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Some Fractional Calculus Results Pertaining To
Mittag-Leffler Type Functions

A. CHOUDHARY, D. KUMAR AND J. SINGH

Abstract

In this paper, we study the generalized fractional operators pertaining to the generalized Mittag-Leffler
function and multi-index Mittag-Leffler function. Some applications of the established results associated
with generalized Wright function are also deduced as corollaries. The results are useful in solving the
problems of science, engineering and technology where the Mittag-Leffler function occurs naturally.
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1. INTRODUCTION

Fractional calculus is a branch of mathematical analysis that studies the
possibility of taking real number, or even complex number, order of the differential

d . . .
operator D = o and the integration operator. The Fractional calculus has recently

been applied in various areas of science, applied mathematics, engineering, bio
engineering, and finance. However, many researchers remain ignorant of this field.
Fractional differential equations have gained importance and popularity, mainly due
to its demonstrated applications in science and engineering. In view of great
importance of fractional differential equations many authors have paid attention for

handling linear and non-linear fractional differential equations [1-6].

The Mittag-Leffler function was introduced by the Swedish mathematician
Mittag-Leffler in 1903 [7, 8]. Mittag-Leffler function finds its applications in the
solutions of fractional differential and integral equations, and they are associated
with a widespread array of problem in various areas of mathematics and

mathematical physics. In addition, from exponential manners, the deviations of
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physical phenomena could also be represented by physical laws via Mittag-Leffler
functions. Therefore, the uses of Mittag-Leffler functions are constantly increasing,
mainly in mathematics and physics. Further, in 1971, Prabhakar [9] proposed the
more general Mittag-Leffler function. Many more extensions or unifications for
these functions are found in large number of papers [10-15]. In this paper, we study
the generalized fractional operators on the generalized Mittag-Leffler function and
multi-index Mittag-Leffler function. Some applications of the established results

associated with generalized Wright function are also deduced as corollaries.

2. FRACTIONAL CALCULUS OPERATORS AND GENERALIZED
FRACTIONAL CALCULUS OPERATORS

The left and right-sided Riemann-Liouville fractional calculus operators are
defined by Samko et al. [16, sec. 5.1] for a € C (R(a) > 0)

B B S0

.00 =15 | o g M

C e L [T_S®

N =15 | e @
[R(a)]+1

o= () [ e

dt 3)

(L[S0
B rA—a+[R@DJ, (x—t)eR@]™

dx

[R(a)]+1

Ep@=(-=) [,

d \ [R@]+1 1 o )
B (_ E) rl-—a+ [R(a)])fx (t — x)@[R@)] dt,  (4)

where [R(a)] is the integral of R(«a).
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An exciting and valuable generalization of the Riemann-Liouville and Erdlyi-Kober

fractional integral operators has been introduced by Saigo [17] in terms of Gauss

hyper geometric function as given below. Let a,B8,y € C and x e R,, then the

generalized fractional integration and fractional differentiation operators associated

with Gauss hyper geometric function are defined as follows:

(17 r) 0 =55 L -0, (a4 By @1 - L) fF(OdE R(@) >0,

(1527 £) @) = 55 Jy (6 = 0% 170 Fy (@ + B =i @31 = %) f(©)dt; R@) > 0

(0577) = (5274 7) @

= (i)k (Io_f+k,—lf'—k.a+ Y—kf) OR@) > 0:k = [R(a)] + 1

(DI ) @) = (157 P T F) ()

= (-3 ) (I;0H7F=R%Y £) (), R(@) > 03k = [R(@)] + 1.
Operators (5) — (8) reduce to that in (1) — (4) as follows:
(57 F) () = U&H @),
(I F)(x) = U,
(DS F) () = (DE (),
(DS F)(x) = (DE_f)(0).

LEMMA 1. Leta,B,yeC; R(a) >0andpeC
(@) If R(p) > max[0,R(B8 — y)], then
By .po—1 _ I'(P)T(p—B+7v) —p-1
0O = = pr rar ™
(b) If R(p) > max[R(—pB), R(—y)], then

@By, _ Te+BTl+y)
R T T S M

®)

(6)
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€
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D
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3. LEFT-SIDED GENERALIZED FRACTIONAL INTEGRATION OF
GENERALIZED MITTAG-LEFFLER FUNCTION AND MULTI-INDEX
MITTAG-LEFFLER FUNCTION
In this section we consider the left-sided generalized fractional integration

formula of the generalized Mittag-Leffler function and multi-index Mittag-Leffler

function.

