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Abstract

In this study, a numerical solution of the modified Burgers’ equation is obtained by the finite difference
methods. For the solution process, two linearization techniques have been applied to get over the
non-linear term existing in the equation. Then, some comparisons have been made between the obtained
results and those available in the literature. Furthermore, the error norms L2 and L∞ are computed and
found to be sufficiently small and compatible with others in the literature. The stability analysis of the
linearized finite difference equations obtained by two different linearization techniques has been separately
conducted via Fourier stability analysis method.
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AMS classification: 97N40, 65N30, 65D07, 76B25, 74S05,74J35

1. INTRODUCTION

The one-dimensional generalized Burgers’ equation is of the form

Ut +U pUx−νUxx = 0, a≤ x≤ b, t > 0

where U(x, t) is the velocity for space x and time t, ν is a positive constant
representing thekinematic viscosity of the fluid, and p is a positive parameter. When
p = 1 we get Burgers’ equation, p = 2 we get modified Burgers’ equation.

The Burgers’ equation has a wide range of applications in miscallenous fields as
a mathematical model for several phenomena and is thus of a great interest. The
analytical and numerical solutions of the equation have been found out by several
authors using various methods and techniques. In the present work, a variation of it
has been considered, namely the modifed Burgers’ equation, given in the form of

Ut +U2Ux−νUxx = 0, a≤ x≤ b (1)

where U is the dependent variable, ν is the viscosity parameter, and t and x are the
independent parameters, denoting time and space, recpectively. For the solution of the
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numerical example, the following boundary conditions are going to be used

U(a, t) = β1, U(b, t) = β2 t ≥ t0. (2)

The current work’s main aim is to apply the finite difference methods to develop a
numerical method for the approximate solution of the modified Burgers’ equation.
Eq. (1) has been solved both analytically and numerically by several authors using
various methods and techniques. Some of them can be given as follows. The
modified Burgers’ equation hase been solved by Ramadan and El-Danaf [2] using the
collocation method with quintic splines. The equation has been numerically solved
by Ramadan et al. [3] using the collocation method with septic splines. The Burgers’
and modified Burgers’ equations have been solved by Saka and Dag [4] by applying
time and space splitting techniques and then employed the quintic B-spline
collocation procedure to approximate the resulting systems. Irk [5] has employed
Crank-Nicolson central differencing scheme for the time integration and sextic
B-spline functions for the space integration to the modified and time splitted
modified Burgers’ equation. A numerical solution has been propesed by Temsah [6]
for the convection-diffusion equation using El-Gendi method with interface points
and then numerical results for Burgers’ and modified Burgers’ equations have been
shown. Grienwank and El-Danaf [7] have proposed a non-polynomial spline based
method to obtain numerical solutions of the non-linear modified Burgers’ equation.
Bratsos [8] has used a finite-difference scheme based on rational approximations to
the matrix-exponential term in a two-time level recurrence relation for the numerical
solution of the modified Burgers’ equation. Bratsos [9] has presented a
finite-difference scheme based on fourth-order rational approximants to the
matrix-exponential term in a two-time level recurrence relation for the numerical
solution of the modified Burgers equation. Bratsos and Petrakis [10] have used an
explicit finite difference scheme based on second-order rational approximations to
the matrix-exponential term for the numerical solution of the modified Burgers’
equation. The equation has been numerically solved by Roshan and Bhamra [11] by
the Petrov-Galerkin method using a linear hat function as the trial function and a
cubic B-spline function as the test function.

In this study, two linearization techniques have been applied to deal with the non
linear term while obtaining the numerical solution of the Modified Burgers’ equation.
A numerical example has been considered to test the performance of two
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linearization techniques and then the stability analysis of the numerical schemes has
been investigated separately.

2. THE FINITE DIFFERENCE METHOD

Let’s suppose that the solution domain of the problem a ≤ x ≤ b is divided into
intervals having equal length h in the x direction and having equal time intervals k in
time t such that xi = ih, i = 0(1)N and t j = jk, j = 0(1)J and Ui j will denote U(xi, t j)

throughout the article.

