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Abstract 

 
In surveys covering human populations it is observed that information in most cases are not obtained at 

the first attempt even after some callbacks. Such problems come under the category of non-response. 

Surveys suffer with non-response in various ways. It depends on the nature of required information, either 

surveys is concerned with general or sensitive issues of a society. Hansen and Hurwitz (1946) have 

considered the problem of non-response while estimating the population mean by taking a subsample  

from the non-respondent group with the help of extra efforts and an estimator was suggested by 

combining the information available   from the response and nonresponse groups. We also mention that in 

survey sampling auxiliary information is commonly used to improve the performance of an estimator of a 

quantity of interest. For estimating the population mean using auxiliary information   in presence of non-

response has been discussed by various authors. In this paper, we have developed estimators for 

estimating the population mean of the variable under interest when there is non-response error in the 

study as well as in the auxiliary variable. We have studied properties of the suggested estimators under 

large sample approximation. Comparison of the suggested estimators with usual unbiased estimator 

reported by Hansen and Hurwitz (1946) and the ratio estimator due to Rao (1986) have been made. The 

results obtained are illustrated with aid of an empirical study. 
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1. INTRODUCTION 

In various human surveys, information is in most cases not obtained from all 

the units in the survey even after call backs. An estimate derived from such 

incomplete data may be misleading especially when the respondents differ from the 

non-respondents because the estimate can be biased. To cope with this problem, 

survey statisticians generally consider and adopt the non-respondents sub-sampling 

scheme developed by Hansen and Hurwitz (1946) to a wide range of practical 

situations. One topic which is discussed at great length in sampling theory is the 
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estimator of population mean Y  of the study variable y using auxiliary information 

in presence of non-response. Cochran (1977) and Rao (1986) suggested the use of 

the ratio method of estimation for population mean Y of the   study variable y with 

sub-sampling from amongst the non- respondents. 

When the population mean X of the auxiliary information x is known, the work of 

Rao (1986) has been further extended by Khare and Srivastava (1997), Singh and 

Kumar (2008), Kumar (2012), Kumar and Vishwanathaiah (2013), Olufadi and 

Kumar (2014) and Chanu and Singh (2015) in presence of non-response. 

For the case of non-response in sample survey, this paper addresses the problem of 

efficiently estimating the population mean Y of the study variable y using auxiliary 

information. Taking motivation from Singh and Pal (2015) a two-parameter ratio 

estimators for population mean Y in presence of non-response using auxiliary 

variable x have been proposed. The properties of these estimators have been studied 

in finite population approach under large sample approximation. 

2. THE  USUAL RATIO AND PRODUCT ESTIMATORS 
 

Let ),...,,( 21 NUUUU  be a finite population of N identifiable units and 

( y , x ) be the study and auxiliary variables respectively taking values (
iy ,

ix ) on the 

thi population units
iU , Ni ,...,.2,1 . Let n be the size of a sample drown from the 

population of size N by using simple random sampling without replacement 

(SRSWOR) to observe the study variable y . In this approach, the population of size   

N is assumed to be composed of two strata of size 
1N  and )( 12 NNN  of 

‘respondent’ and ‘non-respondents’ respectively. Out of n units, 1n respond and 

2n do not. From the 
2n non response units, )1,/( 2  kknrr units are again 

randomly selected, hence of n selected units we have rn 1
observations on variable 

y. It is assumed that no non-response is observed in re-selected units. 

Hansen and Hurwitz (1946) suggested the estimator of the population mean Y as 
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
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the population variances for the entire population, for the non-response group of the 

population, and the population mean of the non-response group respectively, 

222 /YSC yy  and
22

)2(

2

)2( /YSC yy  . 

When the population mean X of the auxiliary variable x is known and information 

on y and x  variables for the n selected units is incomplete (designated as Case I) 

the usual ratio estimator for the population mean Y of the study variable y is given 

by  

XxytR )/( **

1  ,                                                                                                   (2.3) 

where })/()/{( 2211

* xnnxnnx  is an unbiased estimator of the population mean 

X of the auxiliary variable x , 



1

1

11 )/(
n

i

i nxx and 



r

i

i rxx
1

2 )/( . 