THEOREM 3.1. If a,B8,y,8,u,v,p,0€C;p,q > 0and q < R(a) +p, and
min(R(a), R(B), R(y), R(5), R(u), R(v),R(p),R(c)) >0 andaeR. If the
Wright function condition [14] is satisfied and 15" be the left-sided operator of
generalized fractional integration associated with Gauss hypergeometric function,

then there holds the following formula

r(v) I'(s)

A= [I“ﬁytp Lphpra (atl)]() TMNON

xP—B-1
a,B,v,0,8,p 4¢5

o [ (p=B+7v.0,(, D, ¥, ), (wp)
(p - :8!/1): (CI + p + Y, l)' (B' a), (5' P): (V: O-)

PROOF. By using the definition of more generalized Mittag-Leffler function

ax’l] (15)

was defined by Shukla and Prajapati [10] and fractional integral formula (5), we
hold

X_a_ﬁ ; . t
A =m (x—t)* 2F1<05+.3;—}’: a;l—;)
0
X (tp‘l)E(’;ngg&p (at?)de.

By the using of Gauss hypergeometric series [18], series form of generalized Mittag-
Leffler function was defined by Shukla and Prajapati [10], interchanging the order
of integration and summations and evaluating the inner integral by the use of the

known formula of Beta integral. At last by the virtue of above lemma, we have

A= O f(tp D(x —t)* 12F1<a+/>’ —y; a; 1—£>

[oe]

(W pn (V) gn (at?)" dt
— (Vong(&pnl(an + ) (n)!
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_TOI®) N L@+ pr)I(y + qn)[(p — B+ + A)I(p + An)
F(u)F(y) “ F'(v+on)I'(S + pn)I'(B + an)'(p — B+ An)I'(p + a + vy + An)
(ax?)"
!
or
r(v)r(‘o‘) - (p=B+v,0,000, ¥ q, 1p) ax’l]
F(IJ-)F(Y) +rs (p - ﬁ,ﬂ.), (a + p + Y, A), (ﬁﬂ a)' (5' P)' (V, O')

this completes the proof of theorem.

If we set u = v,p = o and p = 1 then Eq. (15) reduces to the following corollary.

COROLLARY 3.1.1. The following result holds:

_T® sy P=B+v.0, 0N ¥ q 3
=t o [(p B, (@+p+1.A, (B a), 6D ]

where a,8,y,6,pe C,R(a) >0,R(p—B+y) >0,A>0anda €R.

If we set p = § = 1 in above result we obtain the following corollary 3.1.2

COROLLARY 3.1.2. The following result holds:

1 . p=B+v.0, 0N 7q9
= B 2
A=gp [(p —BA, @+p+1.0,B )™ ]

where a, 8,7, pe C,R(a) > 0,R(p—B+y) >0,A>0anda €R.

when we take g = 1, the above result reduced to the following corollary 3.1.3

COROLLARY 3.1.3. The following result holds:

Lo s =B+7.0,00,F1
=—xPB-1 7
4 F(y)xp s [(P—B,l),(a+/)+%/1),(ﬁ,a) * ]

where a, 8,7, pe C,R(a) > 0,R(p—B+y) >0,A>0anda eR.

THEOREM 3.2. If a,8,y € C,R(a;) > O,R(B;) >0 (j =1..m),R(k) >0,
R(X7, ;) > max[0,k —1],2 > 0 and a € R. If 19 be the left-sided operator of

generalized fractional integration associated with Gauss hypergeometric function,
then there holds the following formula

[ e i g ()] 0 = Ly )xp e
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[ (p=B+7.0,0pN, .k
(P - ﬁ,l), ((X + 1% + y;/l);(ﬁj:aj)

ax’l] (16)
PROOF. Denote L.H.S. of the theorem 3.2 by © then

B,
0 = [ By, (@) @
Using the definition of multi-index Mittag-Leffler function was defined by Saxena
and Nishimoto and fractional integral formula (5), we hold

_aB

0=—— O f(x—t)“ 12F1(a+,[>’ -y @ 1—;)

X (tPES g o (att)dt.