In the finite difference method, in place of the dependent variable and its
derivatives their approximated values by the finite difference approximation are
written. These approximations will result in either a single explicit equation or a
system of difference equations. When applied to non-linear problems, it normally
results in non-linear system of equations and they cannot be solved directly. Thus, an
appropriate numerical algorithm is used to solve them.

3. LINEARIZATION I:

Using the forward difference approximation for Ut , the weighted central
difference approximation for Uxx in Eq. (1) at the nodal point (i, j+1)

Ut '
Ui, j+1−Ui, j

k
,

and

Uxx '
1
h2 (θ(Ui+1, j+1−2Ui, j+1 +Ui−1, j+1)+(1−θ)(Ui+1, j−2Ui, j +Ui−1, j)),

respectively, and applying the the following linearization technique for the non-
linear term U2Ux

U2Ux ' Ui, j+1Ui, j(
Ui+1, j−Ui−1, j

2h
)+Ui, jUi, j+1(

Ui+1, j−Ui−1, j

2h
)+

Ui, jUi, j(
Ui+1, j+1−Ui−1, j+1

2h
)−2Ui, jUi, j(

Ui+1, j−Ui−1, j

2h
),
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we can easily obtain the following system of algebraic equations

Ui, j+1−Ui, j

k
+Ui, j+1Ui, j(

Ui+1, j−Ui−1, j

2h
)+Ui, jUi, j+1(

Ui+1, j−Ui−1, j

2h
)+

Ui, jUi, j(
Ui+1, j+1−Ui−1, j+1

2h
)−2Ui, jUi, j(

Ui+1, j−Ui−1, j

2h
)− (3)

ν

h2 (θ(Ui+1, j+1−2Ui, j+1 +Ui−1, j+1)+(1−θ)(Ui+1, j−2Ui, j +Ui−1, j)) = 0,

for i = 1(1)N−1 and j = 0(1)J.

For different values of θ (θ = 0,1/2,1), the Eq. (3) is going to be solved using an
appropriate algorithm.

3.1. Stability analysis

To investigate the stability of the approximation obtained by the present
algorithm,we will use the von Neumann theory in which the growth factor of a
typical Fourier mode is defined as:

Un
m = eiβ ph

ξ
q, (4)

where i =
√
−1. To investigate the stability of the numerical scheme, the nonlinear

term U2Ux in the modified Burgers’equation has been linearized by making the
quantity U2 a local constant. Thus the nonlinear term in the equation converts into
ÛUx and the Eq. (1) becomes

Ut +ÛUx−νUxx = 0

If we take the weighted average approximation as

Um,n+1−Um,n

k
+Û(θ(

Um+1,n+1−Um−1,n+1

2h
)+

+(1−θ)(
Um+1,n−Um−1,n

2h
))− ν

h2 (θ(Um+1,n+1−2Um,n+1 +Um−1,n+1)+

+(1−θ)(Um+1,n−2Um,n +Um−1,n)) = 0, (5)

the generalized mth row of Eq. (5) becomes

Un+1
m−1(−

θÛ
2h
− vθ

h2 )+Un+1
m (

1
k
+

2vθ

h2 )+Un+1
m+1(

θÛ
2h
− vθ

h2 ) (6)

= Un
m−1(

(1−θ)Û
2h

+
v(1−θ)

h2 )+Un
m(

1
k
− 2v(1−θ)

h2 )+

+Un
m+1(−

(1−θ)Û
2h

+
v(1−θ)

h2 ).

Substituting the Fourier mode (4) into the linearised recurrence relationship (3)
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yields

g =
a− ib
c− id

(7)

where

a = h2−2kν +2kνθ −2kν(θ −1)cosφ ,

b =−khÛ(θ −1)sinφ ,

c = h2 +2kνθ −2kνθ cosφ ,

d =−khÛθ sinφ .

(8)

If θ = 0 is taken, it corresponds to explicit method, and the following inequality is
requried for the stability condition.

h4− (h2−2kv+2kvcosφ)2−h2kÛ2 sin2
φ ≥ 0

If θ = 1 is taken, it corresponds to implicit method, and the following inequality is
required for the system to be stable.