The variance of the estimator 
*x is given by  

2

)2(

2* )( xx SSxV    

           ][ 2

)2(

22

xx CCX   ,                                                                                  (2.4) 

where 2

xS and 2

)2(xS are the respectively population variances for the whole population 

and for the non-response group, 
222 / XSC xx  and 

22

)2(

2

)2( / XSC xx  . 
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If X is known and we have incomplete information on the study variable y and the 

complete information on the auxiliary variable x [designed as Case II], then an 

alternative ratio estimator is given by Rao (1986): 

XxytR )/( *

2  ,                                                                                                     (2.5) 

where 



n

i

i nxx
1

)/( is the sample mean of the auxiliary variable x based on a 

sample of size n. In similar fashion the conventional product estimation for the 

population mean Y of the study variable  y under Cases I and II are respectively 

defined by 

)/( **

1 XxytP                                                                                                      (2.6) 

and  

)/(*

2 XxytP                                                                                                        (2.7) 

To the first degree of approximation, the mean squared errors of the ratio and 

product estimators are respectively given by  

)]2()2([)( )2()2()2(

2

)2(

2

)2(

222

1 xyyxxyxyyxxyR CCCCCCCCYtMSE   ,  

 (2.8)  

])2([)( 2

)2(

222

2 yxyyxxyR CCCCCYtMSE   ,                                          (2.9)  
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])2([)( 2

)2(

222

2 yxyyxxyP CCCCCYtMSE   ,                                       (2.11) 

where )/( xyyxyx SSS    is correlation between y and x for the entire population, 

and )/( )2()2()2()2( xyyxyx SSS  is the correlation coefficient between y and x for the 

‘non-respondent’ group with  

))(()1(
1

1 XxYyNS i
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iyx  
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 and ))(()1( 22

2
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1
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The ratio and product estimators 1Rt and 1Pt are better than the usual unbiased 

estimator *y if  
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(i) )2/1(C and )2/1()2( C ;  

and  

(ii) )2/1(C and )2/1()2( C  

respectively hold good, 

 where )/( xyyx CCC    and )/( )2()2()2()2( xyyx CCC  .  

We also note that the ratio estimator 1Rt and the product estimator 1Pt are also better 

than the usual unbiased estimator *y respectively if 

(iii) )2/1(R , 

(iv)  )2/1(R , 

where 
)( 2
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)2()2(
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






 . 

The conditions (iii) and (iv) are not noticed in the literature. 

Thus having the observations over the conditions (i) to (iv) the usual unbiased 

estimator *y is to be preferred over 1Rt and 1Pt if the following conditions  

(v) either )2/1()2/1({  C and )}2/1()2/1( )2(  C  

(vi) or       )}2/1()2/1({  R  

holds true. 

Further the estimators 2Rt and 2Pt are more efficient than the usual unbiased 

estimator *y if  

(i) )2/1(C ;  

and  

(ii) )2/1(C ; 

respectively hold true.  

However, the usual unbiased estimator *y is to be preferred over ratio estimator 2Rt  

and product estimator 2Pt if the condition:  

)}2/1()2/1({  C  holds good.  

)(
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In this paper we have proposed a two-parameter ratio estimator for a finite 

population mean in the presence of non-response. We have obtained the bias and 

mean squared error (MSE) of the proposed class of estimators to the first degree of 

approximation. We have also derived the conditions for the parameter under which 

the proposed class of estimators has smaller MSE than the usual unbiased 

estimator *y , ratio estimator and product estimator. An empirical study is carried out 

in support of the present study.                                       

3. SOME SUGGESTED RATIO-TYPE ESTIMATORS  
 

In this section, we have suggested some ratio-type estimators for estimating the 

population mean Y in two different situations designated as Case I and Case II 

which   are described below. 

CASE I. When the population mean X  of the auxiliary variable x is known; 

and  there is non-response on the study variable y as well as on the auxiliary variable 

x. In this situation, we consider the following estimators for population mean Y as 

)/( 2*2**

1 xXyt  ,                                                                                                 (3.1) 

2
1

***

2 )/( xXyt  ,                                                                                                 (3.2) 


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It is to be noted that estimators
*

1t , 
*

2t and (
*

4t ,
*

5t ) are respectively defined on the 

lines of Kadilar and Cingi (2003), Swain (2014) and Singh and Pal (2015) 

respectively. 
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The estimators in (3.1) to (3.6) are members of the following class of estimators of 

the population mean Y defined by   
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where ( , ) are suitable chosen constants. We note that the class of estimators:  
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*
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4),( tt   for   )2,0(),(  ,                                                                                                      
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*
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In addition to  
*

1t  to 
*

6t , many other acceptable estimators can be generated from the 

class of estimators ),( t . Thus to obtain the biases and MSEs of the estimators 

*

1t to
*

6t , we will first obtained the bias and MSE of the generalized class of 

estimators ),( t . 

