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Abstract

The problem of estimating the finite population mean on the samples selected over two occasions has
been considered, when there is non-response (i) on both the occasions, (ii) only on the second occasion for
both matched and unmatched portions of the sample, and (iii) only on the second occasion for unmatched
portion of the sample. For the case when two auxiliary variables are positively and negatively correlated
with the study variable, a double sampling ratio-cum-product estimate from the matched portion of the
sample is presented. Expressions for optimum matching fraction and of the combined estimate have been
derived. The gain in efficiency, the sample sizes and the cost function of the combined estimators over the
direct estimate using no information gathered on the first occasion is computed. The comparison between
the proposed strategy with other estimators is also carried out. An empirical study is also included for
illustration.
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Additional Key Words and Phrases: Successive sampling, Non-response, Ratio-cum-product estimation,
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1 INTRODUCTION

Usually, in many national sample surveys, information collected regularly on the same
population from one period to the next period. In such repetitive surveys, the next
sampling procedure may be used:

Performing a partial replacement of units from one occasion to another, sampling
on successive occasions, also called rotation sampling when the units are constructed
in the number of stages in which they are to become part of the sample, as it happens
with the EPA-Spanish survey of working population-which are performed quarterly,
and most of the family surveys carried out by the INE-Spanish Statistics Institute. (see
Garcı́a Luengo, A. V. and Oña, I. (2010), pp. 2).

In surveys, the problem of non-response often happens due to the refusal of the
subject, absenteeism and sometimes due to the lack of information. Hansen and
Hurwitz (1946) considered the problem of non-response while estimating the
population mean by taking a sub-sample from the non-respondents group with the
help of some extra efforts and an estimator was proposed by combining the

JAMSI, 12 (2016), No. 1 55 

 

 

10.1515/jamsi-2016-0005 
©University of SS. Cyril and Methodius in Trnava 

 



information available from response and non-response groups. The method has been
applied by Okafor and Lee (2000) in double sampling for ratio and regression
estimation. Further, Choudhary, Bathla and Sud (2004) and Singh and Kumar (2009,
2010) used the Hansen and Hurwitz technique for estimating the population mean for
current occasion in the context of sampling on two occasions in presence of
non-response. (see Singh, Kumar and Bhougal (2011), pp. 592).

In repetitive surveys for estimating the same characteristic at different points of
time, it is possible to use the information collected on previous occasion to improve
upon the usual estimators for the current period by using ratio and product methods
of estimation. Generally the correlation between such observations is positive but
situations do exist when the value of study variable at two successive occasions are
negatively correlated e.g. amount of fertilizers contains required by the soil in two
successive seasons and some biological phenomenon in medical sciences. (see Gupta
(1979)). The study of environmental issues also involves negatively correlated
characteristics.

It is to be mentioned that when several auxiliary variables are positively correlated
with the study variable, Artés, Garcı́a Luengo and Oña (2001) developed an optimum
estimate of the population mean on the second occasion by combining (i) a double-
sampling multivariate ratio estimate from the matched portion of the sample and (ii) a
sample mean based on a random sample from the unmatched portion of the sample on
the second occasion assuming that total response from the sample units are available
on both the occasions.

And when several auxiliary variables are negatively correlated with the study
variable, Artés and Garcı́a Luengo (2005) developed an optimum estimate of the
population mean on the second occasion by combining (i) a double-sampling
multivariate product estimate from the matched portion of the sample and (ii) a
sample mean based on a random sample from the unmatched portion of the sample
on the second occasion assuming that total response from the sample units are
available on both the occasions.

Theory of successive sampling had been developed by Artés, Rueda and Arcos
(1999) by using a double sampling ratio-cum-product estimate from the matched
portion of the sample, for the case when two auxiliary variables are positively and
negatively correlated with the study variable.

The present study looks at the situation where some sample units do not supply
the necessary information. The estimate due to Artés, Rueda and Arcos (1999) of
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population mean on second occasion has been adjusted for the case when two auxiliary
variables are positively and negatively correlated with the study variable, for unit non-
response using Hansen and Hurwitz (1946) technique.

In this conditions, estimators of the population mean on second occasion, by using a
double sampling ratio-cum-product estimate from the matched portion of the sample,
when there is non-response, have been proposed. Three different possible cases:

(i) on both the occasions.
(ii) only on the second occasion for both matched and unmatched portions of the

sample.
(iii) only on the second occasion for unmatched portion of the sample.
Expressions for optimum matching fraction and of the combined estimate have been

derived. The gain in efficiency, the sample sizes and the cost function of the combined
estimators over the direct estimate using no information gathered on the first occasion
is computed. The comparison between the proposed strategy with other estimators is
also carried out. An empirical study is also included for illustration.

2 THE TECHNIQUE

In some of practical problems, we may have information from a antecedent occasion
on the value of two auxiliary variables x and z where one of the auxiliary variables
may be value of the study variable y on the previous occasion. Let y be positively and
negatively correlated with the auxiliary variables x and z respectively, whose
population means are unknown. Suppose a simple random sample of size n be drawn
on both occasions from a population of size N. For the sake of simplicity, we assume
that the population size N is large enough so that finite population correction (fpc)
terms can be ignored. We assume that the population can be divided into two classes,
those who will respond at the first attempt and those who will not. Let the sizes of
these two classes be N1 and N2, respectively. Let on the first occasion, schedules
through mail are sent to n units selected by simple random sampling. On the second
occasion, a simple random sample of m = np units, for 0 < p < 1, is retained while
an independent sample of u = nq = n−m units, for q = 1− p, is selected (unmatched
with the first occasion). We assume that in the unmatched portion of the sample on
two occasions, u1 units respond and u2 units do not. Similarly, in the matched portion
m1 units respond and m2 units do not.

