−1

∑
k=0

(−1)k(
v
u
)k

(n−1
k

)(m+k−1
k

) .
Similarly for v > u, R̃ = ∑

m−1
k=0 (−1)k( u

v )
k (m−1

k )
(n+k−1

k )
. �

56 

 
A. Kohansal



4. CONFIDENCE INTERVALS

4.1. Exact confidence interval

Let {X1:n:N , . . . ,Xn:n:N} be a progressively censored sample from IER(α,λ )

under the progressive censoring scheme {N,n,R1, . . . ,Rn}. Similarly, let
{Y1:m:M, . . . ,Ym:m:M} be a progressively censored sample from IER(β ,λ ) under the
progressive censoring scheme {M,m,S1, . . . ,Sm}. Let X∗∗i:n:N =−α log(1−e−λ/X2

i:n:N ),

i = 1, · · · ,n (or Y ∗∗j:m:M = −β log(1− e−λ/Y 2
j:m:M ), j = 1, · · · ,m). It is easy to see that

X∗∗i:n:N , i = 1, · · · ,n (or Y ∗∗j:m:M, j = 1, · · · ,m) is a progressive censoring sample from a
standard exponential distribution. Let us consider the following transformations:

Z∗1 = NX∗∗1:n:N , Z∗i = N−
i−1

∑
k=1

(Rk +1)(X∗∗i:n:N−X∗∗i−1:n:N), i = 2, · · · ,n,

D∗1 = MY ∗∗1:m:M, D∗j = M−
j−1

∑
k=1

(Sk +1)(Y ∗∗j:m:M−Y ∗∗j−1:m:M), j = 2, · · · ,m.

From Cao and Cheng [7], we get that Z∗1 , · · · ,Z∗n (or D∗1, · · · ,D∗m) are independent and
identically distribution as standard exponential.

Let VX = 2Z∗1 and UX = 2∑
n
i=2 Z∗i (or VY = 2D∗1 and UY = 2∑

m
j=2 D∗j ). Then VX and

UX (or VY and UY ) are independent random variables and

VX ∼ χ
2
(2) and UX ∼ χ

2
(2n−2) (or VY ∼ χ

2
(2) and UY ∼ χ

2
(2m−2)).

LEMMA 2. Let TX (λ ) =
UX

(n−1)VX
, T1 =UX +VX , TY (λ ) =

UY
(m−1)VY

and T2 =UY +

VY . We can find that

TX (λ )∼ F(2n−2,2), T1 ∼ χ
2(2n), TY (λ )∼ F(2m−2,2) and T2 ∼ χ

2(2m).

It is obvious that TX (λ ) and TY (λ ) are independent. Furthermore, Johnson et al. [13]

indicated that TX (λ ) and T1 (or TY (λ ) and T2) are independent. �

LEMMA 3. TX (λ ) (or TY (λ )) is strictly decreasing in λ .

PROOF. Let ξ (λ ) = log(1−e−λ/a2
i )

log(1−e−λ/a2
1 )

: 0 < a1 < ai , i = 2, . . . ,n. This function is
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strictly decreasing in λ since the first derivative of ξ (λ ) is

dξ (λ )

dλ
=

1

log2(1− e−λ/a2
1)

[
log(1− e−λ/a2

1)
e−λ/a2

i

a2
i (1− e−λ/a2

i )
− log(1− e−λ/a2

i )
e−λ/a2

1

a2
1(1− e−λ/a2

1)

]

=
−1

log2(1− e−λ/a2
1)

[
log(

1

1− e−λ/a2
1
)

e−λ/a2
i

a2
i (1− e−λ/a2

i )
− log(

1

1− e−λ/a2
i
)

e−λ/a2
1

a2
1(1− e−λ/a2

1)

]

<
−1

log2(1− e−λ/a2
1)

[
log(

1

1− e−λ/a2
i
)

e−λ/a2
i

a2
1(1− e−λ/a2

i )
− log(

1

1− e−λ/a2
i
)

e−λ/a2
1

a2
1(1− e−λ/a2

1)

]

=
−1

a2
1 log2(1− e−λ/a2

1)
. log(

1

1− e−λ/a2
i
)

[
e−λ/a2

i

1− e−λ/a2
i
− e−λ/a2

1

1− e−λ/a2
1

]
< 0.

Moreover, after simplifying TX (λ ), this expression becomes

TX (λ ) =
UX

(n−1)VX
=

∑
n
i=1 Z∗i −Z∗1
(n−1)Z∗1

=
1

N(n−1)

n

∑
i=1

(Ri +1)
log(1− e−λ/X2

i:n:N )

log(1− e−λ/X2
1:n:N )

− 1
n−1

.

Hence, it is easy to see that TX (λ ) is a strictly decreasing function of λ .

LEMMA 4. When λ is known, the MLE of R can be obtained as

R̂ML =
1

1+ mT1/α

nT2/β

. (10)

It is obvious that T1 and T2 are independent. Alternatively, TX (λ ), TY (λ ) and R̂ML are

independent. Also, by using Lemma 2, we have

R̂ML =
1

1+ β

α
F
, or F =

R
1−R

.
1− R̂

R̂
,

where F has Fisher distribution with (2n,2m) degrees of freedom, in symbols F ∼
F(2n,2m).