To obtain the bias and MSE of the class of estimators ),( t , we write  

)1( 0
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Now expressing (3.7) in terms of e’s we have  
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power series. Expanding and multiplying out the right hand side of (3.8) and 

neglecting terms of e’s having power greater than two we have   
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Taking expectation of both sides of (3.9) we get the bias of the class of estimators 

),( t to the first degree of approximation as  
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 2 (or 2/  )                                                                                    (3.11) 

or 

)12(2  R (or 1)2/(2   R ).                                                    (3.12) 

The suggested class of estimators ),( t  substituted with the values of  (or ) from 

(3.11) and (3.12) becomes an (approximately) unbiased estimator for the population 

mean Y  respectively as  
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Here we note that the estimators )(ut and )(ut are almost unbiased irrespective of 

the values of ( , ).  

Squaring both sides of (3.9) and neglecting terms of e’s having power greater than 

two we have  
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The mean squared error of the proposed class of estimators ),( t to the first degree 

approximation is given by   
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which is minimum when  
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Putting (3.17) in (3.16) we get the minimum MSE of ),( t as  
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Thus we state that the following theorem. 

THEOREM 3.1. To the first degree of approximation, 
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with equality holding if  
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Noting from Srivastava (1971, 1980) it can be shown that the minimum mean 

squared error of the class of estimators ),( t in (3.18) is the minimal possible mean 

squared error up to first degree of approximation for a large class of estimators to 

which the estimators  
*

i
t  (i=1 to 6) and the class of estimators ),( t also belong, for 

example, for the estimators of the form: 

 )/( ** Xxgytg  ,  

where )(g is a function of )/( * Xx with 1)1( g . 

4. COMPARISON OF THE PROPOSED CLASS OF ESTIMATORS ),( t  

WITH HANSEN AND HURWITZ (1946) ESTIMATOR 
*y , RAO (1986) 

RATIO ESTIMATOR  1Rt AND PRODUCT ESTIMATOR 1Pt   
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The expression in (4.1) can be re-expressed as  
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which is positive if 
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


















0)2(with
4

)2(
or

0)2(with
4

)2(
either







R

R
.                                                             (4.4) 

Thus the proposed class of estimators ),( t is more efficient than usual unbiased 

estimator *y if either the condition in (4.2) or the condition (4.4) holds good. 

However, the condition (4.2) is sufficient for the proposed class of estimators 

),( t to be better than the usual unbiased estimator
*y . 

From (2.8) and (3.16) we have  

















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



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),(1
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


                 

                                       















 )2(

2

)2( 2
2

)2(
1 CCx


                                   (4.5) 

which is positive if 


























1
2

)2(
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4

)22(
and

4

)22(
or

1
2

)2(
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4

)22(
and

4

)22(
either

)2(

)2(





CC

CC
                   (4.6) 

Expression (4.5) can also be written as  



















 
 RCCYtMSEtMSE xxR 2

2

)22(

2

)2(
1)()()( 2

)2(

22

),(1




     

 (4.7) 

which is positive if 




















1
2

)2(
with

2

)12(
or

1
2

)2(
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2

)12(
either


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R

R
                                                          (4.8) 

Thus the proposed class of estimators ),( t is better than the usual unbiased 

estimator 1Rt if either the condition in (4.6) or the condition in (4.8) holds good. 

However, the condition in (4.6) is sufficient for the proposed class of estimators 
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),( t  to be better than ratio estimator 1Rt . 

From (2.10) and (3.16) we have  













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                                     (4.9) 

which is non-negative  if 


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
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1
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Expression (4.9) be can also written as  


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 (4.11) 

which is positive if 
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





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R

R
.                                                (4.12) 

Thus the proposed class of estimators ),( t is more efficient than product 

estimator
1Pt  if the condition in (4.10) or the condition (4.12) is satisfied. However, 

the condition (4.10) is sufficient for the proposed class of estimators ),( t to be 

better than the product estimator 1Pt . 
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4.1.  Mean Squared Errors of the Estimators  )6to1(* iti
 

Putting ( , ) = (2, 0), 







0,

2

1
, 









2

1
,0 , (0, 2), (1, 1), 









2

1
,

2

1
in  (3.16) we get 

the MSEs of the estimators )6to1(* iti
to the first degree of approximation as  
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)2(
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The estimators
*

1t ,
*

2t ,
*

3t ,
*

4t ,
*

5t and 
*

6t are respectively better than 
*y if 
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The estimators
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*
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4t ,
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6t are respectively more efficient  than the ratio 
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It is observed from (4.19) to (4.24) and (4.25) to (4.30) that the proposed 

estimator
*

1t ,
*

2t ,
*

3t ,
*

4t ,
*

5t and 
*

6t are more efficient than the usual unbiased estimator  
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*y and the ratio estimator 1Rt as long as the corresponding conditions given by 

(4.25) to (4.30) are satisfied.       

