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Abstract

In this study we apply the Adomian decomposition method (ADM) to approximate the solution of
fractional optimal control problems (FOCPs) where the dynamic of system is a linear control system with
constant coefficient and the cost functional is defined in a quadratic form. First we stated the necessary
optimality conditions in a form of fractional two point boundary value problem (TPBVP), then the ADM
is used to solve the resulting fractional differential equations (FDEs). Some examples are provided to
demonstrate the validity and applicability of the proposed method.
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1. INTRODUCTION

In the last decades, fractional calculus (FC) has provided more accurate models
in miscellaneous fields of science and engineering. Many mathematicians and
applied researchers have tried to model real processes using the fractional calculus.
Nigmatullin and Nelson described complex systems in terms of fractional kinetics in
[33]. Jesus, Machado and Cunha analyzed the fractional order dynamics in botanical
electrical impedances [25; 26]. Petrovic, Spasic and Atanackovic developed a
fractional order mathematical model of a human root dentin [37]. In biology, it has
been deduced that the membranes of cells of biological organism have fractional
order electrical conductance [16] and then are classified in groups of non-integer
order models.

The reason of using FDEs is that they are naturally more accurate than integer
differential equations to describe the dynamic behavior of many real world [23].
Also, they are closely related to fractals, which are abundant in biological systems
[8]. Therefore, it is important to develop formulations and analytical schemes for
solving FEDs. Considerable works have been done in this area like ADM [38; 30;
17; 34; 15; 18], finite difference method [31], Variational iteration method (VIM)
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[24; 19], Operational matrix method [39], Homotopy analysis method [36; 1],
generalized differential transform method [35; 29], finite element method [27],
fractional differential transform method [2; 21] and references therein.

While the FOCPs that are a subclass of optimal control problems whose
dynamics are described by FDEs, have been achieved a growing rate in publications
in the area of FC [43; 14; 40]. For that reason, there has been significant interest in
developing numerical schemes for their solution. Some numerical methods for
solving some type of FOCPs can be seen in [3; 4; 13; 32]. A great deal of interest has
been recently, focused on the application of ADM to solve a wide variety of these
problems. Work on this method first proposed by [5] where the authors have
achieved a solution for problem in form of a series whose terms are determined by a
recursive relationship using the Adomian polynomials without any need for
linearization or discretization or any other restrictive assumption that may change the
physical behavior of the model. There also exist other numerical simulations for this
purpose, such as [6; 7; 20; 42].

The main aim of this work is to develop a reliable modification of ADM
(MADM) to solve a class of FOCPs approximately. For this purpose, we used
necessary optimality conditions, to reduce this FOCP to a system of FDEs. Then, we
extend the MADM to obtain some new iterative formulas for solving this system of
FDEs that is simpler and easier to use.

The outline of this study is as follows: In Section 2, we introduce some
definitions and necessary preliminaries for fractional calculus and briefly recall the
ADM method. In Section 3, we propose a new analytic approximate method based
on ADM for solving a class of FOCPs. In Section 4, Numerical simulations are
presented to demonstrate the accuracy of the proposed methods. Finally, we present a
brief summary in Section 5.

2. PRELIMINARY CONSIDERATIONS

In this section, we present some notations, definitions and preliminary facts of
the fractional calculus theory which will be used further in this work.

2.1. Fractional Calculus

There are several approaches to the generalization of the notion of
differentiation to fractional orders e.g. Riemann-Liouville, Caputo and Generalized
Functions approach. For the concept of fractional derivative, we will adopt Caputo’s
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definition, which is a modification of the Riemann-Liouville definition and has the
advantage of dealing properly with initial value problems. For more details and some
of their applications, see [41; 28].

THEOREM 2.1. Let f ∈ L1[t0, t f ] and 0 < α < 1. The left Riemann-Liouville

Fractional Integral (RLFI) and the right RLFI of order α of a function f on L1[t0, t f ]

is defined as:

Iα
t0 f (x) :=

1
Γ(α)

∫ x

t0
(x− t)α−1 f (t)dt, (1)

Iα
t f

f (x) :=
1

Γ(α)

∫ t f

x
(t− x)α−1 f (t)dt, (2)

for all x ∈ [t0, t f ] and Γ(.) is known as the Euler-Gamma function.