4h2kv+4k2v2−4h2kvcosφ −8k2v2 cosφ +4k2v2 cos2
φ +h2k2Û2 sin2

φ ≥ 0

If θ = 1
2 is taken, it corresponds to Crank-Nicolson method, and the scheme is

unconditionally stable by the following inequality

−4h2kv(cosφ −1)≥ 0

After some basic arithmetic operations, it is seen that the stability condition |g| ≤ 1 is
satisfied by the following inequality:

c2 +d2−a2−b2 = 96h2
ν∆t(2+ cosφ)sin[

φ

2
]2 ≥ 0

therefore we have come to the conclusion that the linearised scheme is unconditionally
stable.
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4. LINEARIZATION II:

Eq. (1) can be written as

∂U
∂ t

+
1

p+1
∂U p+1

∂x
−ν

∂ 2U
∂x2 = 0.

Using the forward difference approximation for Ut , the Crank-Nicolson difference
approximations for

(
U p+1

)
x and Uxx, and then utilizing the central difference operator

δ defined by δxUm,n = Um+1,n−Um−1,n (see, e.g. [14]), Eq. (1) yields the system of
algebraic equations

Um,n+1−Um,n
k + 1

4h(p+1)

{
δx

(
U p+1

m,n+1

)
+δx

(
U p+1

m,n

)}
−

− ν

2h2 (Um+1,n+1−2Um,n+1 +Um−1,n+1 +Um+1,n−2Um,n +Um−1,n) = 0.
(9)

for m = 1(1)M−1 and n = 0(1)N.

4.1. Stability analysis

To investigate the stability of the above scheme, we perform the computation of
Eq. (9) with the values U∗m,n instead of Um,n. Introducing an error Em,n given by
Em,n =U∗m,n−Um,n and substituting it into Eq. (9) leads to

U∗m,n+1−Um,n+1−
(
U∗m,n−Um,n

)
+ k

(p+1)4h

{
U∗

p+1

m+1,n+1−U
p+1

m+1,n+1−

−
(

U∗
p+1

m−1,n+1−U p+1
m−1,n+1

)
+U∗

p+1

m+1,n−U p+1
m+1,n−

(
U∗

p+1

m−1,n−U p+1
m−1,n

)}
−

− νk
2h2

{
U∗m+1,n+1−Um+1,n+1−2

(
U∗m,n+1−Um,n+1

)
+

+U∗m−1,n+1−Um−1,n+1 +U∗m+1,n−Um+1,n)−2
(
U∗m,n−Um,n

)
+U∗m−1,n−Um−1,n

}
= 0.

We now assume that U varies little over a small region in comparison with the
errors means that

Um−1,n 'Um,n 'Um+1,n 'Um−1,n+1 'Um,n+1 'Um+1,n+1.

It is also assumed that Em,n is sufficiently small compared with Um,n and then

U∗
p+1

m,n −U p+1
m,n = (Um,n +Em,n)

p+1−U p+1
m,n ' (p+1)Em,nU p

m,n

for all m and n. Using the above assumptions and substituting Fourier mode Em,n =
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ξ neiβmh ,
(
i =
√
−1
)

into the scheme gives the growth factor ξ of the form

ξ =
1−4Asin2(βh

2 )− i2Bsin(βh)

1+4Asin2(βh
2 )+ i2Bsin(βh)

(10)

where A = νk
2h2 and B =

kU p
m,n

4h . Taking the modulus of (10) gives |ξ | ≤ 1. The scheme
is therefore unconditionally stable.

Clearly, the scheme (9) is a non-linear system of equations in Um,n+1 and it needs
to use an iterative technique to evaluate the solution. The main aim of this study is to
solve the scheme (9) by a direct method. Using a Taylor series expansion of U p+1

m,n+1

about the point (m, n) we obtain

U p+1
m,n+1 =U p+1

m,n + k ∂U p+1
m,n

∂ t + · · ·

=U p+1
m,n + k ∂U p+1

m,n
∂Um,n

∂Um,n
∂ t + · · · .