THEOREM 2. Suppose that {X1:n:N , . . . ,Xn:n:N} be a progressively censored

sample from IER(α,λ ) and {Y1:m:M, . . . ,Ym:m:M} be a progressively censored sample

from IER(β ,λ ). Then
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(i). for any 0 < γ < 1,(
max

{
T−1

X (F(1+√1−γ)/2(2n−2,2)),T−1
Y (F(1+√1−γ)/2(2m−2,2))

}
,

min
{

T−1
X (F(1−√1−γ)/2(2n−2,2)),T−1

Y (F(1−√1−γ)/2(2m−2,2))
})

is a 100(1− γ)% confidence interval for λ , where Fγ(p,q) is 100γ-th percentile of

F(p,q).

(ii). for any 0 < γ < 1, the following inequalities determine a 100(1− γ)% joint

confidence region for (λ ,R),



max
{

T−1
X (F(1+ 4√1−γ)/2(2n−2,2)),T−1

Y (F(1+ 4√1−γ)/2(2m−2,2))
}
≤ λ

≤min
{

T−1
X (F(1− 4√1−γ)/2(2n−2,2)),T−1

Y (F(1− 4√1−γ)/2(2m−2,2))
}
,

1

1+ 1−R̂ML
R̂ML

F1−(1−
√

1−γ)/2(2m,2n)
≤ R≤ 1

1+ 1−R̂ML
R̂ML

F1−(1+
√

1−γ)/2(2m,2n)
.

PROOF.

(i). By using Lemma 2 and Lemma 3, we have

1− γ =
√

1− γ.
√

1− γ

= P
[
F(1−√1−γ)/2(2n−2,2)≤ TX (λ )≤ F(1+√1−γ)/2(2n−2,2)

]
×P
[
F(1−√1−γ)/2(2m−2,2)≤ TY (λ )≤ F(1+√1−γ)/2(2m−2,2)

]
= P

[
F(1−√1−γ)/2(2n−2,2)≤ TX (λ )≤ F(1+√1−γ)/2(2n−2,2),

F(1−√1−γ)/2(2m−2,2)≤ TY (λ )≤ F(1+√1−γ)/2(2m−2,2)
]

= P
[
T−1

X (F(1+√1−γ)/2(2n−2,2))≤ λ ≤ T−1
X (F(1−√1−γ)/2(2n−2,2)),

T−1
Y (F(1+√1−γ)/2(2m−2,2))≤ λ ≤ T−1

Y (F(1−√1−γ)/2(2m−2,2))
]

= P
[

max
{

T−1
X (F(1+√1−γ)/2(2n−2,2)),T−1

Y (F(1+√1−γ)/2(2m−2,2))
}
≤ λ

≤min
{

T−1
X (F(1−√1−γ)/2(2n−2,2)),T−1

Y (F(1−√1−γ)/2(2m−2,2))
}]

.
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(ii). By using Lemma 2, Lemma 3 and Lemma 4, we have

1− γ = 4
√

1− γ. 4
√

1− γ.
√

1− γ

= P
[
F(1− 4√1−γ)/2(2n−2,2)≤ TX (λ )≤ F(1+ 4√1−γ)/2(2n−2,2)

]
×P
[
F(1− 4√1−γ)/2(2m−2,2)≤ TY (λ )≤ F(1+ 4√1−γ)/2(2m−2,2)

]
×P
[
F(1−√1−γ)/2(2n,2m)≤ F ≤ F(1+√1−γ)/2(2n,2m)

]
= P

[
F(1− 4√1−γ)/2(2n−2,2)≤ TX (λ )≤ F(1+ 4√1−γ)/2(2n−2,2),

F(1− 4√1−γ)/2(2m−2,2)≤ TY (λ )≤ F(1+ 4√1−γ)/2(2m−2,2),

F(1−√1−γ)/2(2n,2m)≤ R
1−R

.
1− R̂ML

R̂ML
≤ F(1+√1−γ)/2(2n,2m)

]
= P

[
T−1

X (F(1+ 4√1−γ)/2(2n−2,2))≤ λ ≤ T−1
X (F(1− 4√1−γ)/2(2n−2,2)),

T−1
Y (F(1+ 4√1−γ)/2(2m−2,2))≤ λ ≤ T−1

Y (F(1− 4√1−γ)/2(2m−2,2)),

F1−(1+
√

1−γ)/2(2m,2n)≤ 1−R
R

.
R̂ML

1− R̂ML
≤ F1−(1−

√
1−γ)/2(2m,2n)

]
= P

[
max

{
T−1

X (F(1+ 4√1−γ)/2(2n−2,2)),T−1
Y (F(1+ 4√1−γ)/2(2m−2,2))

}
≤ λ

≤min
{

T−1
X (F(1− 4√1−γ)/2(2n−2,2)),T−1

Y (F(1− 4√1−γ)/2(2m−2,2))
}

1

1+ 1−R̂ML
R̂ML

F1−(1−
√

1−γ)/2(2m,2n)
≤ R≤ 1

1+ 1−R̂ML
R̂ML

F1−(1+
√

1−γ)/2(2m,2n)

]
.

4.2. Asymptotic confidence interval

In this subsection, the asymptotic distribution of θ̂ = (α̂, β̂ , λ̂ ) and therefore the
asymptotic distribution of R̂ are obtained. We denote the expected Fisher information
matrix of θ = (α,β ,λ ) as J(θ) = −E(I(θ)), where I(θ) = [Ii j], i, j = 1, 2, 3 is
the observed information matrix. The observed Fisher information matrix has second
partial derivatives of log-likelihood function as the entries, which can be obtained as
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follows:

I11 =
∂ 2`

∂α2 =− n
α2 , I22 =

∂ 2`

∂β 2 =− m
β 2 , I12 =

∂ 2`

∂α∂β
= 0 = I21,

I13 =
∂ 2`

∂α∂λ
=

n

∑
i=1

(Ri +1)e−λ/x2
i

x2
i (1− e−λ/x2

i )
= I31,

I23 =
∂ 2`

∂β∂λ
=

m

∑
j=1

(S j +1)e−λ/y2
j

y2
j(1− e−λ/y2

j )
= I32,

I33 =
∂ 2`

∂λ 2 =−n+m
λ 2 −

n

∑
i=1

(
α(Ri +1)−1

)
e−λ/x2

i

x4
i (1− e−λ/x2

i )2
−

m

∑
j=1

(
β (S j +1)−1

)
e−λ/y2

j

y4
j(1− e−λ/y2

j )2
.