By the using of Gauss hypergeometric series [18], series form of multi-index
Mittag-Leffler function was defined by Saxena and Nishimoto [12], interchanging
the order of integration and summations and evaluating the inner integral by the use

of the known formula of Beta integral. At last by the virtue of above lemma, we

have
_ X_a_ﬁ ‘ p—1 a—-1 . . t
@—m (t )(x_t) 2F1<a+:8'_y' a’l_;)
0
S e (@)
2Ty 78 @01
Rt Iy + kn)['(p + An)T(p — B+ + An) (ax?)
F() &T(p—p+am(p+a+y+ )L, T(ng +4;) )’
or
_ Xp_ﬁ_l [ (P - ﬂ + Y, /1)! (,0,/1), (y' k) axl]
r@y) "™ (=B8N, (@+p+v.1, (8 a)

this completes the proof of theorem.

If we set k = q in Eq. (16) then we obtain the following corollary.

COROLLARY 3.2.1. The following result holds
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Xp_‘g_l 1!) (P - ﬁ + Y, /1): (P:/D: (y! q) ax’l]
F(Y) 3Fa+m (,D —ﬁ,l),(a+p +y1/1)!(ﬁj:aj)
a,B,yeCR(a;)>0,R(B;)>0(=1..m),R(¥y) >0 and aeR R(EL, a;) >
max[0,q — 1],41 > 0.

M=

when g = m = 1, then above result reduced to the following corollary.
COROLLARY 3.2.2. The following result holds
LV B CEy R N CDNES ]
rty) *lio =B, (@+p+y,2),(B, )
a,B,yeC,R(@ >0R(B)>0R(y)>0A1>0and aeR.

4. RIGHT-SIDED GENERALIZED FRACTIONAL INTEGRATION OF
GENERALIZED MITTAG-LEFFLER FUNCTION AND MULTI-INDEX
MITTAG-LEFFLER FUNCTION
In this section we discussed the right-sided generalized fractional integration

formula of the generalized Mittag-Leffler function and multi-index Mittag-Leffler

function.

THEOREM 4.1. If a,B8,y,6,u,v,p,0€C;p,q > 0and q < R(a) +p, and
min(R(a), R(B), R(y), R(5), R(u), R(v),R(p),R(c)) >0 andaeR. If the
Wright function condition [14] is satisfied and 1“*? be the right-sided operator of
generalized fractional integration associated with Gauss hypergeometric function,
then there holds the following formula
I'(v) I'(6)
ROROMN

[ (a+p+p D (@+p+y,0, ¥ q, Wp) axl] an
(@+pA),2a+B+y+pA, (B a)@p) (o)
PROOF. Denote L.H.S. of the theorem 4.1 by A, then

A= [igPreasegiera (at*)] ()

[Iaﬁyt-a ppHPYa (at—A)]( ) = B=p s

a,Bv,0,6,p

By using the definition of generalized Mittag-Leffler function was defined by
Shukla and Prajapati [10] and fractional integral formula (6) and proceeding in the

same way to the proof of theorem 3.1, we get
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1 r X

— _ a-1s—a-f v oy ] —

A —F(oc)f(t x)* 1t oF; (a+[>’, y; a; 1 t)
b

X (t—a—p)Eg;g;g;g_ 5p (at™)dt.

or

OO
TTrm”

—a—-L—-

I'(p+ pn)I'(y + qn)T'(a+ B+ p + )T (a+ p +y + An) (ax"l)n
x ~ F'(v+ o)l + pn)I(B+ an)l(a+ p+An)I'Ra+B+y+p+Ain) (n)!

or

_Tre (a+B+pA, (atp+v,1), ¥ ), up) ax-ﬂ]
r(wre) +p,A),2a+B+y+p,4), B a)p) Vo) ’

this completes the proof of theorem.

a2

If we set u = v,p = 0 and q = 1 then Eq. (17) reduces to the following corollary.

COROLLARY 4.1.1. The following result holds:

IO ey, [ (@+B+p,D), (a+p+v,2,71D x|
I'(y) (a+p,A),2a+B+y+p D), (B a)@,p)
where a,8,y,p,6 € C,R(a) > 0,,A > 0and a € R.
If we set p = § = 1 in above result we obtain the following corollary 4.1.2
COROLLARY 4.1.2. The following result holds:

1 (a+B+p A, (@a+p+v,D,¥1 _A]

A=y s ot 0,20, ot B orr b o (o)

where a,8,y,p€ C,R(a) > 0,,A >0anda eR.