We denote I0
t f (x) = f (x). Obviously, the fractional integral operators Iα

t , α ≥ 0,
satisfy the semigroup property Iα

t Iβ

t = Iα+β

t , α,β ≥ 0.

THEOREM 2.2. The left and right Caputo fractional derivatives of order α ∈R+

are defined, respectively by:

C
t0Dα

t f (x) :=
1

Γ(n−α)

∫ x

t0

f (n)(t)
(x− t)n−α−1 dt, (3)

C
t Dα

t f
f (x) :=

(−1)n

Γ(n−α)

∫ t f

x

f (n)(t)
(t− x)n−α−1 dt, (4)

where t0≤ x≤ t f , f (n)(t) = dn f (t)
dtn ∈Cn[t0, t f ] is the ordinary derivative of integer order

n and n = [α]+ 1. Indeed, Caputo fractional derivatives of order α , n− 1 < α ≤ n,

of function f ∈C[a,b] is given by:

CDα f (x) = Jm−α

( dm

dxm f (x)
)
, (5)

where m ∈ N and m−1≤ α ≤ m.

The following theorem, helps us to apply a fractional integral over a fractional
derivative [28]:

THEOREM 2.3. Let α > 0 and n = dαe. If f (x) ∈Cn[a,b], then we have:

Iα
t0 (

C
t0Dα

t f )(x) = f (x)−
n−1

∑
k=0

f (k)(t0)
k!

(x− t0)k, (6)
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Iα
t f
(Ct Dα

t f
f )(x) = f (x)−

n−1

∑
k=0

(−1)k f (k)(t f )

k!
(t f − x)k. (7)

In particular, if 0 < α < 1 and f (x) ∈C[a,b], we will have the following properties:

Iα
t0 [

C
t0Dα

t f (t)] = f (t)− f (t0), (8)

and

Iα
t f
[C

t Dα
t f

f (t)] = f (t)− f (t f ). (9)

2.2. Adomian Decomposition Method

The fractional ADM, has been shown to solve effectively, easily, and accurately
a large class of nonlinear problems with approximations converging rapidly to
accurate solutions. To illustrate its basic idea of the technique, we consider the
following nonlinear fractional dynamic system:

C
t0Dα

t x(t)+L[x(t)]+N[x(t)] = f (t), x(t0) = x0, (10)

where L is a linear operator, N is a nonlinear operator, f (t) is a given continuous
function and 0 < α < 1. By applying a proper fractional integral operator to (10) and
using Theorem 2.3, we have:

x(t) = x0 +g(t)− Iα
t0

(
L[x(τ)]+N[x(τ)]

)
, (11)

where g(t) represents a function that arising from fractional integration of f (t) and
using the initial condition. The basic character of the ADM is to consider x(t) =

∑
∞
n=0 xn(t) as a correction functional for system (11), where xn is the nth approximate

solution of x. Also, ADM requires to determine N[x(t)] = ∑
∞
n=0 An, in which:

An =
1
n!

[ dn

dλ n N[x(λ )]
]

λ=0
. (12)

Now, the successive approximations xn+1, n ≥ 0, of the solution x will be readily
obtained by substituting the approximated functions x(t) and N[x(t)] into (11):

x0(t) = x0 +g(t), xn+1(t) =−Iα
t0

(
L[xn(τ)]+An

)
, n≥ 0. (13)

The following theorem, helps us to apply a correction functional over a fractional
differential equation.

