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Abstract 

 
In this article, Legendre simulated annealing, neural network (LSANN) is designed for fuzzy fractional 

order differential equations, which is employed on fractional fuzzy initial value problem (FFIVP) with 

triangular condition. Here, Legendre polynomials are used to modify the structure of neural networks 

with a Taylor series approximation of the tangent hyperbolic as activation function while the network 

adaptive coefficients are trained in the procedure of simulated annealing to optimize the residual error. 

The computational results are depicted in terms of numerical values to compare them with previous 

results. 
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1. INTRODUCTION 

In 1695, Leibniz raised the problem of fractional derivative, which became the 

base of fractional calculus; fractional derivative and fractional integral operators, 

which is an extension of the familiar derivative and integral operator to real values. 

Interest in fractional calculus has been inspired by the applications that it finds in the 

modeling of physical phenomena such as rheology, viscoelasticity, electrochemistry, 

diffusion processes, earthquakes modeling, fluid dynamics, traffic model, etc. The 

recently influential works on the subject of fractional order is done by many 

researchers such as Li et al. [1] analyzed the nonlinear system of fractional order by 

using phase portraits, Poincare maps, time domain waveforms, and bifurcation 

diagrams, Pourdehi et al. [2] investigated a modified fuzzy Kalman-type filter for a 

fractional order system with finite-step auto-correlated process noise, Boulkroune et 

al. [3] proposed a  novel fuzzy adaptive controller for achieving an appropriate 
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generalized projective synchronization (GPS) of two incommensurate fractional-

order chaotic systems, Ji et al. [4] focused on the uncertain fractional order systems 

(FOS), Zheng [5] studied the approach to stabilize the fractional order chaotic 

system by utilizing the prediction based feedback controls and Takagi-Sugeno fuzzy 

models. All the above fractional models have solutions that are continuous fractions, 

but they are non-differentiable such as Weierstrass type functions. Ordinary 

differential models cannot deal with the models of such complex phenomena 

consequently modeling in terms of fractional differential equations filled this gap. It 

is difficult to find the exact solution of fractional differential equations, so different 

researchers used different approaches and techniques like Improved Euler method 

[6], which is an extension of classical Euler’s method, modified fractional Euler 

method (MFEM) [7], modified Adams–Bashforth–Moulton method (MABMM) [8], 

linear matrix inequalities (LMIs) control toolbox [9], Chattering-free robust method 

[10], Mellin transformation, differential transformation method (DTM), and Laplace 

transformation [11]. 

Nowadays, real world problems are complex and this complexity generally 

arises from the vagueness of the colloquial language. For handling such 

complexities that do not allow them to be studied by classical procedures based on 

probability theory and bivalent logic Zadeh introduced fuzzy logic in 1965 [2]. In 

the beginning, this theory appeared unsustainable, but further progress proved that 

Zadeh’s intuitions were right, beyond all anticipations. Due to a number of 

applications in mathematical modeling, it got the attention of researchers to develop 

different methods to solve these models. Tapaswami et al. [12] gave the solution of 

heat conduction problem with uncertainty in which uncertainty is modeled by 

triangular convex normalized fuzzy set and the modeled problem is solved by the 

variational iteration method (VIM) with a double parametric form of fuzzy numbers. 

Ahmadian et al. [13] derived shifted Legendre operational matrix for solving fuzzy 

fractional order differential equations. Allahviranloo et al. [14] applied Adams–

Bashforth, Adams–Moulton, and predictor–corrector methods to solve fuzzy 

ordinary differential equations. Ahmad et al. [15] proposed numerical solution of 
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fuzzy differential equations by fuzzification of classical Euler’s method and 

optimization method. Khastan and Ivaz [16] employed Nyström method to solve 

fuzzy first order initial value problem. EIJaoui, et al. [17] used fuzzy Laplace 

transformation to solve first and second order fuzzy differential equation under 

comprehensive Hukuhara differentiability.  Khan et al. [18, 19] investigated the 

fuzzy differential equations by modifying the homotopy perturbation method, 

improved Euler’s method, and max-min improved Euler’s method.  

In recent years, artificial neural networks (ANN) become one of the most 

useful techniques to solve real world problems. This technique is based on neural 

network models. This method is flexible and can generally be applied to solve 

different type of linear and nonlinear singular or initial value problems. Unlike other 

numerical methods, this method gave a continuous approximate solution over the 

domain of integration. Moreover, other numerical methods like Runge-Kutta (RK) 

and predictor-corrector methods are iterative for which the step size should be fixed 

before initiating the computation. After obtaining the solution, if one needs to know 

the solution in between of any steps, the process needs to be repeated from primary 

stage. One can also use interpolation methods to get approximate solutions, but 

sometimes interpolation methods are error prone. The Artificial neural network gave 

relief from repetition of iterative methods and interpolations. Also, one may use it as 

a black box to get numerical results at any arbitrary point in the domain [20]-[21]. 