Hence in terms of order k, U p+1
m,n+1

∼=U p+1
m,n +(p+1)U p

m,n (Um,n+1−Um,n) and taking

Wm =Um,n+1−Um,n (11)

Eq. (9), with some manipulations, leads to

(
1
4hU p

m−1,n +
ν

2h2

)
Wm−1−

(
1
k +

ν

h2

)
Wm +

(
ν

h2 − 1
4hU p

m+1,n

)
Wm+1 =

1
2h(p+1)

(
U p+1

m+1,n−U p+1
m−1,n

)
− ν

h2 (Um+1,n−2Um,n +Um−1,n) ,
(12)

(m = 1(1)M−1) a system of linear equations for Wm. This approximation is second
order in both space and time as regards truncation error. Obviously, the solution at the
(n+1) th time level is obtained from (11) as Um,n+1 =Um,n +Wm [14].

5. NUMERICAL EXAMPLES AND RESULTS

For the test problem used in the present work, numerical results of the equation
have been obtained and all computations have been run on a Pentium i7 PC in the
Fortran code using double precision arithmetic. To show how accurate the results,
both the error norm L2
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L2 =
∥∥Uexact −UN

∥∥
2 =

√
h

N

∑
J=0

∣∣∣Uexact
j − (UN) j

∣∣∣2, (13)

and the error norm L∞

L∞ =
∥∥Uexact −UN

∥∥
∞
= max

j

∣∣∣Uexact
j − (UN) j

∣∣∣ . (14)

are going to be computed and presented.

6. TEST PROBLEM

The analytical solution of the modified Burgers’ equation is given as

U(x, t) =
x/t

1+
√

t/c0 exp(x2/4νt)
, t ≥ t0, 0≤ x≤ 1 (15)

where c0 is a constant, 0 < c0 < 1 and t0 = 1.
For the initial condition of test problem, we will take equation (15) by evaluating it

at t = 1. For the boundary conditions, we will use U(0, t) =Ux(0, t) = 0 and U(1, t) =
Ux(1, t)= 0. Various viscosity constants ν = 0.01,0.001,0.005, space steps h= 0.005,
time steps ∆t = 0.01 and c0 = 0.5 will be taken over the problem domain [0,1] during
the solution process of the problem. First of all, the program has been run until the
time t = 11 and then the error norms L2 and L∞ are computed and presented in Table I

for different values of viscosity ν . As it is seen from the table, both of the error norms
L2 and L∞ are small enough. Both of the error norms L2 and L∞ have been compared
with those of some other authors for various values of h and ν in Table II. It is clearly
seen from the table that both of the error norms are better or as good as the others
found in literature.
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Table I. Comparison of the error norms L2 and L∞ with h = 0.005 and ∆t = 0.01 for various values of ν .
ν = 0.01 ν = 0.005 ν = 0.001

t L2×103 L∞×103 L2×103 L∞×103 L2×103 L∞×103

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2 0.378848 0.816262 0.225949 0.579150 0.067286 0.259046
3 0.344560 0.709949 0.205429 0.503503 0.061409 0.225358
4 0.317165 0.605190 0.188055 0.429111 0.056346 0.192213
5 0.307896 0.526341 0.175034 0.372673 0.052504 0.166926
6 0.326003 0.525791 0.164589 0.329766 0.049394 0.147826
7 0.369938 0.755043 0.155888 0.296209 0.046765 0.132819
8 0.427983 0.963399 0.148688 0.269279 0.044486 0.120756
9 0.489147 1.139612 0.143137 0.247219 0.042478 0.110820

10 0.547020 1.281253 0.139607 0.228838 0.040688 0.102585
11 0.598717 1.390450 0.138473 0.213415 0.039078 0.095516

Table II. Comparison of the error norms L2 and L∞ with those in other studies in the literature at t = 2,6,10.