THEOREM 2.4. Let the nonlinear term N(x(t)) be Lipschitz continuous with

|N(x) − N(x̂)| ≤ R1|x(t) − x̂(t)| and also the linear term L(x(t)) be Lipschitz
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continuous with |L(x) − L(x̂)| ≤ R2|x(t) − x̂(t)|, where R1 and R2 are Lipschitz

constants. Then, the correction functional for FDE (10), that is given via the iterative

formula (13), is converges if 0 < γ < 1 and |x1(t)|< ∞ where γ = (R1 +R2)
(t f−t0)α

Γ(α+1) .

PROOF. See [11; 22] for proofs and other details.

The main step of MADM is to characterize the function g in (13), by two distinct
parts: one part assigned to the initial term x0 and the other to the second term x1

that we consider here. Please note that, this variation in the formation of x0 and x1

is slight, but it plays a major role in accelerating the convergence of the resulting
successive approximations. Since the only difference between the ADM and MADM
is on the components x0 and x1, so they have the same iteration formulas and the
same convergence. Therefore, by applying the linearity property of operators L, the
recursive relation (13) can be converted to the following iterative formula:

x0(t) = x0

x1(t) = g(t)− Iα
t0

(
L[x0(τ)]+A0

)
x2(t) =−Iα

t0

(
L[x1(τ)]+A1

)
...
xn+1(t) =−Iα

t0

(
L[xn(τ)]+An

)
, n≥ 1.

By using the above recurrence relation, we obtain xn(t) which is the nth approximate
solution of x. Since a solution containing an infinite sum is hardly practical, assuming
that N ∈ N is a large number and approximate the practical solution by the following
truncated series:

XN(t) =
N−1

∑
n=0

xn(t), (14)

consequently, the solution is:

x(t) = lim
N→∞

XN(t). (15)

In other words, the correction functional (11) will give several approximations, and
therefore the exact solution is obtained at the limit of the resulting successive
approximations.
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3. NUMERICAL SCHEME FOR SOLVING FOCPS

Here we define the FOCP in terms of the left Caputo Fractional Derivative
(CFDs) which are given in the last section. A FOCP is the problem of finding an
optimal control u(t) that minimizes the cost functional:

minJ(u) =
1
2

∫ t f

t0

{
xT (t)Q(t)x(t)+uT (t)R(t)u(t)

}
dt (16)

which satisfies the following FDE:

C
t0Dα

t x(t) = A(t)x(t)+B(t)u(t), (17)

and the initial condition:

x(t0) = x0. (18)

where x(t) is the state variable, u(t) is the control variable, Q(t) and R(t) are chosen
to be positive semidefinite and positive definite matrices respectively.

Suppose that H(x(t),u(t),λ (t), t) is Hamiltonian of the above problem defined
as:

H(x(t),u(t),λ (t), t) = 1
2

{
xT (t)Q(t)x(t)+uT (t)R(t)u(t)

}
+

+λ T
{

A(t)x(t)+B(t)u(t)
}
, (19)

where λ ∈ Rn is the Lagrange multiplier also known as a co-state or an adjoint
variable. Now we will find the optimal value of x(t) and u(t) in a way which the
function J(u) in problem (16) becomes minimum. The necessary conditions for
optimality fractional optimal control problem are given as (see [9]):

C
t0Dα

t x(t) =
∂H
∂λ

= A(t)x(t)+B(t)u(t), x(t0) = x0, (20)

∂H
∂u

= R(t)u(t)+BT (t)λ (t) = 0, (21)

C
t Dα

t f
λ (t) =

∂H
∂x

= Q(t)x(t)+AT (t)λ (t), λ (t f ) = 0. (22)

The above equations coincide with the classical ones as α approaches to 1. It should
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be mentioned that in practice, we obtain:

u(t) =−R−1BT
λ . (23)

So, it can be demonstrated that he necessary conditions for system (16)-(18) are as
follows:

C
t0Dα

t x(t) = A(t)x(t)−B(t)R(t)−1B(t)T
λ (t), x(t0) = x0, (24)

C
t Dα

t f
λ (t) = Q(t)x(t)+AT (t)λ (t), λ (t f ) = 0. (25)

Since the initial state x0(t) is always known, we make an initial guess for λ0(t) that
can be considered as an unknown constant. Now, by using the MADM for equations
(30)-(31), approximate solutions xn(t) and λn(t) will be readily obtained upon using
any selective functions x0(t) and λ0(t) for initialization. Substituting these value into
the corresponding function u(t) (i.e. relation (23)), we get the final approximated
solution of problem (16)-(18).