LEMMA 5. Suppose that {X1:n:N , . . . ,Xn:n:N} be a progressive censored sample

from IER(α,λ ) with censored scheme (N,n,R1, . . . ,Rn). Then

(i). E[ e−λ/X2
i:n:N

X2
i:n:N(1−e−λ/X2

i:n:N )
] =

αCi−1
λ

∑
i
d=1 ai,dβ (2,αηd−1)[ψ(αηd +1)−ψ(2)],

(ii). E[ e−λ/X2
i:n:N

X4
i:n:N(1−e−λ/X2

i:n:N )2
] =

αCi−1
λ 2 ∑

i
d=1 ai,dβ (2,αηd−2){[ψ(2)−ψ(αηd)]

2 +ψ ′(2)−ψ ′(αηd)},

where ψ(x) = d
dx Γ(x), ψ ′(x) = d2

dx2 Γ(x), β (x,y) = Γ(x)Γ(y)
Γ(x+y) , ηd = n−d +1−∑

n
l=d Rl ,

Ci−1 = ∏
i
d=1 ηd , ai,d = ∏

d
l=1,l 6=i

1
ηl−ηi

.

PROOF. It is known that if {X1:n:N , . . . ,Xn:n:N} is a progressive censored sample
from IER(α,λ ), then the pdf of Xi:n:N is (see [5]):

fXi:n:N(x) =Ci−1

i

∑
d=1

ai,d f (x)[1−F(x)]ηd−1

= 2αλCi−1

i

∑
d=1

ai,d
e−λ/x2

x3 (1− e−λ/x2
)αηd−1

(i). Using the table of the integrals from Gradshteyn and Ryzhik [10] (formulae
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4.253(1)), we have

E[
e−λ/X2

i:n:N

X2
i:n:N(1− e−λ/X2

i:n:N )
] =

∫
∞

0

e−λ/x2

x2(1− e−λ/x2
)

fXi:n:N(x)dx

= 2αλCi−1

i

∑
d=1

ai,d

∫
∞

0

e−2λ/x2

x5 (1− e−λ/x2
)αηd−2dx

=−αCi−1

λ

i

∑
d=1

ai,d

∫ 1

0
y log(y)(1− y)αηd−2dy

=
αCi−1

λ

i

∑
d=1

ai,dβ (2,αηd−1)[ψ(αηd +1)−ψ(2)].

(ii). Using the table of the integrals from Gradshteyn and Ryzhik [10] (formulae
4.261(21)), we have

E[
e−λ/X2

i:n:N

X4
i:n:N(1− e−λ/X2

i:n:N )2
] =

∫
∞

0

e−λ/x2

x4(1− e−λ/x2
)2

fXi:n:N(x)dx

= 2αλCi−1

i

∑
d=1

ai,d

∫
∞

0

e−2λ/x2

x7 (1− e−λ/x2
)αηd−3dx

=
αCi−1

λ 2

i

∑
d=1

ai,d

∫ 1

0
y(log(y))2(1− y)αηd−3dy

=
αCi−1

λ 2

i

∑
d=1

ai,dβ (2,αηd−2){[ψ(2)−ψ(αηd)]
2 +ψ

′(2)−ψ
′(αηd)}.

With the previous lemma,

J11 =
n

α2 , J22 =
m
β 2 , J12 = 0 = J21,

J13 =−
α

λ

n

∑
i=1

(Ri +1)Ci−1

i

∑
d=1

ai,dβ (2,αηd−1)[ψ(αηd +1)−ψ(2)] = J31,

J23 =−
β

λ

m

∑
j=1

(S j +1)C j−1

j

∑
d=1

a j,dβ (2,βηd−1)[ψ(βηd +1)−ψ(2)] = J32,

J33 =
α

λ 2

n

∑
i=1

(
α(Ri +1)−1

)
Ci−1

i

∑
d=1

ai,dβ (2,αηd−2){[ψ(2)−ψ(αηd)]
2

+ψ
′(2)−ψ

′(αηd)}+
β

λ 2

m

∑
j=1

(
β (S j +1)−1

)
C j−1

j

∑
d=1

a j,dβ (2,βηd−2)

×{[ψ(2)−ψ(βηd)]
2 +ψ

′(2)−ψ
′(βηd)}+

n+m
λ 2 .
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THEOREM 3. As n→ ∞, m→ ∞, and n/m→ p then

[
√

n(α̂−α)
√

n(β̂ −β )
√

m(λ̂ −λ )]T
D−→ N3(0,A−1(α,β ,λ )),

where A(α,β ,λ ) and A−1(α,β ,λ ) are symmetric matrices and

A(α,β ,λ ) =


J11
n 0 J13√

nm
J22
n

J23√
nm

J33
m

 , A−1(α,β ,λ ) =
1

|A(α,β ,λ )|


b11
nm

b12
nm

b13
n
√

nm
b22
nm

b23
n
√

nm
b33
n2

 ,

and |A(α,β ,λ )|= 1
n2m

(
J11J22J33− J11J2

23− J2
13J22

)
,

b11 = J22J33− J2
23, b12 = J13J23, b13 =−J13J22,

b22 = J11J33− J2
13, b23 =−J11J23, b33 = J11J22.