THEOREM 4.2. If a,8,y € C,R(a;) > O,R(B;) >0 (j =1..m),R(k) >0,
R(X7L, ;) > max[0,k —1],2> 0 and a eR. If the Wright function condition
[14] is satisfied and I(‘]";B‘y be the right-sided operator of generalized fractional

integration associated with Gauss hypergeometric function, then there holds the

following formula

1
[ e B (at™)] 0 = 55 P bz
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[ (@+B+pA,(@+p+y,A), .k
(@+p1),Ra+L+p+v,4), (,Bj,a]-)

ax"l] (18)

PROOF. Denote L.H.S. of the theorem 4.2 by = then

[1]

= [P B, (at)] @

Using the definition of multi-index Mittag-Leffler function was defined by Saxena
and Nishimoto [12] and fractional integral formula (6) and proceeding in the same

way to the proof of theorem 3.2, we get

[1]

1 r X
— _ a-1lg—a—f —yr o] ——
@ f (t—x)*1t oF; (a +B,—y; ;1 t)

X

X (T P)ECL (=),

v.k; B1.B2 »Bm
or
E= LJ‘ (t —x)* 1t720F=r,F (0( +B,—y; a;1 — E)
I'(a) z1 A t
X
y D (at™)"
n=0 [T, [(na; +6;) )
or
o x~@B=p o Fla+B+p+)T(a+p+y+ )y + kn) (ax‘l)
STy SiT(@+p+alQa+p+p+y+an) I, T(na; +B;) !’
or
. xTahee [ (a+B+p,A),(@a+p+7,2), 7,k —,1]
E=—— ax
Ty) *"#™|(a+p D, Qa+B+p+7v.0, (8 )

this completes the proof of theorem.

If we set k = q in Eq. (18) then we obtain the following corollary.
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COROLLARY 4.2.1. The following result holds

_ xaBep (@+B+pD(@+p+y,D) ¥ _,1]
E=—r3¥om ax
I (@+p0),Qa+p+p+v.0, (8 )
where a, B,v,p € C, R(aj) >0, R(ﬁj) >0(=1..m),R(y) >0, and aeR

R(Z}%; @) > max[0,q — 1],2> 0.
when g = m = 1, then above result reduced to the following corollary.

COROLLARY 4.2.2. The following result holds

x—a=B=p " (@a+B+p ), (a+p+y, 1), 1) x"l]
ry) *7lla+p1,Qa+B+p+v,2,(B a)

a,B,yeC,R(@ >0R(B)>0R(y)>01>0and aeR.

-
O
=

5. LEFT-SIDED GENERALIZED FRACTIONAL DIFFERENTIATION OF
GENERALIZED MITTAG-LEFFLER FUNCTION AND MULTI-INDEX
MITTAG-LEFFLER FUNCTION

In this section we consider the left-sided generalized fractional differentiation

formula of generalized Mittag-Leffler function and multi-index Mittag-Leffler

function.

THEOREM 5.1. If a,B8,y,6,u,v,p,0€C;p,q >0and q < R(a) +p, and
min(R(a), R(B), R(y), R(5), R(u), R(v),R(p),R(c)) >0 andaeR. If the
Wright function condition [14] is satisfied and Dg‘f'y be the left-sided operator of
generalized fractional differentiation associated with Gauss hypergeometric

function, then there holds the following formula

JONO)

W +8-1
Iy~ s

(D57 et (ath)] () =

[ (p +a+ ,B + Y, ﬂ.), (P'A)' (V; q)' (#' p) ax,l] (19)
(

p+B.1,(p+y,4,B ), 6 p) Vo)

PROOF. Denote L.H.S. of the theorem 5.1 by @ then

® = [DyfreemiEle T (ath)] (o
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Using the definition of generalized Mittag-Leffler function was defined by Shukla
and Prajapati and fractional differentiation formula (7), we get

cb:((j_x)k(]oerk —B-lka+y=k,p-1pipy.a (at’l))(x)

@,B.v,0.6
or
d\K gatB t
:(a) mf(x—t) Tatk-1p < a—-B,-y—a+k; —a+k;1—;)
x tPT ERpd 5 (att)dt
or

_TOI®) s
rQrey)

I'(p+a+pB+y+An)I(p+An)I'(n+ pn)I'(y + gqn) (axl)n
— T(p+B+a)l(p+y+A)T(B+ an)I'(v+ on)I'(8 + pn) (n)!

_Tw) r'(6)

(p+ta+p+y,0, N7 9, wp) ,1]
TTWro)

+B-1
s (48,1, (0 + 1,2, (B, @), (6,p), (v, 0)

this completes the proof of theorem.
Ifwesetyu=v,p=ocandq=1inEg. (19), then we obtain the following corollary:
COROLLARY 5.1.1. The following result holds

F(s) P+[3 1 l/} [ (P+a+ﬁ+y:/1):(l):/1):(}’: 1) ax),:l
BN 4+ BV, (p+v.2), (B, a),(6,p)

where a,8,y,p,6 € C,R(a) > 0,,A > 0and a € R.