                        

4.2.  Mean Squared Errors of the Almost unbiased Estimators 
)()( and  uu tt  

Inserting  2 and )2/(  in (3.16) we get the mean squared error of 

)()( and  uu tt  to the first degree of approximation as   

)()()( 2

)2(

22

)()( yyuu CCYtMSEtMSE                                                   (4.31) 

which equals to the variance of usual unbiased estimator *y . 

REMARK 4.2.1. Following the procedure adopting in Rao (1983), the cost 

aspects can be easily discussed when there is non-response on both the variables 

y and x . 

REMARK 4.2.2. One can also consider the proposed estimator for the 

population mean under double (or two phase) sampling in presence of non-response 

where the population mean X of the auxiliary variable x is not known. For the 

estimate of mean X of the auxiliary variable x, a large first phase sample of size n  

is selected from a population of N units by simple random sampling without 

replacement (SRSWOR). A smaller second phase sample of size n  is selected from 

n by SRSWOR sampling scheme and the study variable y is measured on it.  

Thus the double sampling version of the proposed estimator ),( t  at (3.7) in 

presence of non-response on both the variables y and x, is given by  
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x
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


,                                                                    (4.32) 

The properties of the proposed estimator
)(

),(

dt


; along with cost aspects can be 

studied under large sample approximation, on the line of Singh et al. (2010).   
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4.3.  Empirical Study  

In this section we compare the performance of different estimators considered 

in this paper using a population data set. The description of the population is given 

below. 

POPULATION I. Source: Khare and Sinha (2004, p.53) 

The data on physical growth of upper-socio-economic group of 95 school children 

of Varanasi under an ICMR study, Deportment of Pediatrics; BHU during 1983-

1984 has under taken in this study. The first 25% (i.e. 24 children) units have been 

considered as non-response units. The values of the parameters related to the study 

variable y  (the weight in Kg.) and the auxiliary variable x (the chest 

circumferences in cm.) are given below: 

4968.19Y , 8611.55X , 0435.3yS , 2735.3xS , 3552.2)2( yS ,

5137.3)2( xS , 8460.0 , 7290.02  , 25.02 W , 95N , 35n . 

We have computed the percent relative efficiency (PRE) of the proposed class of 

estimators ),( t with respect to the unbiased estimator *y by using the formula: 

100
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
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


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
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RCCCC

CC
ytPRE

xxyy

yy


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




 

For 0.2)25.0(0.01  , 0.2)25.0(0.01  , and 2)1(5k ; and findings are shown 

in Table 4.1. It is observed from Table 4.1 that  

(i) for fixed ),(  , the PRE increases as k decreases 

(ii) for fixed ),1( k , the PRE increases as  increases, 

(iii) for fixed ),( k , the PRE increases as    increases up to 1, beyond unity no 

trend is observed.  

For all values of ),,( k , the PRE is larger than 100 percent which follows that the 

proposed class of estimators 
),( t is more efficient than the usual unbiased estimator 

*y due to Hansen and Hurwitz (1946). For )0,1(),(  in the Table 4.1 
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),( *

),( ytPRE 
gives the values of ),( *

1 ytPRE R
. 

It is observed from Table 4.1 that: 

(i) for 1  and all values of ),( k , the 

9835.181),( *

),( ytPRE  ),( *

1 ytPRE R which follows that the proposed class 

of estimators ),( t is more efficient than the ratio estimator 
1Rt  (for 1 ). 

(ii) (a) for 0 , 5)1(2k the ),( *

),( ytPRE  ),( *

1 ytPRE R for 2 , 

      (b) for 25.0 , 5)1(2k the ),( *

),( ytPRE  ),( *

1 ytPRE R for 50.1 , 

      (c) for 50.0 , 5)1(2k the ),( *

),( ytPRE  ),( *

1 ytPRE R for 00.1 , 

      (d) for 75.0 , 5)1(2k the ),( *

),( ytPRE  ),( *

1 ytPRE R for 50.0 . 

Thus the proposed class of estimators
),( t  is more efficient than the ratio estimator 

1Rt as long as the conditions (a) to (d) are satisfied. Larger gain in efficiency by 

using the proposed class of estimators 
),( t over *y and

1Rt for 2),(1   and all 

the values of k. Finally we conclude that there is enough scope of selecting the 

values of scalars ),(   involved in the class of estimators 
),( t in order to obtain 

estimators better than the usual unbiased estimator *y and the ratio estimator 1Rt . 