Meade and Fernandez [22]-[23] have calculated the linear ordinary differential 

equations by using a feed forward neural networks. Lagaris et al. [24] [25] have 

solved the ordinary and partial differential equations with initial/ boundary values 

and complex boundary by utilizing artificial neural networks (ANN). Parisi et al. 

[26] have investigated the powerful problem of chemical engineering (a non-steady 

state fixed bed solid-gas reactor). Malek and Beidokhti [27] have studied higher 

order differential equations using the hybrid technique based on optimization and 

neural network methods.  
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2. PRELIMINARIES 

In this section, the basic concepts of Caputo fractional derivative, fuzzy 

number and a Triangular fuzzy number are summarized. For detailed study of fuzzy 

theory, interested reader can read [28,29]. 

 

DEFINITION 2.1. The fractional derivative of g(x) in Caputo sense of order 

0   is defined as [30, 31]. 

  
  





x

a

1-    d
x

g
xgD 





 


 ,

)(

1
)(

1*
,                     

where 

*D  is the Caputo derivative operator   ,aa, , x   0 and  Rx  

The Caputo fractional derivative becomes zero when applied to a constant.  

 

DEFINITION 2.2. Let  denote the universe of discourse, then a function 

 1,0:
~

A  defines a fuzzy set on , known as membership function, which holds 

the following properties [32] 

 A
~

is upper semi-continuous on  , 

 A
~

is fuzzy convex, i.e.,        yAxAyx A
~

,
~

min1
~

   for all   

 1,0,,  yx , 

 A
~

is normal, i.e.  0x  for which   1
~

0 xA ,  

 supp   0
~

|
~

 xAxA  is the support of A
~

, and its closure cl(supp A
~

) 

is compact.  

 

The fuzzy set can be represented by  

   xxuxA
A

:,
~

~ , 

where  xu
A
~ is called membership grade of  x x each pair   xux

A
~,  is called a 

singleton. 

An equivalent parametric definition is also given in [21][22][23] as follows: 

, 
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DEFINITION 2.3. An arbitrary fuzzy number into parametric form is defined 

as [32]  an ordered pair of function      10,,  r ruru  in which  ru  and  ru are 

correspondingly monotonically increasing and monotonically decreasing bounded, 

left continuous on [0,1] and right continuous on 0 with the following property. 

   ruru  , 10  r .  

 

DEFINITION 2.4. The r-cut (r level or r worthy) of a fuzzy set is a crisp set 

described as [33] 

    xr  rxAxAr ,10,
~

|
~

. 

While strong r-cut set can be demonstrated as 

    xr  rxAxAr ,10,
~

|
~

. 

Let 
1r  and 

2r are two different values of r-cut moreover A
~

and B
~

 belong to fuzzy set 

then r-cut and strong r-cut possess following properties 

 AA rr ~~
 . 

  A  21

21 Arr rr  and A A rr   21 ; 

   BA BA rr
r ~~~~

  and   BA BA rrr ~~~~
  

   BA BA rr
r ~~~~ 


 and   BA BA rr
r ~~~~ 


  

      AA
rr ~~ 1 

  

 

DEFINITION 2.5. Let u~ and v~ be two fuzzy numbers with 
Au~ and

Av~  as their 

membership function,  respectively, then their sum is defined as [34] 

       3,~,~max~~ Rzy,x,  yvxumin vu AA
zyx




.
 

While, the product of two fuzzy numbers can be demonstrated as
 

vu ~~
 

       3,~,~max~~ Rzy,x,  yvxumin vu AA
zxy




.
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DEFINITION 2.6. A convex normalized set of fuzzy number of a real line that 

is described by an ordered triple is known as a triangular fuzzy number. Let the 

fuzzy number be  321 ,, aaaA   such that 321 aaa   then the membership function 

is interpreted as [6].
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if,
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axa
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The r -level set of a triangular fuzzy number is given by 

      232122 1,1
~

aaraaaraAr 
 

 

3. LSANN FORMULATION FOR FRACTIONAL DIFFERENTIAL 

EQUATIONS 

In this section, the implementation of LSANN on a generalized form of 

fractional differential equation will be demonstrated that characterized the ordinary 

or partial differential equation [22]. 