PROOF. By using the asymptotic properties of MLEs and the multivariate central
limit theorem,

[(α̂−α) (β̂ −β ) (λ̂ −λ )]T
D−→ N3(0,J−1(α,β ,λ )),

where J(α,β ,λ ) and J−1(α,β ,λ ) are symmetric matrices and

J(α,β ,λ ) =

 J11 0 J13

J22 J23

J33

 , J−1(α,β ,λ ) =
1

|J(α,β ,λ )|

 b11 b12 b13

b22 b23

b33

 ,

and |J(α,β ,λ )|= n2m|A(α,β ,λ )|. Let C =


√

n 0 0
0
√

n 0
0 0

√
m

 then

C[(α̂−α) (β̂ −β ) (λ̂ −λ )]T
D−→ N3(0,CJ−1(α,β ,λ )CT),

where C[(α̂−α) (β̂ −β ) (λ̂ −λ )]T = [
√

n(α̂−α)
√

n(β̂ −β )
√

m(λ̂ −λ )]T and

CJ−1(α,β ,λ )CT =
1

|A(α,β ,λ )|


b11
nm

b12
nm

b13
n
√

nm
b22
nm

b23
n
√

nm
b33
n2

 .

Therefore, the result follows. �
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THEOREM 4. As n→ ∞, m→ ∞, and n/m→ p then

√
n(R̂−R) D−→ N(0,B),

where

B =
1

(nm)|A(α,β ,λ )|(α +β )4

[
α

2b22 +β
2b11−2αβb12

]
.

PROOF. On using Theorem 3 and applying delta method, we can describe the
asymptotic distribution of R̂ = g(α̂, β̂ , λ̂ ), where g(α,β ,λ ) = α

α+β
as the following

√
n(R̂−R) D−→ N(0,B),

where B = bTA−1(α,β ,λ )b, with b = [ ∂g
∂α

∂g
∂β

∂g
∂λ

]T = 1
(α+β )2 [β −α 0]T , and

A−1(α,β ,λ ) is defined in Theorem 3. Therefore

B = bTA−1(α,β ,λ )b =
1

(nm)|A(α,β ,λ )|(α +β )4

[
α

2b22 +β
2b11−2αβb12

]
.

Thus, the proof is obtained. �
From Theorem 4, we construct the asymptotic confidence interval of R. Using the
MLEs of α,β and λ , B can be estimated. Therefore, a 100(1− γ)% asymptotic
confidence interval for R can be presented of the form,

(R̂− z1− γ

2

√
B̂√
n
, R̂+ z1− γ

2

√
B̂√
n
),

where zγ is 100γ-th percentile of N(0,1).

4.3. Confidence interval based on bootstrap procedures

Since the sampling distribution of R̂ is not available if λ is unknown, the
bootstrapping method can be an alternative instead of the method described in
previous subsection to develop an approximated confidence interval of the parameter
R. Also, it is evident that the confidence interval based on the asymptotic results do
not perform very well for small sample size. For this, we propose two confidence
intervals based on the non-parametric bootstrap methods: (i) percentile bootstrap
method (we call it Boot-p) based on the original idea of Efron [9] and (ii) bootstrap-t
method (we refer it as Boot-t) based on the idea of Hall [12].
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(i) Boot-p Method

1. Generate a bootstrap sample of size n, {x∗1, . . . ,x∗n} from {x1, . . . ,xn} and generate
a bootstrap sample of size m, {y∗1, . . . ,y∗m} from {y1, . . . ,ym}. Based on {x∗1, . . . ,x∗n}
and {y∗1, . . . ,y∗m}, compute the bootstrap estimate of R say R̂∗, using (6).

2. Repeat 1 NBOOT times.

3. Let G∗(x) = P(R̂∗ ≤ x) be the cumulative distribution function of R̂∗. Define
R̂Bp(x) = G∗−1(x) for a given x. The approximate 100(1− γ)% confidence interval
of R is given by

(R̂Bp(
γ

2
), R̂Bp(1−

γ

2
)).

(ii) Boot-t Method

1. From the samples {x1, . . . ,xn} and {y1, . . . ,ym}, compute R̂.

2. Same as in Boot-p method, first generate bootstrap sample {x∗1, . . . ,x∗n} and
{y∗1, . . . ,y∗m} and then compute R̂∗, the bootstrap estimate of R. Also, compute the
statistic:

T ∗ =
√

n(R̂∗− R̂)√
V (R̂∗)

.

Compute V (R̂∗) using Theorem 4.

3. Repeat steps 1 and 2 NBOOT times.

4. Let H(x) = P(T ∗ ≤ x) be the cumulative distribution function of T ∗. For a given x,
define

R̂Bt(x) = R̂+n−
1
2 H−1(x)

√
V (R̂).