Thus the proposal of the suggested class of estimators 
),( t is justified. For the sake 

of convenience to the readers, we have given the percent relative efficiencies of the 

proposed estimators *y , 
1Rt and   *

i
t  (i=1 to 6). 
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 Table 4.2. Percent relative efficiency of the suggested class of estimators 
),( t with 

respect to usual unbiased estimator *y .  

 

It is observed from Table 4.2 that ratio estimator *

it ’s (i=1 to 6) are more efficient 

than Hansen and Hurwitz (1946) estimator *y which does not utilize auxiliary 

information. The proposed estimator *

4t is at par with the ratio estimator
1Rt . The 

suggested estimators *

1t and *

5t are more efficient than both the estimators *y and 
1Rt  

with substantial gain in efficiency for all values of )/1( k . Largest gain in efficiency 

is observed by using *

1t over *y .  

We also note from Table 4.2 that the performance of the estimator  
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 are at par with the estimator *

1t . It is also noted that the PREs of the estimators   

( , ) Estimator 

k
1  

5
1  

4
1  

3
1  

2
1  

(0,0) 
*y  100.0000 100.0000 100.0000 100.0000 

(1,0) 1Rt  181.9835 184.1254 187.0347 191.2138 

(2,0) 
*

1t  264.0285 273.0227 285.8940 305.8380 

(1/2,0) 
*

2t  135.1750 135.7686 136.5611 137.6728 

(0,1/2) 
*

3t  116.1239 116.3437 116.6355 117.4115 

(0,2) 
*

4t  181.9835 184.1254 187.0347 191.2138 

(1,1) 
*

5t  233.0159 238.2755 245.6021 256.5122 

(1/2,1/2) 
*

6t  157.2577 158.4595 160.0763 162.3679 
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1Rt and *

1t to *

6t increase as k decreases. It follows that the proposed estimator *

1t can 

used in practice (which do not involve any unknown constant or population 

parameter) in place of )( )0(

),( 
tAOE .  

It is observed from Tables 4.2 and 4.5 that the PRE of the proposed estimator *

1t  is 

near to the asymptotically optimum estimator (AOE)
)0(

),( 
t . With the aid of this 

empirical study we conclude that the estimator that the estimators *

1t , *

7t  and *

8t    

appear to be appropriate choices for use in practice. 

              

Table 4.3. Values of 
opt for different values of ),( k .  

 

Table 4.4. Values of 
opt for different values of ),( k . 

 

  

k  
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

5 4.2208 3.7208 3.2208 2.7208 2.2208 1.7208 1.2208 0.7208 0.2208 

4 4.2629 3.7629 3.2629 2.7629 2.2629 1.7629 1.2629 0.7629 0.2629 

3 4.3184 3.8184 3.3184 2.8184 2.3184 1.8184 1.3184 0.8184 0.3184 

2 4.3949 3.8949 3.3949 2.8949 2.3949 1.8949 1.3949 0.8949 0.3949 

   

k  
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

5 2.1104 1.9854 1.8604 1.7354 1.6104 1.4854 1.3604 1.2354 1.1104 

4 2.1314 2.0064 1.8814 1.7564 1.6314 1.5064 1.3814 1.2564 1.1314 

3 2.1592 2.0342 1.9092 1.7842 1.6592 1.5342 1.4092 1.2842 1.1592 

2 2.1975 2.0725 1.9475 1.8225 1.6975 1.5725 1.4475 1.3225 1.1975 
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Table 4.5. PRE of ),( t at optimum 






 

2

2  with respect to *y for different 

values of k. 

 

 

 

 

 

 

It is to be mentioned that from equation (3.17), one can calculate the optimum 

values of either of the constants ( , ) for different values of k by fixing one of 

them. For the readers convenience we have given the optimum values of ( , ) in 

Tables 4.3 and 4.4. It is observed from Table 4.5 that the PRE of ),( t [at 

optimum 






 

2

2 ] with respect to 
*y [i.e. ),( *)0(

),(
ytPRE


] increases as k  

increases.  

 

5. CASE II: NON-RESPONSE OCCURS ONLY ON THE STUDY 

VARIABLE y WITH KNOWN  POPULATION MEAN X OF THE 

AUXILIARY VARIABLE x   

 

Let the population mean X  of the auxiliary variable x be known. We also 

assume that the information on auxiliary variable x is available for the complete 

sample size n. Thus in this situation we define the following class of estimators for 

the population mean Y  as 



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

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









)(

)(
exp 1

1

*

)1,1(
Xx

Xx

x

X
yt





,                                                                   (5.1) 

where (
1 ,

1 ) are suitable chosen constants. 