         m      RDt       ty ,tytytytG nm   ,,,0,,, ,   (1) 

subject to 

  bay  ,  (2)  

where G demonstrated the structure of fractional differential equation, 
 

is a 

differential operator,  ty  is the solution to be calculated and D
~

 is the discretized 

domain over a finite set of points. Let  wtyt ,  symbolizes the trial solution with 

modifiable network adaptive coefficients (weights)  and formulated according to 

[24]. 
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          ,,  , wtNtFtwtyt 
 (3) 

 

where,
 

 t  fulfills only initial/boundary conditions, the output of LSANN is 

 wtN ,  and w are the weights of LSANN then Eq. (2) in terms of trial solution and 

discretized array of input points may be formulated as, 

               Dt       wty wtywtywtytG t

m

ttt

~
,0,,,,,,,  

 
(4) 

While,  wtN ,  can be calculated from the network as follows. Here, the first three 

terms of the Taylor series of Tangent hyperbolic function are used as activation 

function. 

 
15

2

3
wtN

53 
 ,  (5) 

and 

 



n

1j

1jj tLw .  (6) 

While, 1jL are Legendre polynomials with following recursive formula, 

 
   

1l  xL
j

j
xL x 

j

j
L jjj 







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  (7) 

1xL0 )(  and xxL1 )(  

The structure of Legendre Neural network is further described in Fig. 1. 
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Fig. 1. Structure of Legendre Neural Network. 

 

The mean square error (MSE) for Eq. (3) is given by 

           
2

1

, ,,,,,,
1





H

i

jitjitjitijit

m

j wtywtywtytfwty
H

wMSE 

 
(8) 

Eq. (5) is a minimization problem and we will acquire the minimization result by 

training the network for m number of weights, here the training will be performed 

by simulated annealing. It is defined as a probabilistic technique use to find the 
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global minimum of constrained and bounded constraint problems that can 

mathematically reflect the cooling of atoms to a state of lowest energy. A new point 

is arbitrarily generated at every iteration. The criterion of finding the new point from 

the current point is based on a probability distribution that depends on the 

temperature of current state. The procedure takes all new points that lower the 

objective and with a certain probability it also accepts the point that raise the 

objective to avoid being trapped in the local minima. The algorithm proceeds by 

decreasing the temperature till it converges to minimum. Here we used Mathematica 

10 to employ the procedure, but the interested readers can read the details of 

simulated annealing from ref [35]. Training of network will lead us to the final 

values of network adaptive coefficients that will be replaced in Eq. 

(4) to get the discretized output of FFIVP at the trial points while the solutions at 

different points can also be obtained by replacing the trail points array. It is to be 

noted that the new trail points array will be in the same domain, as was in the 

training procedure, and should be equally spaced. 

 4. NUMERICAL PROBLEM 

EXAMPLE 1. Consider the following linear FFIVP 

    0tytyDt  ,     r12501251r2507500y ..,..   

trial solution of the above equation is given as [24] 

 

  N trtyt  25.075.0
 

  N trtyt  125.0125.1  

 

While, N  can be defined as in Eq. (5) the trial solution in terms of t  and 
jw can be 

written as, 
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The fractional derivative in the Caputo sense of above trial solutions can be 

expressed as 
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Table 1.  Numerical comparison with exact at ß=1 

r 

t = 0.1 t = 1 

LSANN Exact LSANN Exact 

 tyt
  tyt

  tyt
  tyt

  tyt
  tyt

  tyt
  tyt

 

0 0.82832 1.24332 0.82888 1.24332 2.03893 3.05807 2.03871 3.05807 

0.1 0.84477 1.23019 0.85651 1.22950 2.06068 3.02380 2.10667 3.02409 

0.2 0.88363 1.21568 0.88414 1.21569 2.17472 2.99010 2.17463 2.99011 

0.3 0.88121 1.20252 0.91177 1.20187 2.13708 2.95583 2.24258 2.95613 

0.4 0.93961 1.16462 0.93940 1.18806 2.31015 2.53515 2.31054 2.92215 

0.5 0.96730 1.17486 0.96703 1.17424 2.37811 2.88787 2.3785 2.88817 

0.6 0.99499 1.14499 0.99465 1.16043 2.44607 2.59607 2.44645 2.85420 

0.7 1.02267 1.14719 1.02228 1.14661 2.51404 2.81990 2.51441 2.82022 

0.8 1.05038 1.13335 1.04991 1.13280 2.58309 2.78591 2.58237 2.78624 

0.9 1.07801 1.11899 1.07754 1.11899 2.64998 2.75226 2.65032 2.75226 

1 1.10568 1.10568 1.10517 1.10517 2.71795 2.71795 2.71828 2.71828 

 