Let mh2 = (m2/ν);(ν > 1) denotes the size of the subsample drawn from the
non-response class from the matched portion of the sample on the two occasions for
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collecting information through personal interview. Similarly, denote by
uh2 = (u2/ν);(ν > 1) the size of the subsample drawn from the non-response class in
the unmatched portion of the sample on the two occasions. (see Singh and Priyanka
(2007)).

Let

x̄∗m =
m1x̄m1 +m2x̄mh2

m
:

be the Hansen and Hurwitz estimator of the population mean X̄ of the auxiliary
variable x for the matched portion of the sample on the first occasion,

x̄∗u =
u1x̄u1 +u2x̄uh2

u
:

be the Hansen and Hurwitz estimator of the population mean X̄ of the auxiliary
variable x for the unmatched portion of the sample on the first occasion, where

x̄m1 =
1

m1

m1

∑
t=1

xt ; x̄mh2
=

1
mh2

mh2

∑
l=1

xl ; x̄u1 =
1
u1

u1

∑
α=1

xα ; x̄uh2
=

1
uh2

uh2

∑
β=1

xβ ,

z̄∗m =
m1z̄m1 +m2z̄mh2

m
:

be the Hansen and Hurwitz estimator of the population mean Z̄ of the auxiliary
variable z for the matched portion of the sample on the first occasion,

z̄∗u =
u1z̄u1 +u2z̄uh2

u
:

be the Hansen and Hurwitz estimator of the population mean Z̄ of the auxiliary
variable z for the unmatched portion of the sample on the first occasion, where

z̄m1 =
1

m1

m1

∑
t=1

zt ; z̄mh2
=

1
mh2

mh2

∑
l=1

zl ; z̄u1 =
1
u1

u1

∑
α=1

zα ; z̄uh2
=

1
uh2

uh2

∑
β=1

zβ ,

ȳ∗m =
m1ȳm1 +m2ȳmh2

m
:

be the Hansen and Hurwitz estimator of the population mean Ȳ of the study variable y

for the matched portion of the sample on the second occasion,

ȳ∗u =
u1ȳu1 +u2ȳuh2

u
:
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be the Hansen and Hurwitz estimator of the population mean Ȳ of the study variable y

for the unmatched portion of the sample on the second occasion, where

ȳm1 =
1

m1

m1

∑
t=1

yt ; ȳmh2
=

1
mh2

mh2

∑
l=1

yl ; ȳu1 =
1
u1

u1

∑
α=1

yα ; ȳuh2
=

1
uh2

uh2

∑
β=1

yβ ,

Ȳ is the population mean of the study variable y, on the second occasion,

Ȳ(2) is the population mean of the study variable y, pertaining to the non-response
class,

X̄ is the population mean of the auxiliary variable x, on the first occasion,

X̄(2) is the population mean of the study variable x, pertaining to the non-response
class,

Z̄ is the population mean of the auxiliary variable z, on the first occasion,

Z̄(2) is the population mean of the study variable z, pertaining to the non-response
class,

x̄ is the sample mean of the auxiliary variable x on the first occasion based on the
large sample of size n,

z̄ is the sample mean of the auxiliary variable z on the first occasion based on the
large sample of size n,

S2
y is the population variance of the study variable y,

S2
y(2) is the population variance of the study variable y pertaining to the non-response

class,

S2
x is the population variance of the auxiliary variable x,

S2
x(2) is the population variance of the auxiliary variable x pertaining to the non-

response class,

S2
z is the population variance of the auxiliary variable z,

S2
z(2) is the population variance of the auxiliary variable z pertaining to the non-

response class,

ρxy is the correlation coefficient between study variable y and the auxiliary variable
x for matched portion,

ρxy(2) is the correlation coefficient between study variable y and the auxiliary
variable x pertaining to the non-response class for matched portion,

ρyz is the correlation coefficient between study variable y and the auxiliary variable
z for matched portion,

ρyz(2) is the correlation coefficient between study variable y and the auxiliary
variable z pertaining to the non-response class for matched portion,
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ρxz is the correlation coefficient between the auxiliary variable x and the auxiliary
variable z for matched portion,

ρxz(2) is the correlation coefficient between the auxiliary variable x and the auxiliary
variable z pertaining to the non-response class for matched portion,

p = m
n matched proportion of the sample at the second occasion,

q = (1− p) unmatched proportion of the sample at the second occasion.

θ =W2(ν −1)

where W2 = (N2/N) and ν = (m2/mh2) = (u2/uh2)

Cx =
Sx
X̄ , Cy =

Sy
Ȳ , Cz =

Sz
Z̄

Cx(2) =
Sx(2)
X̄(2)

, Cy(2) =
Sy(2)
Ȳ(2)

, Cz(2) =
Sz(2)
Z̄(2)

∆1 =
Cx
Cy
, ∆2 =

Cz
Cy

∆1(2) =
Cx(2)
Cy(2)

, ∆2(2) =
Cz(2)
Cy(2)

3 THE MULTIVARIATE RATIO-CUM-PRODUCT METHOD OF
ESTIMATING THE MEAN ON THE SECOND OCCASION IN
PRESENCE OF NON-RESPONSE

The unmatched (u units) and matched (m units) portions of the current (second)
occasion sample in presence of non-response provide two independent Hansen and
Hurwitz (1946) estimates: ȳ∗m and ȳ∗u for the population mean Ȳ of the study variable
y on the second occasion.

Thus, agree with Singh (1967) and proceeding as Cochran (1977), for the matched
portion an improved estimate of population mean Ȳ of the study variable y may be
obtained using a double sampling ratio-cum-product estimate as:

t̄∗m = ȳ∗m
x̄

x̄∗m

z̄∗m
z̄

(1)

Var(t̄∗m) =
S2

y

m
+

S2
y

n
u

n−u

(
∆

2
1 +∆

2
2 −2ρxy∆1 +2ρyz∆2 −2ρxz∆1∆2

)
+

+
θS2

y(2)

m
+

θS2
y(2)

m

(
∆

2
1(2)+∆

2
2(2)−2ρxy(2)∆1(2)+2ρyz(2)∆2(2)−2ρxz(2)∆1(2)∆2(2)

)
(see Artés, Rueda and Arcos (1999), pp. 22).