If we set p = § = 1 in above result we obtain the following corollary 5.1.2
COROLLARY 5.1.2. The following result holds:

1 p+a+p+y,0,(N ¥1)
+8-1 p)
Py s [ P +BD,(0+7.D), B a) | ax ]

where a,B8,y,pe C,R(a) > 0,,A >0anda eR.

THEOREM 5.2. If a,8,y € C,R(a;) > O,R(B;) >0 (j =1..m),R(k) >0,
R(X7, a;) > max[0,k —1],4 >0 and aeR. If the Wright function condition
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[14] is satisfied and ij‘f’y be the left-sided operator of generalized fractional
differentiation associated with Gauss hypergeometric function, then there holds the

following formula

a,By 1p001,Q a 2 xp+,3—1
B - 12,0 —
[D0+ tP Ey,k; ﬁpﬁszﬁm (at )] x) = I 3W24m

p+ta+p+yv,,00,00 Wp) |,
X [(p +8,2,(0 + 7.0, B ), (6,p), v, 0) “ ] (20)

PROOF. Denote L.H.S. of the theorem 5.2 by Q then

0= [p§freeEs e (ath)| @)

Using the definition of multi-index Mittag-Leffler function was defined by Saxena

and Nishimoto [12] and fractional differentiation formula (7), we get

d ‘ a+k,—B-ka+
= [— - —B-ka+y—k_ p-1pa1,02..0m 1
a= (dx) (1‘” O Ey 1 1.8 b (at )) (x)

or

d\¢  xatB ¢ .

=|—) ———— _ —a+k-1 P Y . gt

Q_<dx> I‘(—a+k)f(x £) 2F1(“ B,—y—a+k —a+kl x)
0

p—1a1,02,-,0m 2
Xt Ey'k: B1.B2 ,-Pm (at )dt
or

3 xPHB-1 & F'(p+a+pB+y+An)(p+ An)I(y + kn) (ax’l)n
) ZiT(p+B+A)I(p +y+An) [T, T(na; +p;) @)!

ax’l]

If we set k = g in Eq. (20), we obtain the following corollary 5.2.1

Q =xp+'8_1 ‘(l} (P+0»’+,B+V'A)'(P'A)'(V'k)
F(Y) 3ra4m (,0 + ,8,).), (,0 + y! A)! (ﬁ]! aj)

this completes the proof of theorem.
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COROLLARY 5.2.1. The following result holds

xPHh o [CFHEFEEVDGD.0.0 ax,l]
ry) > (e +B8.1, 0 +v.0, (B )

where a, B,v,p € C, R(aj) >0, R(ﬁj) >0(=1..m),R(y) >0, and aeR

]R(Z 10(])>max[0 q—1],2>0.
when g = m = 1, then above result reduced to the following corollary.
COROLLARY 5.2.2. The following result holds
_xP Jp+a+ By, A, (0,4, (0 1) ax’l]
6. RIGHT-SIDED GENERALIZED FRACTIONAL DIFFERENTIATION OF

ry) *72| (0 +B.D,(0+v.1, (B a;)
a,B,yeC,R(@ >0R(B)>0R(y)>0A1>0and aeR.

GENERALIZED MITTAG-LEFFLER FUNCTION AND MULTI-INDEX
MITTAG-LEFFLER FUNCTION

In this section we consider the right-sided generalized fractional differentiation
formula of generalized Mittag-Leffler function and multi-index Mittag-Leffler

function.

THEOREM 6.1. If a,B8,y,8,u,v,p,0€C;p,q >0and q < R(a) +p, and
min(R(a), R(B), R(y), R(5), R(u), R(v),R(p),R(c)) >0 andaeR. If the
Wright function condition [14] is satisfied and D&*" be the right-sided operator of
generalized fractional differentiation associated with Gauss hypergeometric

function, then there holds the following formula

r(v)Ts)

LT A IS O

a+f+p
ana&p 41/J5

[ (p—a—-B,1,0+v.1, ¥ 9, wp)

G-a)(p—a—p+y2,6a) 6p), w0 | @

PROOF. Denote L.H.S. of the theorem 6.1 by x then

= [o6 e r et (o] 0
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Using the definition of generalized Mittag-Leffler function was defined by Shukla

and Prajapati [10] and fractional differentiation formula (8), we get

d\*, _
X = (_a> (Io_a+k -B- ka+ytoc pE(I;'Z‘L/'g'&p (at"l)) (x)

or

d k
=(-—) —— _ o \-atk—1ia+B e X
X ( dx) r(— a+k)f(t x)” t Fl( a—B,—a—vy; —a+k1l t)