4. NUMERICAL EXAMPLE

In this section some examples are provided to illustrate the efficiency and
applicability of the present idea.

EXAMPLE 4.1. As a first example, consider the following time-invariant FOCP

which minimizes the quadratic performance index:

minJ(u) =
1
2

∫ 1

0

(
x2(t)+u2(t)

)
dt (26)

subject to the following dynamical system:

C
0 Dα

t x(t) =−x(t)+u(t), (27)

and the boundary condition x(0) = 1.

The exact solution of the above mentioned problem in the case of α = 1 is as
following [10]:

x(t) = cosh(
√

2t)+β sinh(
√

2t), (28)

and,

u(t) = (1+β
√

2)cosh(
√

2t)+β
√

2sinh(
√

2t), (29)
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where:

β =−cosh(
√

2)+
√

2sinh(
√

2)√
2cosh(

√
2)+ sinh(

√
2)
∼=−0.9799.

The optimal value of performance index for this problem is J∗ = 0.1929092981. The
necessary conditions for this problem are as follows:

C
0 Dα

t x(t) =−x(t)−λ (t), x(0) = 1, (30)

C
t Dα

1 λ (t) = x(t)−λ (t), λ (1) = 0. (31)

By using the recurrence formula of MADM for system (30)-(31) with different values
of N, the optimal values of cost functional J will be achieved that shown in Table I. In

Table I. Optimal values of cost functional J with various choices of N.
N 10 15 20 30
J∗ 0.1929833162 0.1929119841 0.1929093060 0.1929092982

Table II we compare the obtained results of the optimal values of the cost functional J

using our proposed method with those obtained approaches in the literature.

Table II. Optimal values of J at different choices of α .
α [12] [4] our approach
1 0.192909 0.192909 0.192909

0.99 0.19153 0.19153 0.19155
0.9 0.17952 0.17953 0.17962
0.8 0.16729 0.16711 0.16740

EXAMPLE 4.2. Consider the following FOCP:

minJ(u) =
1
2

∫ 1

0

{
(x(t)− t2)2 +(u(t)− t +1)2

}
dt (32)

in which:

C
0 Dα

t x(t) =
Γ(3)
Γ(2)

(x(t)− tu(t)), x(0) = 0. (33)

The exact solution of this equation is given by x(t) = t2, u(t) = t−1 when α = 1.
In Figure 1, we present the accuracy of approximation state and control by MADM
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with N = 30 and different values of α . It is shown that as the value of α approaches
1, the numerical solutions for FOCP (32)-(33) approach the analytical solutions.

Fig. 1. Approximate solutions of x(t) and u(t) for different values of α and N = 30 ( : α = 1, ◦ : α = 0.9,
4 : α = 0.7, + : α = 0.5 ).

Table III shows the maximum absolute errors of the state variable x(t) and control
variable u(t) obtained using MADM at α = 0.5 and various choices of N. It can be

Table III. Absolute errors of x(t) and u(t) at α = 0.5 and various choices of N.
x(t) u(t)

t N = 20 N = 30 N = 40 N = 10 N = 20
0.1 0 0 0 0 0
0.2 2.7756E−17 0 0 0 0
0.3 2.8310E−15 0 0 0 0
0.4 1.9756E−13 0 0 0 0
0.5 5.8985E−12 0 0 0 0
0.6 1.0253E−10 0 0 0 0
0.7 1.2226E−9 2.2204E−16 0 0 0
0.8 1.1031E−8 4.9960E−15 0 0 0
0.9 8.0224E−8 9.0261E−14 0 2.2204E−16 2.2204E−16

seen, with increasing the number iterations N, the approximate solutions coincide with
the exact solutions.
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