t = 2 t = 6 t = 10
L2 ×103 L∞ ×103 L2 ×103 L∞ ×103 L2 ×103 L∞ ×103

h=0.005, ∆t = 0.01,ν = 0.01
EFD(∆t = 0.001) 0.37869 0.81610 0.32600 0.52579 0.54702 1.28125
IFD 0.39169 0.83158 0.32683 0.52579 0.54712 1.28125
CN-FD 0.37986 0.81754 0.32608 0.52579 0.54704 1.28125
LFD 0.37978 0.81736 0.32605 0.52579 0.54702 1.28125
[2] 0.52308 1.21698 0.49023 0.72249 0.64007 1.28124
[3] 0.79043 1.70309 0.57672 0.76105 0.80026 1.80329
[5], (SBCM1) 0.38489 0.82934 - - 0.54826 1.28127
[5], (SBCM2) 0.39078 0.82734 - - 0.54612 1.28127
EFD(∆t = 0.001), [0,1.3] 0.37869 0.81610 0.27624 0.46512 0.25308 0.32449
IFD, [0,1.3] 0.39169 0.83158 0.27666 0.46734 0.25391 0.32500
CN-FD, [0,1.3] 0.37986 0.81754 0.27630 0.46533 0.25397 0.32455
LFD, [0,1.3] 0.37978 0.81735 0.27627 0.46528 0.25395 0.32452
[5], (SBCM1), [0,1.3] 0.38489 0.82934 - - 0.25586 0.32723
[5], (SBCM2), [0,1.3] 0.39078 0.82734 - - 0.25259 0.32337
h=0.005, ∆t = 0.001,ν = 0.005
EFD 0.22643 0.57988 0.16460 0.32987 0.13960 0.22886
IFD 0.22781 0.58193 0.16464 0.33014 0.13958 0.22891
CN-FD 0.22712 0.58091 0.16462 0.33000 0.13959 0.22888
LFD 0.22711 0.58090 0.16462 0.33000 0.13959 0.22888
[2] 0.25786 0.72264 0.22569 0.43082 0.18735 0.30006
[5], (SBCM1) 0.22890 0.58623 - - 0.14042 0.23019
[5], (SBCM2) 0.23397 0.58424 - - 0.13747 0.22626
h=0.005, ∆t = 0.01,ν = 0.001
EFD 0.06695 0.25830 0.04939 0.14773 0.04070 0.10257
IFD 0.07114 0.26743 0.04951 0.14895 0.04061 0.10277
CN-FD 0.06900 0.26287 0.04944 0.14834 0.04065 0.10267
LFD 0.06900 0.26284 0.04944 0.14833 0.04065 0.10267
[2] 0.06703 0.27967 0.06046 0.17176 0.05010 0.12129
[3] 0.18355 0.81862 0.08142 0.21348 0.05512 0.13943
[5], (SBCM1) 0.06843 0.26233 - - 0.04080 0.10295
[5], (SBCM2) 0.07220 0.25975 - - 0.03871 0.09882
h=0.02, ∆t = 0.01,ν = 0.01
EFD 0.37559 0.80866 0.32916 0.52579 0.55844 1.28125
IFD 0.39938 0.83959 0.33067 0.52579 0.55861 1.28125
CN-FD 0.38724 0.82351 0.32988 0.52579 0.55852 1.28125
LFD 0.38717 0.82328 0.32982 0.52579 0.55849 1.28125
[3] 0.79043 1.70309 0.51672 0.76105 0.80026 1.80239
[5], (SBCM1) 0.38474 0.82611 - - 0.55985 1.28127
[5], (SBCM2) 0.41321 0.81502 - - 0.55095 1.28127

The computed numerical results together with their errors are graphed in Figures
1-3 for various values of ν at different time levels. But the graphs of the errors have
only been drawn at time t = 10. It can be seen that the maximum error happens at
the right-hand boundary of the solution domain for ν = 0.01. However, the errors for
ν = 0.005 and ν = 0.001 have been recorded around the the points where the waves
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get their highest amplitudes.

Fig. 1. The numerical solutions of Problem at different times with v = 0.01.

Fig. 2. The numerical solutions of Problem at different times with v = 0.005.

Fig. 3. The numerical solutions of Problem at different times with v = 0.001.
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7. CONCLUSIONS

In the present work, numerical solutions of the Modified Burgers’ equation
based on the finite difference methods have been presented. To show the performance
of the presented algorithm, a test problem has been considered. The performance and
efficiency of the method are shown by calculating the error norms L2 and L∞. The
obtained results show that the error norms are sufficiently small during all computer
runs. The obtained results indicate that the present method is a particularly successful
numerical scheme to solve the Modified Burgers’ equation. Therefore, the method
used in the present work can strongly be advised to get approximate solutions of
several other widely used non-linear equations in the literature.
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