X t@PELEY - (at™)de

a,fv,0,6,p
or
_TONG) s,
T(Wry)
- Flp—a—B+A)l(p+y+2An)T(u+ pn)T(y + gn) (ax"l)n
Z FMp—a+A)TI(p—a—B+y+An)I'(v+on)[(§+ pn)['(B+ an) (n)!
or

_LOI®) gip-p " [ (p=a=B20,0p+y,0.> 0 p) ax"l]
F(H)F(Y) 47 (P - a, l)/ (P —a-— ﬂ + Y, A)F (ﬂ' a)' (61 p); (Vf U) ’

this completes the proof of theorem.

If we setu=v,p=0candq=1in Eq. (21), then result reduced in following

corollary:
COROLLARY 6.1.1. The following result holds
_TO) arp-p " [ (b—a=B1,p@+y,0,F¥1 x—’l]
oM o -a ), (p—a-B+y,0,B a), 6 p)

where a,8,y,p,6 €e C,R(a) > 0,,A>0and a € R.
If we set p = § = 1 in above result we obtain the following corollary 6.1.2
COROLLARY 6.1.2. The following result holds:

_ p—a=p0,p+y,1,F1) _
__ _satp A
™ Psbs [(p a),(p—a—B+y,A,B Y ]

where a,8,y,p € C,R(a) > 0,,4A > 0and a € R.

X:
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THEOREM 6.2. If a,8,y € C,R(a;) > O,R(B,;) >0 (j =1..m),R(k) >0,
R(X7L, ;) > max[0,k —1],2> 0 and aeR. If the Wright function condition
[14] is satisfied and Dg‘;ﬁ‘y be the right-sided operator of generalized fractional
differentiation associated with gauss-hyper geometric function, then there holds the

following formula

1
R P O] [ R
X[ (p_a_ﬁll)x(p-l_)/!/l)!()/xk)

ax"l] (22)
PROOF. Denote L.H.S. of the theorem 6.2 by X then

X = g eep B o (ar )] (o)

Using the definition of multi-index Mittag-Leffler function was defined by Saxena

and Nishimoto [12] and fractional differentiation formula (8), we get

d * a+k
= — — - ,—ﬁ—k,a+ Y a-p a1,82,.,0m -2
X= ( dx) (10‘ E P, By By (at )) ()

or

d\¥ 1 v N
X=-——] ——— —atk-1pa+f F (_qg — B —a —y: — 1=
( dx) F(—a+k)f(t x) [ 1( a—B,—a—y; —a+k; t)

X

a-p aq1,a2,..,.0m -1
X P h T (at™h)dt

or

= x@HBP o ['(p—a—B+A)l(p+y+An)(y+ kn) (ax‘l)n
CT(-a+k) LiT(p—a+l(p—a—pB+y+in)[I, r(g;, +amn) @)!

or

" [ p—a—-BAN,+y.D, ¥k
3vzm (p—a—,8+y,l),(p—a,/1), (ﬁj!aj)

_1 a+p-p

=ro”

ax"l],

this completes the proof of theorem.
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If we set k = g in Eg. (10), we obtain the following corollary 6.2.1
COROLLARY 6.2.1. The following result holds

_x‘”B_p lp (P—a—ﬁ:/l):(.ﬂ‘l'%l), (YJq) ax_’l]
- F(V) srzem (p_a_ﬁ +y,/1),(p—a,/1), (ﬁj!aj) '
where a, B,v,p € C, R(aj) >0, R(ﬁj) >0(=1..m),R(y) >0, and aeR

R(Z7L @) > max[0,q — 1],2 > 0.
when g = m = 1, then above result reduced to the following corollary [19].

COROLLARY 6.2.2. The following result holds

x@+tB=p p—a—-B0,p+7,1,71) —/1]

=Ty Pl —a-B+r.0,0-an, @l

a,B,yeC,R(@) >0R(B)>0R(y)>01>0and aeR.

REMARK if we set A = v in above corollary, we arrive at the result [20].

CONCLUSIONS

In this paper, we have deduced some fractional calculus results involving
generalized Mittag-Leffler function and multi-index Mittag-Leffler function. The
results are general in nature and can be used to desire some new and know results

having application in scientific and technological fields.
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