The approximate 100(1− γ)% confidence interval of R is given by:

(R̂Bt(
γ

2
), R̂Bt(1−

γ

2
)).
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5. BAYES ESTIMATION OF R

In this section, we develop the Bayesian inference of R under the assumption
that the parameters α , β and λ are random variables. We mainly discuss the Bayes
estimates and the associated credible intervals of R. It is assumed that α , β and λ

have independent gamma priors with the PDF’s:

π1(α) ∝ α
a1−1e−b1α , α > 0,a1 > 0,b1 > 0,

π2(β ) ∝ β
a2−1e−b2β , β > 0,a2 > 0,b2 > 0,

π3(λ ) ∝ λ
a3−1e−b3λ , λ > 0,a3 > 0,b3 > 0,

respectively. Based on the observed sample, the joint posterior density function of α ,
β and λ is

π(α,β ,λ |data) =
L(data|α,β ,λ )π1(α)π2(β )π3(λ )∫

∞

0
∫

∞

0
∫

∞

0 L(data|α,β ,λ )π1(α)π2(β )π3(λ )dαdβdλ
. (11)

From (11), it is obvious that the Bayes estimate will not be analytically obtained.
Consequently, we adopt the Gibbs and Metropolis sampling techniques to compute
the Bayes estimate of R and the corresponding credible interval of R. The posterior
pdfs of α and β are as follows:

α|β ,λ ,data∼ Γ(n+a1,b1 +
n

∑
i=1

(Ri +1) log(
1

1− e−λ/x2
i
)),

β |α,λ ,data∼ Γ(m+a2,b2 +
m

∑
j=1

(S j +1) log(
1

1− e−λ/y2
j
)),

and

π(λ |α,β ,data) ∝ λ
n+m+a3−1 exp

{
−λ

(
n

∑
i=1

1
x2

i
+

m

∑
j=1

1
y2

j
+b3

)}

×

(
n

∏
i=1

(1− e−λ/x2
i )−1

)(
m

∏
j=1

(1− e−λ/y2
j )−1

)
.

The posterior pdf of λ is not known. So to generate random number from the posterior
pdf of λ , we use the Metropolis-Hastings method. Therefore, the algorithm of Gibbs
sampling is as follows:

1. Start with an initial guess (α(0), β(0), λ(0)).

2. Set t = 1.

3. Generate λ(t) from π(λ |α(t−1),β(t−1),data).
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4. Generate α(t) from Γ(n+a1,b1 +∑
n
i=1(Ri +1) log( 1

1−e
−λ(t−1)/x2

i
)).

5. Generate β(t) from Γ(m+a2,b2 +∑
m
j=1(S j +1) log( 1

1−e
−λ(t−1)/y2

j
)).

6. Compute R(t) =
α(t)

α(t)+β(t)
.

7. Set t = t +1.

8. Repeat steps 3-7, T times.

Now the approximate posterior mean, and posterior variance of R become

Ê(R|data) =
1
T

T

∑
t=1

R(t), V̂ar(R|data) =
1
T

T

∑
t=1

(R(t)− Ê(R|data))2.

Based on T and R values, using the method proposed by Chen and Shao [8], a
100(1− γ)% HPD (Highest Posterior Density) credible interval can be constructed as(

R[ γ

2 T ],R[(1− γ

2 )T ]

)
, where R[ γ

2 T ] and R[(1− γ

2 )T ]
are the [ γ

2 T ]-th smallest integer and the
[(1− γ

2 )T ]-th smallest integer of {Rt = 1,2, . . . ,T}, respectively.
Here we obtain the Bayes estimation of R under the assumptions that the

parameters α and β are random variables and the parameter λ is known. It is
assumed that α and β have independent gamma priors with parameters (a1,b1) and
(a2,b2), respectively. The posterior pdf’s of α and β can be shown to be
Γ(n + a1,b1 + A1(x)) and Γ(m + a2,b2 + A2(y)), respectively, where,
A1(x)) = T1/(2α) and A2(y)) = T2/(2β ). Since the priors α and β are independent,
the posterior pdf of R becomes

fR(r) = S
rn+a1−1(1− r)m+a2−1

[r(b1 +A1(x))+(1− r)(b2 +A2(y))]n+m+a1+a2
, 0 < r < 1,

where

S =
Γ(n+m+a1 +a2)

Γ(n+a1)Γ(m+a2)
(b1 +A1(x))n+a1(b2 +A2(y))m+a2 .

Since the Bayes estimate of R under the squared error loss function can not be
obtained analytically, we approximate it via the method of Lindley [19]. Alternatively,
using the approximation of Lindley [19] and following the approach of Ahmad et al.
[2], it can be seen that the approximate Bayes estimate of R, say R̂BS, under the squared
error loss function is

R̂BS = R̃

{
1+

α̃R̃2

β̃ 2(m+a2−1)(n+b1−1)

[
α̃(n+a1−1)− β̃ (m+a2−2)

]}
, (12)
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where

R̃ =
α̃

α̃ + β̃
, α̃ =

n+a1−1
b1 +A1(x)

, and β̃ =
m+a2−1
b2 +A2(y)

.

The 100(1− γ)% Bayesian interval for R is given by (L,U), where L and U are the
lower and upper bounds, respectively, satisfying

P[R≤ L|data] =
γ

2
, and P[R≤U |data] = 1− γ

2
. (13)

6. DATA ANALYSIS AND COMPARISON STUDY

In this section, we present some results based on Monte Carlo simulations and
real data to compare the performance of the different methods described in the
preceding sections.

6.1. Numerical experiments and discussions

In this subsection, the Monte Carlo simulation is conducted to compare the
performance of MLE, UMVUE and Bayes estimator under different progressive
censoring schemes. We compare the performances of the different estimators in
terms of biases, and mean squares errors (MSE). We also compare different
confidence intervals, namely the asymptotic confidence intervals, two bootstrap
confidence intervals and the HPD credible intervals in terms of the average
confidence lengths, and coverage percentages. We use different parameter values,
different hyper parameters and different sampling schemes. We used three sets of
parameter values Θ1 = (α = 2,β = 2,λ = 0.5), Θ2 = (α = 2,β = 2,λ = 1.5) and
Θ3 = (α = 2,β = 2,λ = 2.5) mainly to compare the MLEs and different Bayes
estimators. For computing the Bayes estimators and HPD credible intervals, we
assume 3 priors as follows:

Prior 1: a j = 0, b j = 0, j = 1,2,3,
Prior 2: a j = 1, b j = 2, j = 1,2,3,
Prior 3: a j = 2, b j = 3, j = 1,2,3.