Var(t̄∗m) =
S2

y

m
+

S2
y

n
u

n−u
(Z2 −Z1 −2ρxz∆1∆2)+ (2)
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+
θS2

y(2)

m
+

θS2
y(2)

m

(
Z2(2)−Z1(2)−2ρxz(2)∆1(2)∆2(2)

)

Var(t̄∗m) =
S2

y

m
(1+qA)+

θ

m
(1+A(2))S

2
y(2) (3)

where

A = Z2 −Z1 −2ρxz∆1∆2, A(2) = Z2(2)−Z1(2)−2ρxz(2)∆1(2)∆2(2)

Z1 = ∆1 (2ρxy −∆1) , Z2 = ∆2 (2ρyz +∆2) .

Z1(2) = ∆1(2)
(
2ρxy(2)−∆1(2)

)
, Z2(2) = ∆2(2)

(
2ρyz(2)+∆2(2)

)
If, however, the direct estimate based on the m sampling units, its variance would be

S2
y

m
+

θ

m
S2

y(2)

we obtain that t̄∗m is more efficient than the direct estimate based on the m sampling
units if

Z2 −Z1 −2ρxz∆1∆2 ≤ 0 and Z2(2)−Z1(2)−2ρxz(2)∆1(2)∆2(2) ≤ 0.

3.1 Estimation of the mean population for current occasion in the presence of

non-response on both occasions

Hence, we suggest an estimate of the population mean on the second occasion in
presence of non-response, t, by combining the two independent estimates, t̄∗m and t̄∗u
with weights ϕ and (1−ϕ).

t = ϕ t̄∗m +(1−ϕ)t̄∗u (4)

where t̄∗m is defined at (1) and t̄∗u = ȳ∗u is the unmatched sample mean on second
occasion estimating Ȳ in presence of non-response. The variance of t is given by

Var(t) = ϕ
2 Var(t̄∗m)+(1−ϕ)2 Var(t̄∗u ) (5)

where Var(t̄∗u ) is given by

Var(t̄∗u ) =
S2

y

u
+

θ

u
S2

y(2) (6)
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The best estimate of the mean Ȳ on the second occasion in presence of non-response
is obtained by using the values of ϕ that minimizes Var(t). Differentiating (5) with
respect to ϕ and equating to zero, we get the optimum value of ϕ as

ϕ0 =
Var(t̄∗u )

Var(t̄∗u )+Var(t̄∗m)
=

p
(

S2
y +θS2

y(2)

)
(

S2
y +θS2

y(2)

)
+q
(

qAS2
y +θA(2)S2

y(2)

) (7)

Substituting the value of ϕ0 in place of ϕ in (4) yields the optimum estimator for the
population mean Ȳ of the study variable y on second occasion as

t0 = ϕ0t̄∗m +(1−ϕ0)t̄∗u

Substituting the variances of t̄∗m and t̄∗u and the optimum value of ϕ from (7), we get
the variance of t0 as

Var(t0) =
Var(t̄∗m)Var(t̄∗u )

Var(t̄∗m)+Var(t̄∗u )
=

(
S2

y +θS2
y(2)

n

)
S2

y(1+qA)+θS2
y(2)(1+A(2))

S2
y(1+q2A)+θS2

y(2)(1+qA(2))
,

(8)
where θ = W2(ν − 1). If θ = 0, i.e., there is no non-response, the variance of t0
reduces to

Var(t0) =
S2

y

n
(1+qA)
(1+q2A)

where t0 is the usual estimator of the mean for the current occasion in the context
of sampling on two occasions when there is complete response, which is same as
obtained by Artes, Rueda and Arcos (1999).

Minimizing (8) with respect to u and equating to zero, we get the optimum matching
fraction as

p0 =

(
S2

y(A+1)+θS2
y(2)(A(2)+1)

)
−
√(

S2
y +θS2

y(2)

)(
S2

y(1+A)+θS2
y(2)(1+A(2))

)
S2

yA

or

q0 =−

(
S2

y +θS2
y(2)(A(2)+1)

)
−
√(

S2
y +θS2

y(2)

)(
S2

y(1+A)+θS2
y(2)(1+A(2))

)
S2

yA
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The minimum variance of t0 is given by

min.Var(t0) =

(
S2

y +θS2
y(2)

n

)
.

.

 S2
yA

2
√(

S2
y +θS2

y(2)

)(
S2

y(1+A)+θS2
y(2)(1+A(2))

)
−
(

2S2
y +θS2

y(2)(A(2)+2)
)


We can compute the gain in precision of the combined estimate t0, obtained by using a
double sampling ratio-cum-product estimate from the matched portion of the sample
on the second occasion, over direct estimator ȳ∗ of population mean Ȳ on second
occasion, using no information collected on the first occasion,

G1 =
Var(ȳ∗)
Var(t0)

−1×100 =
−p
(

qS2
yA+θS2

y(2)A(2)

)
S2

y(1+qA)+θS2
y(2)(1+A(2))

×100.

where Var(ȳ∗) =
S2

y

n
+

θ

n
S2

y(2).

or

Gopt(1) =
Var(ȳ∗)

min.Var(t0)
−1×100 =

=
2
√

(S2
y +θS2

y(2))(S
2
y(1+A)+θS2

y(2)(1+A(2)))− (2+A(2))θS2
y(2)− (2+A)S2

y

AS2
y

×100.