 To the first degree of approximation, the bias and mean squared error (MSE) of the 

proposed class of estimators )1,1( t are respectively given by  

k 5 4 3 2 








 

2

2  2.1104 2.1314 2.1592 2.1975 

),( *)0(

),(
ytPRE


 265.2220 274.8381 288.8290 311.0505 
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

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
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












 CCCCYtMSE xyy )2(
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)2(

22

)1,1( 



.           (5.3) 

Equating (5.2) to zero, we have   

11 2  (or )2/( 11   )                                                                                 (5.4) 

or    

)12(2 11   C (or )1)2/(2 11                                                             (5.5) 

The proposed class of estimators )1,1( t substituted with the values of 
1  from (5.4) 

and (5.5), becomes an (approximately) unbiased estimator for the population 

meanY . 

Furthermore, if the sample size n is sufficiently large, the bias of the proposed class 

of estimators )1,1( t becomes negligible.  

The MSE of )1,1( t at (5.3) is minimized when  

C


2

)2( 11 
,                                                                                                      (5.6) 

C2)2( 11   .                                                                                                (5.7) 

By substituting (5.6) in (5.3) we get the minimum MSE of the proposed class of 

estimators   )1,1( t as  

)])1([)(.min 2

)2(

22

)1,1( yy SStMSE                                                               (5.8) 

which is the same as approximate variance of the linear regression estimator  

)(* xXbyylr  , where b is the sample regression coefficient of y on x. 

Thus, we established following theorem. 
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THEOREM 5.1. To the first degree of approximation,  

 )])1([)( 2

)2(

22

)1,1( yy SStMSE    

with equality holding if  

C


2

)2( 11 
.  

In fact Singh and Kumar (2009) showed that the quantity  )])1([ 2

)2(

22

yy SS    is 

the minimal possible mean squared error up to first degree of approximation for 

large class of estimators to which the estimator )1,1( t in (5.1) also belongs, for 

example, for estimators of the form  

)/(* Xxhyyh  ,                                                                                                    (5.8) 

where )(h  is a 2C -function with 1)1( h . Further Singh and Kumar (2009) have 

shown that incorporating sample and population variance of the auxiliary variable x 

might yield an estimator that has smaller mean squared error than 

)])1([ 2

)2(

22

yy SS   especially when the relationship between the study variable 

y and the auxiliary variable x is markedly non-linear. Thus whatever value C has, 

we are always able to choose an approximately optimum estimator (AOE) 

say
)0(

)1,1( 
t from the two parameter family of estimators )1,1( t in (5.1). 

Some members of the proposed class of estimators )1,1( t of the population mean 

Y    are given in the Table 5.1. 

 

Table 5.1. Some members of the proposed class of estimators )1,1( t . 

S. 

No. 
Estimator  

Values of Constants  

1  
1  

1. 
*

)0,0( yt   0 0 

2. )/(*

)0,1( xXyt 
2Rt  1 0 

3. )/(*

)1,0( Xxyt   
2Pt  -1 0 
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4. )/( 22*

)0,2( xXyt 
1t  2 0 

5. 2
1

*

)0,2/1( )/( xXyt 
2t  1/2 0 

6. 













)(2

)(
exp*

)2/1,0(
xX

xX
yt  

3t  0 1/2 

7. 













)(

)(2
exp*

)2,0(
xX

xX
yt  

4t  0 2 

8. 





















)(

)(
exp*

)1,1(
xX

xX

x

X
yt  

5t  1 1 

9. 






















)(

)(

2

1
exp

2
1

*

)2/1,2/1(
xX

xX

x

X
yt 6t  1/2 1/2 

 

 To the first degree of approximation, the mean squared errors of the estimators 1t to 

6t  (listed in Table 5.1) are respectively given by  

)]1(4)[()( 22

)2(

22

1 CCCCYtMSE xyy   ,                                                      (5.10) 









 )1(

4
)()(

2
2

)2(

22

2 C
C

CCYtMSE x

yy  ,                                                     (5.11) 









 )81(

16
)()(

2
2

)2(

22

3 C
C

CCYtMSE x

yy


 ,                                                 (5.12) 

)]21()[()( 22

)2(

22

4 CCCCYtMSE xyy   ,                                                    (5.13) 

















 CCCCYtMSE xyy

4

3
3)()( 22

)2(

22

5  ,                                                (5.14) 

