Prior 1 is the non-informative gamma prior and Priors 2 and 3 are informative gamma
priors. We also use three censoring schemes as given in Table I.

For different parameter values, different censoring schemes and different priors, we
report the average biases, and MSE of the MLE and Bayes estimates of R over 1000
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Table I. Censoring schemes.
(n,N) C.S.

r1 (10,30) (0,0,0,0,0,0,0,0,0,20)
r2 (10,30) (20,0,0,0,0,0,0,0,0,0)
r3 (10,30) (2,2,2,2,2,2,2,2,2,2)

Table II. Biases and MSE of the MLE and Bayes estimates of R.
Θ j C.S MLE Prior1 Prior2 Prior3

| Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE
(r1,r1) 0.0094 0.0200 0.0045 0.0158 0.0015 0.0141 0.0001 0.0128
(r2,r2) 0.0025 0.0225 0.0021 0.0160 0.0007 0.0133 0.0006 0.0116

Θ1 (r3,r3) 0.0029 0.0229 0.0021 0.0151 0.0009 0.0143 0.0009 0.0122
(r1,r2) 0.0022 0.0215 0.0018 0.0155 0.0014 0.0137 0.0008 0.0119
(r1,r3) 0.0073 0.0219 0.0049 0.0156 0.0039 0.0140 0.0038 0.0121
(r2,r3) 0.0055 0.0218 0.0018 0.0163 0.0013 0.0141 0.0004 0.0123
(r1,r1) 0.0079 0.0230 0.0028 0.0156 0.0022 0.0134 0.0006 0.0133
(r2,r2) 0.0070 0.0222 0.0042 0.0159 0.0018 0.0131 0.0003 0.0108

Θ2 (r3,r3) 0.0046 0.0222 0.0010 0.0160 0.0009 0.0140 0.0007 0.0126
(r1,r2) 0.0085 0.0216 0.0075 0.0160 0.0011 0.0143 0.0004 0.0126
(r1,r3) 0.0079 0.0217 0.0053 0.0154 0.0047 0.0139 0.0022 0.0127
(r2,r3) 0.0095 0.0205 0.0057 0.0162 0.0054 0.0136 0.0033 0.0131
(r1,r1) 0.0035 0.0210 0.0023 0.0162 0.0013 0.0136 0.0011 0.0133
(r2,r2) 0.0044 0.0222 0.0033 0.0163 0.0025 0.0134 0.0013 0.0119

Θ3 (r3,r3) 0.0027 0.0218 0.0026 0.0148 0.0011 0.0143 0.0008 0.0124
(r1,r2) 0.0089 0.0211 0.0047 0.0156 0.0043 0.0138 0.0018 0.0132
(r1,r3) 0.0063 0.0215 0.0061 0.0168 0.0038 0.0137 0.0027 0.0129
(r2,r3) 0.0042 0.0220 0.0035 0.0160 0.0015 0.0135 0.0003 0.0124

replications. The results are reported in Table II. In our simulation experiments for
the bootstrap method, we have computed the confidence intervals based on 250 re-
sampling. The Bayes estimates and the corresponding credible intervals are based on
1000 sampling, namely T = 1000.

From Table II, we observe that the MLE compares very well with the Bayes
estimator in terms of biases and MSEs. Comparing the two Bayes estimators based
on two informative gamma priors clearly shows that the Bayes estimators based on
prior 3 perform better than the Bayes estimators based on prior 2, in terms of both
biases and MSEs. The Bayes estimators based on both priors perform better than the
ones obtained using the non-informative prior 1.

We also computed the 95% confidence intervals for R based on the asymptotic
distribution of the MLE. Furthermore, the Boot-p, Boot-t confidence intervals and the
HPD credible intervals are computed. In Table III, we presented the average
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Table III. Average confidence/credible length and coverage percentage for estimators of R.

Θ1
C.S Boot-t Boot-p MLE Bayes

Prior1 Prior2 Prior3
(r1,r1) 0.5505(0.950) 0.4740(0.944) 0.4554(0.948) 0.4413(0.947) 0.4304(0.950) 0.4239(0.949)
(r2,r2) 0.5801(0.958) 0.4812(0.952) 0.4511(0.949) 0.4235(0.940) 0.4202(0.954) 0.4171(0.956)
(r3,r3) 0.5802(0.959) 0.4757(0.948) 0.4549(0.941) 0.4490(0.944) 0.4233(0.941) 0.4192(0.956)
(r1,r2) 0.5681(0.957) 0.4700(0.942) 0.4477(0.943) 0.4470(0.947) 0.4269(0.947) 0.4186(0.950)
(r1,r3) 0.5595(0.956) 0.4807(0.940) 0.4583(0.954) 0.4389(0.945) 0.4380(0.954) 0.4261(0.952)
(r2,r3) 0.5794(0.957) 0.4810(0.944) 0.4569(0.943) 0.4344(0.942) 0.4239(0.948) 0.4142(0.946)