Consider the special case where −ρxy = ρyz = ρ1, −ρxy(2) = ρyz(2) = ρ1(2), ρxz = ρ0,
ρxz(2) = ρ0(2), Cx =Cy =Cz =C, Cx(2) =Cy(2) =Cz(2) =C(2) which gives an expression
more simple for the variance

Var(t0) =

(
S2

y +θS2
y(2)

n

)
S2

y(1+qA∗)+θS2
y(2)(1+A∗

(2))

S2
y(1+q2A∗)+θS2

y(2)(1+qA∗
(2))

where

A∗ = 2−4ρ1 −2ρ0, A∗
(2) = 2−4ρ1(2)−2ρ0(2).
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3.2 Estimation of the mean population for current occasion in the presence of

non-response only on the second occasion for both matched and unmatched

portions of the sample

When there is non-response only on the second occasion, we define an estimator for
population mean Ȳ of the study variable y on the current occasion is defined by

t1 = ϕ t̄∗1m +(1−ϕ)t̄∗u (9)

where

t̄∗1m = ȳ∗m
x̄

x̄m

z̄m

z̄
and t̄∗u = ȳ∗u

The variance of the estimator t1 is given by

Var(t1) = ϕ
2 Var(t̄∗1m)+(1−ϕ)2 Var(t̄∗u ) (10)

where

Var(t̄∗1m) =
S2

y

m
(1+qA)+

θ

m
S2

y(2) (11)

and Var(t̄∗u ) is given at (6).

Differentiating (10) with respect to ϕ and equating to zero, we get the optimum
value of ϕ as

ϕ
(1)
0 =

Var(t̄∗u )
Var(t̄∗u )+Var

(
t̄∗1m

) = p
(

S2
y +θS2

y(2)

)
(1+q2A)S2

y +θS2
y(2)

(12)

Substituting the value of ϕ0 in place of ϕ in (9) yields the optimum estimator for the
population mean Ȳ of the study variable y on second occasion as

t(0)1 = ϕ
(1)
0 t̄∗1m +(1−ϕ

(1)
0 )t̄∗u

Substituting the variances of t̄∗1m and t̄∗u and the optimum value of ϕ from (12), we get
the variance of t(0)1 as

Var
(

t(0)1

)
=

Var(t̄∗1m)Var(t̄∗u )
Var
(
t̄∗1m

)
+Var(t̄∗u )

=

(
S2

y +θS2
y(2)

n

)
(1+qA)S2

y +θS2
y(2)

(1+q2A)S2
y +θS2

y(2)
(13)

Differentiating (13) with respect to u and equating to zero, we get the optimum value
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of p as

p(1)0 =

(
S2

y(A+1)+θS2
y(2)

)
−
√(

S2
y +θS2

y(2)

)(
S2

y(1+A)+θS2
y(2)

)
S2

yA

or

q(1)0 =−

(
S2

y +θS2
y(2)

)
−
√(

S2
y +θS2

y(2)

)(
S2

y(1+A)+θS2
y(2)

)
S2

yA

min.Var
(

t(0)1

)
=

(
S2

y +θS2
y(2)

n

)
.

.

(
S2

y +θS2
y(2)

)
+

√(
S2

y +θS2
y(2)

)(
S2

y(1+A)+θS2
y(2)

)
2(S2

y +θS2
y(2))

We can compute the gain in precision of the combined estimate t(0)1 , obtained by using
a double sampling ratio-cum-product estimate from the matched portion of the sample
on the second occasion, over direct estimator ȳ∗ of population mean Ȳ on second
occasion, using no information collected on the first occasion,

G2 =
Var(ȳ∗)

Var(t(0)1 )
−1×100 =

−pqAS2
y

(1+qA)S2
y +θS2

y(2)
×100.

where Var(ȳ∗) =
S2

y

n
+

θ

n
S2

y(2).

or

Gopt(2) =
Var(ȳ∗)

min.Var
(

t(0)1

) −1×100 =

=
2
√

(S2
y +θS2

y(2))(S
2
y(1+A)+θS2

y(2))−2θS2
y(2)− (2+A)S2

y

AS2
y

×100.

Consider the special case where −ρxy = ρyz = ρ1, ρxz = ρ0, Cx =Cy =Cz =C, which
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gives an expression more simple for the variance

Var
(

t(0)1

)
=

(
S2

y +θS2
y(2)

n

)
(1+qA∗)S2

y +θS2
y(2)

(1+q2A∗)S2
y +θS2

y(2)

where

A∗ = 2−4ρ1 −2ρ0.

3.3 Estimation of the mean population for current occasion in the presence of non-

response only on the second occasion for unmatched portion of the sample

When there is non-response only on the second occasion for unmatched portion of the
sample, we define an estimator for population mean Ȳ of the study variable y on the
current occasion is defined by

t2 = ϕ t̄m +(1−ϕ)t̄∗u (14)

where

t̄m = ȳm
x̄

x̄m

z̄m

z̄
and t̄∗u = ȳ∗u

The variance of the estimator t2 is given by

Var(t2) = ϕ
2 Var(t̄m)+(1−ϕ)2 Var(t̄∗u ) (15)

where

Var(t̄m) =
S2

y

m
(1+qA) (16)

and Var(t̄∗u ) is given at (6).

Differentiating (15) with respect to ϕ and equating to zero, we get the optimum
value of ϕ as

ϕ
(2)
0 =

Var(t̄∗u )
Var(t̄∗u )+Var(t̄m)

=
p
(

S2
y +θS2

y(2)

)
(1+q2A)S2

y +(1−q)θS2
y(2)

(17)

Substituting the value of ϕ
(2)
0 in place of ϕ in (14) yields the optimum estimator for

the population mean Ȳ of the study variable y on second occasion as

t(0)2 = ϕ
(2)
0 t̄m +(1−ϕ

(2)
0 )t̄∗u

Substituting the variances of t̄m and t̄∗u and the optimum value of ϕ from (17), we get
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the variance of t(0)2 as

Var
(

t(0)2

)
=

Var(t̄m)Var(t̄∗u )
Var(t̄m)+Var(t̄∗u )

=

(
S2

y

n

)
(1+qA)(S2

y +θS2
y(2))

(1+q2A)S2
y +(1−q)θS2

y(2)
(18)

Differentiating (18) with respect to u and equating to zero, we get the optimum value
of p as

p(2)0 =
S2

y(A+1)−
√

S2
y(S2

y +θS2
y(2))(1+A)

S2
yA

or

q(2)0 =−
S2

y −
√

S2
y(S2

y +θS2
y(2))(1+A)

S2
yA

min.Var
(

t(0)2

)
=

(
S2

y

n

)
.