The MSE equation for  ty and  ty is given as 

    



10

1

2
,,

10

1

i

jitjit wtywtyMSE 

 

    



10

1

2

,,
10

1

i

jitjit wtywtyMSE 

 

Training of the network will be done by the process of simulated annealing which 

we have performed here for specific values of r and ß. Table 1 shows the values of 

y(t) at ß = 1,  t = 1and 0.1 at different values of r and the obtained numerical values 

are compared with RK method, while table 2 shows the numerical comparison at ß = 

0.5, t = 0.1 and at different values of r with modified homotopy perturbation method 

[18]. Table 3 shows the numerical comparison at ß = 0.75, t = 0.1 for different 

values of r and the obtained results are compared with MHPM in [18]. 
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Table 2. Numerical values at ß = 0.5 and t = 0.1 

 LSANN MHPM 

r  tyt
  tyt

  tyt
  tyt

 

0 1.06143 1.59103 1.09650 1.64475 

0.2 1.13293 1.45770 1.16960 1.60820 

0.4 1.20364 1.42509 1.24270 1.57165 

0.6 1.27325 1.48510 1.31580 1.53510 

0.8 1.34387 1.44979 1.38890 1.49855 

1 1.32728 1.32728 1.46200 1.46200 

  

Table 3.  Numerical values at ß = 0.75 and t = 0.1 

r LSANN MHPM 

 tyt
  tyt

  tyt
  tyt

 

0 0.898452 1.34604 0.91369 1.37054 

0.2 0.958374 1.36539 0.97460 1.34008 

0.4 1.01726 1.28797 1.03552 1.30963 

0.6 1.07822 1.30189 1.09643 1.27917 

0.8 1.09965 1.22648 1.15734 1.24871 

1 1.19659 1.19659 1.21826 1.21826 

 

EXAMPLE 2. Consider the nonlinear FFIVP 

      0tytytyD
2

t  ,    r5051r2507500y ..,..   

LSANN is utilized on the above nonlinear fractional differential equation by the 

procedure explained  in Example 1 and the acquired results are shown in table 4 for 

ß = 1 and  t = 1 at different values of  r and the results in table 5 are for ß = 0.75 and 

r = 0.9 at different values of  t that are compared with the min-max method [19]. 
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Table 4.  Numerical comparison with exact at ß = 1 and t = 1  

r 
LSANN Exact 

 tyt
  tyt

  tyt
  tyt

 

0.5 0.720354 2.20872 0.720292 2.19133 

0.6 0.768127 1.83193 0.768031 1.82831 

0.7 0.819537 1.54974 0.819403 1.54933 

0.8 0.875017 1.32817 0.874839 1.32823 

0.9 0.935068 1.14827 0.934842 1.14869 

1 0.999996 0.99999 1.000000 1.00000 

 

Table 5.  Numerical values at ß = 0.75 and r = 0.9 

t 
LSANN Euler’s Method 

 tyt
  tyt

  tyt   tyt
 

0 0.97500 1.05000 0.975000 1.05000 

0.1 0.97041 1.06032 0.969736 1.06154 

0.2 0.965865 1.07059 0.963405 1.07595 

0.3 0.961363 1.08124 0.955812 1.09403 

0.4 0.956705 1.09282 0.946732 1.11689 

0.5 0.951698 1.10579 0.935914 1.14607 

0.6 0.946256 1.12050 0.923082 1.18373 

0.7 0.940407 1.13721 0.907938 1.23310 

0.8 0.934183 1.15627 0.890175 1.29913 

0.9 0.927427 1.17833 0.869488 1.38979 

1 0.919491 1.20477 0.845595 1.51888 

 

5. CONCLUSION 

In this study, LSANN is effectively established for FIVP and consumed to find 

the solutions of linear and nonlinear examples of FIVP to exhibit the strength and 

applicability of the proposed method. The calculations have been done by using the 

computational software Mathematica 10. Following conclusions can be drawn from 

the above working. 

 Due to the single layer of LSANN, it has lower computational complication and 

simple implementation compared to multilayer neural network. 
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 The results can be obtained over the entire finite domain of integration. 

 The thermal minimization methodology made it possible to get the global 

minima of MSE. 

 The LSANN network can handle linear and nonlinear fuzzy fractional 

differential equations. 

 The main advantage of the method is a prediction of accuracy by observing the 

MSE. 
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