 C

C
CCYtMSE x

yy
8

3

2

3
)()(

2
2

)2(

22

6


 .                                              (5.15) 
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5.1. Comparison of Mean Squared Error of the Suggested Class of 

Estimators )1,1( t with  22

* and, PR tty  

 

From (2.2) and (5.3) we have  

 )2(4
4

)2(
)()( 11

1122

)1,1(

* 


 


 CYCtMSEyVar x
                         

which is positive if 

  0)2(4 11  C , 0)2( 11    

i.e. if 




















0)2(,
4

)2(
or

0)2(,
4

)2(
either

11
11

11
11







C

C
.                                                               (5.16) 

From (2.9) and (5.3) we have  




















 
 CYCtMSEtMSE xR 2

2

)2(
1

2

)2(
1)()( 111122

)1,1(2




                         

which is non-negative if 




















1
2

)2(
,

4

)22(
or

1
2

)2(
,

4

)22(
either

1111

1111





C

C
.                                                         (5.17) 

Further, from (2.11) and (5.3) we have  




















 
 1

2

)2(
2

2

)2(
1)()( 111122

)1,1(2


 CYCtMSEtMSE xP

                         

which is greater than zero  if 




















1
2

)2(
,

4

)2(

2

1
or

1
2

)2(
,

4

)2(

2

1
either

1111

1111





C

C
.                                                   (5.18) 

Thus it follows that the proposed class of estimators )1,1( t is more efficient than the 

usual unbiased estimator
*y  , ratio estimator 2Rt and product estimator 2Pt  as 

long as the conditions in (5.16), (5.17) and (5.18) respectively hold true.  
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5.2.  Comparison of the proposed estimator )6to1( jt j
 with respect to 

usual unbiased estimator
*y and the ratio estimator  

2Rt  

 

It can be shown that the suggested class of estimators: 

(i) 
1t is more efficient than

*y and 
2Rt respectively if  

1C                                                                                                             (5.19) 

and 

2

3
C .                                                                                                          (5.20) 

(ii) 
2t is more efficient than

*y and 
2Rt respectively if  

4

1
C                                                                                                            (5.21) 

and 

4

3
C .                                                                                                          (5.22) 

(iii) 3t is more efficient than
*y and 2Rt respectively if  

8

1
C                                                                                                            (5.23) 

and 

8

5
C .                                                                                                          (5.24) 

(iv) 
4t is more efficient than

*y and 
2Rt respectively if  

2

1
C                                                                                                            (5.25) 

and 

1C .                                                                                                           (5.26) 

(v) 5t is more efficient than 
*y and 2Rt respectively if  

4

3
C                                                                                                            (5.27) 

and 
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4

5
C .                                                                                                          (5.28) 

(vi) 6t is more efficient than
*y and 

2Rt respectively if  

8

3
C                                                                                                            (5.29) 

and 

8

7
C .                                                                                                          (5.30) 

REMARK 5.2.1. Following the same procedure as adopted by Rao (1983), the 

cost aspects can be also studied when there is non-response only on the variable y. 

REMARK 5.2.2. The double sampling version of suggested class of 

estimators )1,1( t  given by (5.1) can be given when the population mean X  is not 

known. Suppose that complete information on the auxiliary variable x is available 

for both the first and second samples, and that incomplete information on the study 

variable y is available. 

So, in this case, we use information on the   ( rn 1
) responding units on the study 

variable y, and complete information on the auxiliary variable  x from the sample of 

size n. Thus one can suggest a double sampling version of the class of estimators 

)1,1( t defined at (5.1) for population mean Y  when the non-response occurs only 

on the study variable y  as   

 



















 


)(

)(
exp 1

1
*)(

)1,1( xx

xx

x

x
yt d 




,                                                               (5.31) 

The properties of the suggested class of estimators
)(

)1,1(

dt


 along with cost aspects 

can be studied under large sample approximation, on the line of Tabasum and Khan 

(2006) and Singh et al.(2011).   
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5.3.  Empirical Study 

 

In this section, we consider the same population data set which is given in 

Section 4.3. We have computed the percent relative efficiency (PRE) of the 

proposed class of estimators )1,1( t with respect the usual unbiased estimator 
*y by 

using the formula:   

100

)2(
4

)2(
)(

)(
),(

11

2

1122

)2(

2

2

)2(

2

*

)
1,1( 































CCCC

CC
ytPRE

xyy

yy









. 

For 0.2)25.0(0.01  , 0.2)25.0(0.01  , and 2)1(5k ; and findings are shown in 

Table 5.2. 