A(S2
y +θS2

y(2))

2
√

S2
y(S2

y +θS2
y(2))(1+A)−2S2

y −θS2
y(2)

We can compute the gain in precision of the combined estimate t(0)2 , obtained by using
a double sampling ratio-cum-product estimate from the matched portion of the sample
on the second occasion, over direct estimator ȳ∗ of population mean Ȳ on second
occasion, using no information collected on the first occasion,

G3 =
Var(ȳ∗)

Var(t(0)2 )
−1×100 =

p
(

θS2
y(2)−qAS2

y

)
S2

y(1+qA)
×100.

where Var(ȳ∗) =
S2

y

n
+

θ

n
S2

y(2).

or

Gopt(3) =
Var(ȳ∗)

min.Var
(

t(0)2

) −1×100 =

=
2
√

S2
y(S2

y +θS2
y(2))(1+A)−θS2

y(2)− (2+A)S2
y

AS2
y

×100.

Consider the special case where −ρxy = ρyz = ρ1, ρxz = ρ0, Cx =Cy =Cz =C, which
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gives an expression more simple for the variance

Var
(

t(0)2

)
=

(
S2

y

n

)
(1+qA∗)(S2

y +θS2
y(2))

(1+q2A∗)S2
y +(1−q)θS2

y(2)

where

A∗ = 2−4ρ1 −2ρ0.

The gain in precision of t0, t(0)1 and t(0)2 over the direct estimate ȳ∗ for different
values of S2

y , S2
y(2), ρxy, ρxy(2), ρyz, ρyz(2), ρxz, ρxz(2) are presented in tables I-II. It

is assumed that N = 300 and n = 50. From these tables, we obtain the following
conclusions:

(i) For the case S2
y > S2

y(2), the gain in precision of t0 and t(0)2 with respect to ȳ∗

decreases as the values of S2
y increases, whereas the gain in precision of t(0)1 with

respect to ȳ∗ increases as the values of S2
y increase.

(ii) For the case S2
y < S2

y(2), the gain in precision of t0 and t(0)1 with respect to ȳ∗

increases as the values of S2
y(2) increase, whereas the gain in precision of t(0)2 with

respect to ȳ∗ decreases as values of S2
y(2) increase.

(iii) For the case S2
y = S2

y(2), the gain in precision of t0, t(0)1 and t(0)2 with respect to ȳ∗

decreases as the values ofS2
y and S2

y(2) increase.

(iv) For the case ρxy > ρxy(2), the gain in precision of t0 with respect to ȳ∗ increases
as the values of ρxy(2) increase, whereas the gain in precision of t(0)1 and t(0)2 with
respect to ȳ∗ remains constant as values of ρxy(2) increase.

(v) For the case ρxy < ρxy(2), the gain in precision of t0, t(0)1 and t(0)2 with respect to
ȳ∗ increases as the values of ρxy increase.

(vi) For the case ρxy = ρxy(2), the gain in precision of t0, t(0)1 and t(0)2 with respect to
ȳ∗ increases as the values of ρxy and ρxy(2) increase.

(vii) For the case ρyz > ρyz(2), the gain in precision of t0 with respect to ȳ∗ decreases
as the values of ρyz(2) increase, whereas the gain in precision of t(0)1 and t(0)2 with
respect to ȳ∗ remains constant as values of ρyz(2) increase.

(viii) For the case ρyz < ρyz(2), the gain in precision of t0, t(0)1 and t(0)2 with respect to
ȳ∗ decreases as the values of ρyz increase.

(ix) For the case ρyz = ρyz(2), the gain in precision of t0, t(0)1 and t(0)2 with respect to
ȳ∗ decreases as the values of ρyz and ρyz(2) increase.

68 
   

A. V. Garcı́a Luengo



(x) For the case ρxz > ρxz(2), the gain in precision of t0 with respect to ȳ∗ increases
as the values of ρxz(2) increase, whereas the gain in precision of t(0)1 and t(0)2 with
respect to ȳ∗ remains constant as values of ρxz(2) increase.

(xi) For the case ρxz < ρxz(2), the gain in precision of t0, t(0)1 and t(0)2 with respect to
ȳ∗ increases as the values of ρxz increase.

(xii) For the case ρxz = ρxz(2), the gain in precision of t0, t(0)1 and t(0)2 with respect to
ȳ∗ increases as the values of ρxz and ρxz(2) increase.

(xiii) The gain in precision of t0 and t(0)1 with respect to ȳ∗ decreases as the values of
W2 increase, whereas the gain in precision of t(0)2 with respect to ȳ∗ increases as
the values of W2 decrease.

(xiv) The gain in precision of t0 and t(0)1 with respect to ȳ∗ decreases as the values of
(ν −1) increase, whereas the gain in precision of t(0)2 with respect to ȳ∗ increases
as the values of (ν −1) increase.