Θ2
C.S Boot-t Boot-p MLE Bayes

Prior1 Prior2 Prior3
(r1,r1) 0.5663(0.958) 0.4634(0.949) 0.4564(0.956) 0.4479(0.954) 0.4462(0.941) 0.4232(0.955)
(r2,r2) 0.5627(0.956) 0.4868(0.941) 0.4483(0.947) 0.4243(0.953) 0.4128(0.942) 0.4068(0.943)
(r3,r3) 0.5602(0.958) 0.4778(0.955) 0.4563(0.941) 0.4399(0.945) 0.4369(0.955) 0.4225(0.947)
(r1,r2) 0.5636(0.956) 0.4681(0.946) 0.4571(0.954) 0.4566(0.942) 0.4480(0.950) 0.4464(0.949)
(r1,r3) 0.5574(0.953) 0.4889(0.951) 0.4581(0.950) 0.4335(0.953) 0.4314(0.949) 0.4261(0.948)
(r2,r3) 0.5462(0.952) 0.4825(0.948) 0.4547(0.945) 0.4325(0.947) 0.4318(0.942) 0.3901(0.940)

Θ3
C.S Boot-t Boot-p MLE Bayes

Prior1 Prior2 Prior3
(r1,r1) 0.5562(0.958) 0.4770(0.957) 0.4459(0.942) 0.4445(0.951) 0.4430(0.952) 0.4233(0.951)
(r2,r2) 0.5468(0.956) 0.4806(0.954) 0.4478(0.947) 0.4230(0.943) 0.4141(0.953) 0.4137(0.940)
(r3,r3) 0.5557(0.954) 0.4824(0.952) 0.4545(0.942) 0.4337(0.952) 0.4325(0.950) 0.4235(0.953)
(r1,r2) 0.5687(0.952) 0.4874(0.943) 0.4562(0.946) 0.4518(0.951) 0.4460(0.945) 0.4424(0.946)
(r1,r3) 0.5483(0.957) 0.4942(0.950) 0.4570(0.948) 0.4429(0.950) 0.4329(0.949) 0.4252(0.950)
(r2,r3) 0.5672(0.958) 0.4879(0.940) 0.4399(0.953) 0.4341(0.951) 0.4338(0.946) 0.4134(0.945)

confidence or credible lengths, and the corresponding coverage percentages. The
nominal level for the confidence intervals or the credible intervals is 0.95 in each
case. From Table III, we observe that the bootstrap confidence intervals are wider
than the other confidence interval. We also observe that the HPD intervals provide
the smallest average confidence credible lengths for different censoring schemes, and
for different parameter values. The asymptotic confidence interval MLE is the
second best confidence intervals. It is also observed that Boot-p confidence intervals
perform better than the Boot-t confidence intervals. From Table III, it is evident that
the Boot-t credible intervals provide the most coverage probabilities in most cases
considered. Comparing the two HPD credible intervals based on two informative
gamma priors clearly shows that the HPD credible intervals based on prior 3 perform
smaller than the HPD credible interval based on prior 2. The HPD credible intervals
based on both priors perform smaller than the ones obtained using the
non-informative prior 1.

Now we consider the case when the common scale parameter λ is known. In this
case, we obtain the MLE and UMVUE of R using (10) and (9), respectively. Since
we have no prior information on R, we prefer to use the non-informative prior i.e a1 =

70 

 
A. Kohansal



b1 = a2 = b2 = 0 to compute Bayes estimates. Applying the same prior distributions,
the Lindley approximation Bayes estimates are computed using (12). Also, using
(13) the Bayesian interval based on Lindley approximation is obtained. We report
the average biases and MSEs based on 1000 replications. The results are reported in
Table IV. From Table IV, comparing the MLE, UMVUE and Bayes estimator, we
observe that MLE provides the smallest biases and MSEs and the UMVUEs are the
best second estimators.

Table IV. Biases and MSE of the MLE, UMVUE and Bayes estimators of R and average confidence length
and coverage percentage when λ is known.

λ = 0.5
C.S MLE UMVUE Lindley Lindley

| Bias | MSE | Bias | MSE | Bias | MSE
(r1,r1) 0.0002 0.0112 0.0012 0.0116 0.0022 0.0135 0.4117(0.951)
(r2,r2) 0.0001 0.0117 0.0008 0.0124 0.0043 0.0125 0.4171(0.952)
(r3,r3) 0.0020 0.0112 0.0040 0.0115 0.0045 0.0131 0.4296(0.952)
(r1,r2) 0.0019 0.0124 0.0032 0.0125 0.0056 0.0135 0.4248(0.947)
(r1,r3) 0.0016 0.0114 0.0019 0.0124 0.0023 0.0125 0.4257(0.943)
(r2,r3) 0.0005 0.0117 0.0007 0.0124 0.0051 0.0133 0.4242(0.946)

λ = 1.5
C.S MLE Lindley UMVUE Lindley

| Bias | MSE | Bias | MSE | Bias | MSE
(r1,r1) 0.0006 0.0111 0.0049 0.0117 0.0090 0.0129 0.4136(0.951)
(r2,r2) 0.0026 0.0111 0.0027 0.0124 0.0036 0.0125 0.3975(0.942)
(r3,r3) 0.0012 0.0112 0.0036 0.0118 0.0081 0.0122 0.4054(0.944)
(r1,r2) 0.0014 0.0118 0.0040 0.0120 0.0066 0.0128 0.4197(0.949)
(r1,r3) 0.0009 0.0117 0.0027 0.0119 0.0043 0.0133 0.4080(0.947)
(r2,r3) 0.0006 0.0119 0.0015 0.0121 0.0036 0.0137 0.4076(0.950)