Table 5.2 exhibits that the values of PREs are larger than 100 percent. It follows that 

the proposed class of estimators )1,1( t is better than usual unbiased estimator 

*y for the values of the constants ),( 11     and k considered here. It is further 

observed that the proposed class of estimators )1,1( t is better than the ratio 

estimator 
2Rt  for 2,1 11    and 2)1(5k . Comparing the Tables 4.1 and 5.2 

we find that the ),( *

),( ytPRE 
[i.e. when there is non-response present in both the 

variables y and x ] is larger than the class of estimators )1,1( t [i.e. when there is 

non-response occurs only on the study variables y and information on the auxiliary 

variable x is available for complete sample size n]. 
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We have also given the percent relative efficiency of different estimators   
2Rt  and 

1t to 6t with respect to usual unbiased estimator 
*y for different values of 

2)1(5k in Table 5.3.  

Table 5.3. Percent relative efficiency of the suggested class of estimators ),( t with 

respect to usual unbiased estimator
*y .  

 

We have further computed the optimum values of 
1 for given values of 

1 , and 

optimum values of 
1  for given of 

1  respectively tabulated in Tables 5.4 and 5.5.  

Table 5.4. Values of 
opt1  for different values of ),( 1 k .  

 

1  
1  Estimator 

k
1  

5
1  

4
1  

3
1  

2
1  

0 0 
*y  100.0000 100.0000 100.0000 100.0000 

1 0 2Rt  133.9946 140.6166 150.4425 166.5398 

2 0 1t  156.9189 170.3510 192.6280 233.2333 

1/2 0 
2t  116.9502 119.7623 123.6931 129.5759 

0 1/2 3t  108.3410 109.6075 111.3274 113.7975 

0 2 
4t  133.9946 140.6166 150.4425 166.5398 

1 1 5t  148.4338 159.1092 175.8212 205.7080 

1/2 1/2 6t  125.6028 130.2214 136.8731 147.2792 

1  

 

k  

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

5 4.5072 4.2572 4.0072 3.7572 3.5072 3.2572 3.0072 2.7572 2.5072 

4 4.5072 4.2572 4.0072 3.7572 3.5072 3.2572 3.0072 2.7572 2.5072 

3 4.5072 4.2572 4.0072 3.7572 3.5072 3.2572 3.0072 2.7572 2.5072 

2 4.5072 4.2572 4.0072 3.7572 3.5072 3.2572 3.0072 2.7572 2.5072 
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Table 5.5. Values of 
opt1 for different values of ),( 1 k . 

 

Table 5.6. PRE of )1,1( t at optimum 






 

2

2 11   with respect to 
*y for different 

values of k. 

 

Tables 5.3 and 5.6 demonstrate that the proposed estimator   1t gives the PRE closer 

to the asymptotically optimum estimator (AOE)
)0(

)1,1( 
t . Thus in practice 1t is to be 

preferred as an alternative to AOE. In general, there is increasing trend in PRE as 

k decreases.  The PRE of 5t  with respect to 
*y is larger than that of 2Rt , 2t , 3t , 6t . 

Also ),( *

4 ytPRE is at par with ),( *

2 ytPRE R
. It follows that the estimator 1t and 

5t are appropriate choice among the estimators
*y , 2Rt , 1t , 2t , 3t , 4t 5t and 6t . 

Comparing Table 5.2 and Table 5.3 we conclude that there is enough scope of 

selecting the values of  scalars ),( 11  in order to obtain estimators better than 

usual unbiased estimator 
*y and the ratio estimator 2Rt  from the proposed class of 

estimators )1,1( t . Thus our recommendation is in the favor of proposed class of 

1  

 

 k  

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

5 4.5072 4.0072 3.5072 3.0072 2.5072 2.0072 1.5072 1.0072 0.5072 

4 4.5072 4.0072 3.5072 3.0072 2.5072 2.0072 1.5072 1.0072 0.5072 

3 4.5072 4.0072 3.5072 3.0072 2.5072 2.0072 1.5072 1.0072 0.5072 

2 4.5072 4.0072 3.5072 3.0072 2.5072 2.0072 1.5072 1.0072 0.5072 

k  5 4 3 2 

opt








 

2

2 11 
 2.2536 2.2536 2.2536 2.2536 

),( *)0(

)1,1(
ytPRE


 158.0729 171.9021 194.3764 237.2882 
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estimators )1,1( t regarding its use in practice. 

Finally, it is observed that the estimator formulated in Case I [i.e. when there is non-

response present on both the variables y and x ] is more efficient than the 

corresponding estimators in Case II [i.e. when there is non-response occurs only on 

the study variables y ]. 
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