(xv) The gain in precision of t0 and t(0)1 with respect to ȳ∗ first increases and after
decreases as values of p increase, whereas the gain in precision of t(0)2 with respect
to ȳ∗ decreases as the values of p increase.
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Table I. Gain in precision, G(1), G(2) and G(3) of the proposed estimates t0, t(0)1 and t(0)2 over the direct estimate ȳ∗ for different values of S2
y , S2

y(2), ρxy, ρxy(2), ρyz,
ρyz(2), ρxz and ρxz(2) (when ∆1 = ∆2 = ∆1(2) = ∆2(2) = 1)

ρxy ρxy(2) ρyz ρyz(2) ρxz ρxz(2) (ν −1) W2 S2
y S2

y(2) p G(1) G(2) G(3)

S2
y > S2

y(2)
0.2 0.3 -0.4 -0.8 0.5 0.2 1.5 0.8 0.5 0.4 0.3 17.27 2.31 38.37
0.2 0.3 -0.4 -0.8 0.5 0.2 1.5 0.8 0.6 0.4 0.3 15.76 2.53 32.79
0.2 0.3 -0.4 -0.8 0.5 0.2 1.5 0.8 0.7 0.4 0.3 14.58 2.72 28.80

S2
y < S2

y(2)
0.8 0.5 -0.4 -0.8 0.3 -0.7 1.5 0.4 0.5 0.6 0.2 2.99 17.39 152
0.8 0.5 -0.4 -0.8 0.3 -0.7 1.5 0.4 0.6 0.7 0.2 3.29 17.78 150
0.8 0.5 -0.4 -0.8 0.3 -0.7 1.5 0.4 0.7 0.8 0.2 3.51 18.06 148.57

S2
y = S2

y(2)
0.4 0.4 -0.4 -0.8 0.8 0.2 1.5 0.4 0.5 0.5 0.2 180 30 780
0.3 0.4 -0.4 -0.8 0.8 0.2 1.5 0.4 0.6 0.6 0.3 84.29 23.33 130
0.2 0.4 -0.4 -0.8 0.8 0.2 1.5 0.4 0.7 0.7 0.4 60 17.14 83.08

ρxy > ρxy(2)
0.8 0.5 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 2.58 16.84 155
0.8 0.6 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 5 16.84 155
0.8 0.7 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 8 16.84 155

ρxy < ρxy(2)
0.5 0.8 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 2.15 4.48 31.47
0.6 0.8 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 4.65 7.56 47.31
0.7 0.8 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 7.78 11.53 77.22

ρxy = ρxy(2)
0.7 0.7 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 4.82 11.53 77.22
0.8 0.8 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 11.82 16.84 155
0.9 0.9 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 24.30 24.30 855

ρyz > ρyz(2)
0.2 0.3 -0.5 -0.8 0.5 0.2 0.7 0.5 0.4 0.6 0.4 22.89 7.47 40.26
0.2 0.3 -0.5 -0.7 0.5 0.2 0.7 0.5 0.4 0.6 0.4 16.74 7.47 40.26
0.2 0.3 -0.5 -0.6 0.5 0.2 0.7 0.5 0.4 0.6 0.4 11.70 7.47 40.26

ρyz < ρyz(2)
0.2 0.3 -0.8 -0.5 0.5 0.2 0.7 0.5 0.4 0.6 0.4 25.95 25.95 112.5
0.2 0.3 -0.7 -0.5 0.5 0.2 0.7 0.5 0.4 0.6 0.4 18.37 18.37 77.31
0.2 0.3 -0.6 -0.5 0.5 0.2 0.7 0.5 0.4 0.6 0.4 12.36 12.36 55.31

ρyz = ρyz(2)
0.2 0.3 -0.8 -0.8 0.5 0.2 0.7 0.5 0.4 0.6 0.4 60 25.95 112.5
0.2 0.3 -0.7 -0.7 0.5 0.2 0.7 0.5 0.4 0.6 0.4 33.05 18.37 77.31
0.2 0.3 -0.6 -0.6 0.5 0.2 0.7 0.5 0.4 0.6 0.4 17.55 12.36 55.31

ρxz > ρxz(2)
0.2 0.3 -0.8 -0.2 0.5 0.2 0.7 0.4 0.5 0.6 0.2 16.23 29.85 113.6
0.2 0.3 -0.8 -0.2 0.5 0.3 0.7 0.4 0.5 0.6 0.2 19.86 29.85 113.6
0.2 0.3 -0.8 -0.2 0.5 0.4 0.7 0.4 0.5 0.6 0.2 24.30 29.85 113.6

ρxz < ρxz(2)
0.2 0.3 -0.8 -0.2 0.2 0.5 0.7 0.4 0.5 0.6 0.2 6.30 6.30 19.30
0.2 0.3 -0.8 -0.2 0.3 0.5 0.7 0.4 0.5 0.6 0.2 11.22 11.22 31.39
0.2 0.3 -0.8 -0.2 0.4 0.5 0.7 0.4 0.5 0.6 0.2 18.39 18.39 54.22

ρxz = ρxz(2)
0.2 0.3 -0.8 -0.2 0.3 0.3 0.7 0.4 0.5 0.6 0.2 6.98 11.21 31.38
0.2 0.3 -0.8 -0.2 0.4 0.4 0.7 0.4 0.5 0.6 0.2 15.01 18.39 54.22
0.2 0.3 -0.8 -0.2 0.5 0.5 0.7 0.4 0.5 0.6 0.2 29.85 29.85 113.6
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Table II. Gain in precision, G(1), G(2) and G(3) of the proposed estimates t0, t(0)1 and t(0)2 over the direct estimate ȳ∗ for different values of W2, (ν −1) and p (when
∆1 = ∆2 = ∆1(2) = ∆2(2) = 1) .

ρxy ρxy(2) ρyz ρyz(2) ρxz ρxz(2) (ν −1) W2 S2
y S2

y(2) p G(1) G(2) G(3)

W2
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.3 0.3 0.4 0.2 26.15 40 100
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.4 0.3 0.4 0.2 20.43 34.29 106.67
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.5 0.3 0.4 0.2 16.36 30 113.33

(ν −1)
0.8 0.6 -0.4 -0.8 0.5 -0.7 1.0 0.4 0.5 0.3 0.4 51.18 84 270
0.8 0.6 -0.4 -0.8 0.5 -0.7 1.5 0.4 0.5 0.3 0.4 33.91 64.62 300
0.8 0.6 -0.4 -0.8 0.5 -0.7 2.0 0.4 0.5 0.3 0.4 23.79 52.5 330

p
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.7 0.8 0.7 0.2 17.86 31.60 110.63
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.7 0.8 0.7 0.3 19.60 34.64 100.62
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.7 0.8 0.7 0.4 18.71 33.98 90.63
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4 EFFICIENCY COMPARISON OF THE ESTIMATORS T0, T (0)
1 AND T (0)