λ = 2.5
C.S MLE Lindley UMVUE Lindley

| Bias | MSE | Bias | MSE | Bias | MSE
(r1,r1) 0.0009 0.0112 0.0024 0.0116 0.0026 0.0130 0.4054(0.949)
(r2,r2) 0.0002 0.0119 0.0010 0.0120 0.0018 0.0123 0.4088(0.952)
(r3,r3) 0.0009 0.0115 0.0017 0.0127 0.0067 0.0128 0.4117(0.946)
(r1,r2) 0.0001 0.0118 0.0017 0.0119 0.0033 0.0131 0.4194(0.947)
(r1,r3) 0.0016 0.0109 0.0042 0.0110 0.0048 0.0126 0.4096(0.946)
(r2,r3) 0.0016 0.0119 0.0040 0.0121 0.0051 0.0132 0.4155(0.950)
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6.2. Data analysis

Here we present a data analysis of the strength data reported by Badar and Priest
[4]. This data, represent the strength measured in GPA for single carbon fibers, and
impregnated 1000-carbon fiber tows. These data have been used previously by Raqab
and Kundu [21], Kundu and Gupta [17] and Kundu and Raqab [18]. The data are
presented in Table V.

First, it was checked whether IERD can be used or not to analyze the two data sets,
separately. The estimated parameters, for the first data set, are
α̂ = 74.6415, λ̂ = 27.6710 and for the second data set are
β̂ = 16.6928, λ̂ = 27.7890. The Kolmogorov-Smirnov distances between the
empirical distribution functions and the fitted distribution functions are 0.0826 and
0.0944 and corresponding p-values are 0.8623 and 0.6590, respectively. Also, for the
data set 1 and 2, the PP-plots are given in Figure 2. Based on the p-values, one can
not reject the hypothesis that the data are coming from the above distribution.

Fig. 2. The PP-plots for the first (left) and second (right) data set
.

Based on the complete data set, the proposed iterative procedure is used to compute
the MLE. We plot the profile log-likelihood function of λ in Figure 3. Since it is an
unimodal function, it has the unique maximum. So, we start the iterative procedure
with the initial values of λ at such maximum 27.730. By this initial value, MLEs
of λ , α and β are (27.731,75.2858,16.6029) and the MLE of R is 0.8193. Also, the
corresponding 95% confidence interval become (0.7556,0.8829). The Bayes estimate
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of R with respect to improper priors is 0.8170 and the associated 95% credible interval
is (0.7597,0.8691).

Fig. 3. The profile log-likelihood function of λ for the real data
.

For illustrative purposes, two different progressively censored samples have been
generated from the above data sets. The generated data and corresponding censored
schemes have been presented in Table V. Based on Scheme 1, the MLE (by using the
profile log-likelihood function) and Bayes estimates are 0.8972 and 0.8737,
respectively. The associated 95% asymptotic confidence interval and the credible
interval are (0.8001,0.9714) and (0.7984,0.9593), respectively. Similarly, based on
Scheme 2, the MLE and Bayes estimates are 0.9098 and 0.8968, respectively. The
associated 95% asymptotic confidence interval and the credible interval are
(0.7776,0.9697) and (0.8033,0.9903), respectively. Clearly, the estimates obtained
using Scheme 1, are closer to the estimates obtained by complete sample.
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Table V. Real Data.
Real data set

Data Set 1 (X)
1.865 1.944 1.958 1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098
2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359
2.382 2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 2.770
2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012

Data Set 2 (Y )
1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454
2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.659
2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937 2.977 2.996 3.030
3.125 3.139 3.145 3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332
3.346 3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628 3.852
3.871 3.886 3.971 4.024 4.027

Censored schemes and the corresponding data
Scheme 1: R = [4,4,4,4,4,4,4,4,4,7] , S = [4,4,4,4,4,4,4,4,4,14]

i, j 1 2 3 4 5 6 7 8 9 10
xi 1.966 2.055 2.224 2.274 2.382 2.490 2.566 2.642 2.770 2.821
y j 2.454 2.532 2.624 2.856 2.977 3.145 3.264 3.377 3.537 3.871

Scheme 2: R = [19,0,5,0,6,0,16] , S = [19,0,5,0,6,0,23]
i, j 1 2 3 4 5 6 7
xi 1.966 2.021 2.027 2.098 2.880 2.954 3.012
y j 3.628 3.852 3.871 3.886 3.971 4.024 4.027

7. CONCLUSIONS

In this paper, the estimation of the stress-strength parameter for IERD under
progressive Type-II censoring has been considered. When the scale parameter is
unknown different methods for estimating R = P(X < Y ) are used. It is observed that
the MLE of R can not be obtained in the closed form, therefore, an iterative
procedure is applied to compute it. Also, we obtained the exact confidence interval of
R. Moreover, we use the observed Fisher information matrix to obtain the asymptotic
confidence interval. It is observed that even when the sample size is quite small the
asymptotic confidence intervals work quite well. Also, two bootstrap confidence
intervals were proposed that their performance is quite satisfactory. The Bayes
estimate of R and the corresponding credible interval can be obtained using the Gibbs
sampling technique. It is observed that the MLE compares very well with the Bayes
estimator in terms of biases and MSEs. Moreover, when the scale parameter is
known, MLE, UMVUE and different Bayes estimators are computed. We observe
that MLE provides the smallest biases and MSEs and the UMVUEs are the best

74 

 
A. Kohansal



second estimators. Also, the Lindley approximation behaves quite differently from
the other. Monte Carlo simulations and data analysis are performed to check the
performances of the different estimators.

This work has the potential to be applied in the context of reliability theory and
censored data analysis. Further researches can be done in this direction by extending
the progressive censored to the progressive hybrid and adaptive progressive hybrid
censored IERD.
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