2

We have compared the variances of the estimators t0, t(0)1 and t(0)2 obtained in three
different possible situations:

4.1 Comparison of the estimators t0 and t(0)1

From (8) and (13), we have

Var(t0)−Var
(

t(0)1

)
=

Var(t̄∗m)Var(t̄∗u )
Var(t̄∗m)+Var(t̄∗u )

−
Var(t̄∗1m)Var(t̄∗u )

Var
(
t̄∗1m

)
+Var(t̄∗u )

=

=
(Var(t̄∗u ))

2(Var(t̄∗m)−Var(t̄∗1m))

(Var(t̄∗m)+Var(t̄∗u ))(Var
(
t̄∗1m

)
+Var(t̄∗u ))

=

=
θA(2)(Var(t̄∗u ))

2S2
y(2)

m(Var(t̄∗m)+Var(t̄∗u ))(Var
(
t̄∗1m

)
+Var(t̄∗u ))

> 0

which is always positive. Thus

Var(t0)> Var
(

t(0)1

)
. (19)

4.2 Comparison of the estimators t0 and t(0)2

From (8) and (18), we have

Var(t0)−Var
(

t(0)2

)
=

Var(t̄∗m)Var(t̄∗u )
Var(t̄∗m)+Var(t̄∗u )

− Var(t̄m)Var(t̄∗u )
Var(t̄m)+Var(t̄∗u )

=

=
(Var(t̄∗u ))

2(Var(t̄∗m)−Var(t̄1))
(Var(t̄∗m)+Var(t̄∗u ))(Var(t̄m)+Var(t̄∗u ))

=

=
θ(Var(t̄∗u ))

2(1+A(2))S2
y(2)

m(Var(t̄∗m)+Var(t̄∗u ))(Var
(
t̄∗1m

)
+Var(t̄∗u ))

> 0

which is always positive. Thus

Var(t0)> Var
(

t(0)2

)
. (20)
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4.3 Comparison of the estimators t(0)1 and t(0)2

From (13) and (18), we have

Var
(

t(0)1

)
−Var

(
t(0)2

)
=

Var(t̄∗1m)Var(t̄∗u )
Var
(
t̄∗1m

)
+Var(t̄∗u )

− Var(t̄m)Var(t̄∗u )
Var(t̄m)+Var(t̄∗u )

=

=
(Var(t̄∗u ))

2(Var(t̄∗1m)−Var(t̄m))
(Var

(
t̄∗1m

)
+Var(t̄∗u ))(Var(t̄m)+Var(t̄∗u ))

=

=
θ(Var(t̄∗u ))

2S2
y(2)

m(Var
(
t̄∗1m

)
+Var(t̄∗u ))(Var(t̄m)+Var(t̄∗u ))

> 0

which is always positive. Thus

Var
(

t(0)1

)
> Var

(
t(0)2

)
. (21)

From (19), (20) and (21), we have the following inequality,

Var
(

t(0)2

)
< Var

(
t(0)1

)
< Var

(
t(0)
)
,

which shows that the estimator t(0)2 is more efficient than t0 and t(0)1 .

5 EFFICIENCY COMPARISON OF THE ESTIMATORS T0, T0(R) AND T0(P)

5.1 Estimator ratio

In presence of non-response, the optimum estimate of the population mean on second
occasion in sampling on two occasions by using a double sampling ratio estimate
using one auxiliary variable from the matched portion of the sample is given by

Var
(
t0(r)
)
= ϕ0

2 Var
(

t̄∗m(r)

)
+(1−ϕ0)

2 Var(t̄∗u ) where

Var(t̄∗m(r)) =
S2

y

m
(1+qV1)+

θ

m
(1+V1(2))S

2
y(2); V1 =−Z1, V1(2) =−Z1(2).

(see Singh, Kumar and Bhougal (2011), pp. 595)

The optimum estimate of the population mean on second occasion in sampling on
two occasions by using a double sampling ratio-cum-product estimate in presence of
non-response will be more efficient than the optimum estimate of the population mean
on second occasion in sampling on two occasions by using a double sampling ratio
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estimate using one auxiliary variable from the matched portion of the sample if

Var
(
t0(r)
)
−Var(t0)≥ 0

Var
(
t0(r)
)
−Var(t0) =

Var
(

t̄∗m(r)

)
Var(t̄∗u )

Var
(

t̄∗m(r)

)
+Var(t̄∗u )

− Var(t̄∗m)Var(t̄∗u )
Var(t̄∗m)+Var(t̄∗u )

=

=
(Var(t̄∗u ))

2(Var
(

t̄∗m(r)

)
−Var(t̄∗m))

(Var(t̄∗m)+Var(t̄∗u ))(Var
(

t̄∗m(r)

)
+Var(t̄∗u ))

≥ 0 or equivalently

Z2 −2ρxz∆1∆2 ≤ 0 and Z2(2)−2ρxz(2)∆1(2)∆2(2) ≤ 0.

5.2 Estimator product

In presence of non-response, the optimum estimate of the population mean on second
occasion in sampling on two occasions by using a double sampling product estimate
using one auxiliary variable from the matched portion of the sample is given by

Var
(
t0(p)

)
= ϕ0

2 Var
(

t̄∗m(p)

)
+(1−ϕ0)

2 Var(t̄∗u ) where

Var(t̄∗m(p)) =
S2

y

m
(1+qV2)+

θ

m
(1+V2(2))S

2
y(2); V2 = Z2, V2(2) = Z2(2).

(see Singh and Kumar (2009), pp. 160)

The optimum estimate of the population mean on second occasion in sampling on
two occasions by using a double sampling ratio-cum-product estimate in presence of
non-response will be more efficient than the optimum estimate of the population mean
on second occasion in sampling on two occasions by using a double sampling product
estimate using one auxiliary variable from the matched portion of the sample if

Var
(
t0(p)

)
−Var(t0)≥ 0

Var
(
t0(p)

)
−Var(t0) =

Var
(

t̄∗m(p)

)
Var(t̄∗u )

Var
(

t̄∗m(p)

)
+Var(t̄∗u )

− Var(t̄∗m)Var(t̄∗u )
Var(t̄∗m)+Var(t̄∗u )

=
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=
(Var(t̄∗u ))

2(Var
(

t̄∗m(p)

)
−Var(t̄∗m))

(Var(t̄∗m)+Var(t̄∗u ))(Var
(

t̄∗m(p)

)
+Var(t̄∗u ))

≥ 0 or equivalently

Z1 +2ρxz∆1∆2 ≥ 0 and Z1(2)+2ρxz(2)∆1(2)∆2(2) ≥ 0.

6 COMPARING ESTIMATORS IN TERMS OF SURVEY COST

We give some ideas about how saving in cost through mail surveys in the context of
successive sampling on two occasions for different assumed values of ρxy, ρxy(2), ρyz,
ρyz(2), ρxz, ρxz(2), W2, (ν −1) and p.

Let N = 300, n = 50, c0 = 1, c1 = 4, and c2 = 45 (see Choudhary et al., p. 339),
where c0, c1, and c2 denote the cost per unit for mailing a questionnaire, processing
the results from the first attempt respondents, and collecting data through personal
interview, respectively. In addition, C∗

00 is the total cost incurred for collecting the data
by personal interview from the whole sample, i.e., when there is no non-response. The
cost function in this case is given by (assuming the cost incurred on data collection for
the matched and unmatched portion of the sample are same and cost incurred on the
data collection on both occasions is same)

C∗
00 = 2nc2. (22)

Substituting the values of n and c2 in Eq. (22), the total cost work out to be 4500.

Let n1 denotes the number of units which respond at the first attempt and n2 denotes
the number of units which do not respond. Thus,

(i) The cost function for the case when there is non-response on both occasions is
given by

C∗
0 = 2

[
c0n+ c1n1 +

c2n2
ν −1

]
.

The expected cost is given by

(ii) The cost function for the case when there is only non-response on the second
occasion is

C∗
1 = 2c0n+ c1n+

[
c1n1 +

c2n2
ν −1

]
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and the expected cost is given by where

n∗1 = n

[
(1+qA)S2

y +θS2
y(2)

(1+q2A)S2
y +θS2

y(2)

]
(iii) The cost function for the case when there is non-response on second occasion for

unmatched portion of the sample only is given by

C∗
2 =

[
c1n1 +

c2n2
ν −1

]
+2c0n+ c1n,

which expected cost is expressed as where

n∗2 =
n(1+qA)S2

y

(1+q2A)S2
y +(1−q)θS2

y(2)

By equating the variances t0, t(0)1 and t(0)2 respectively, to Var(ȳ∗) and using the
assumed values of different parameters, the values of the sample size for the three
cases and the corresponding expected cost of survey were determined with respect of
t0, t(0)1 and t(0)2 . The sample sizes associated with the three estimators which provide
equal precision to the estimator ȳ∗ are denoted by n∗0, n∗1 and n∗2. The results of this
exercise are presented in tables III-IV. From these tables, we obtain the following
conclusions:

(i) For the case S2
y > S2

y(2), the saving in cost for t0 first increases and after decreases

as the values of S2
y increases, and the saving in cost for t(0)1 and t(0)2 increases as

the values of S2
y increase.

The sample sizes for t0 and t(0)1 , which have the same precision than ȳ∗, as the
values of S2

y increases and the sample sizes for t(0)2 , which have the same precision
than ȳ∗, increases as the values of S2

y increase.

(ii) For the case S2
y < S2

y(2), the saving in cost for t0, t(0)1 and t(0)2 increases as the values
of S2

y(2) increase.

The sample sizes for t0 and t(0)1 which have the same precision than ȳ∗ remains
constant as the values of S2

y(2) increase and the sample sizes for t(0)2 , which have
the same precision than ȳ∗, first increases and after remains constant as the values
of S2

y(2) increase.

(iii) For the case S2
y = S2

y(2), the saving in cost for t0 and t(0)1 increases as the values of

S2
y and S2

y(2) increase whereas the saving in cost for t(0)2 decreases as the values of
S2

y and S2
y(2) increase.
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The sample sizes for t0 which have the same precision than ȳ∗, increases as the
values of S2

y and S2
y(2) increase whereas the sample sizes for t(0)1 , which have the

same precision than ȳ∗ first increases and after remains constant as the values of
S2

y and S2
y(2) increase and the sample sizes for t(0)2 , which have the same precision

than ȳ∗, decreases as the values of S2
y and S2

y(2) increase.

(iv) For the case ρxy > ρxy(2), the saving in cost for t0 increases as the values of ρxy(2)

increase, whereas the saving in cost for t(0)1 and t(0)1 remains constant as the values
of ρxy(2) increase.

The sample sizes for t0, which have the same precision than ȳ∗, increases as the
values of ρxy(2) increase and the sample sizes for t(0)1 and t(0)2 , which have the
same precision than ȳ∗, remains constant as the values of ρxy(2) increase.

(v) For the case ρxy < ρxy(2), the saving in cost for t0, t(0)1 and t(0)2 increases as the
values of ρxy increase.

The sample sizes for t0, t(0)1 and t(0)2 , which have the same precision than ȳ∗,
increases as the values of ρxy increase.

(vi) For the case ρxy = ρxy(2), the saving in cost for t0, t(0)1 and t(0)2 increases as the
values of ρxy and ρxy(2) increase.

The sample sizes for t0, t(0)1 and t(0)2 , which have the same precision than ȳ∗,
increases as the values of ρxy and ρxy(2) increase.

(vii) For the case ρyz > ρyz(2), the saving in cost for t0 decreases as the values of ρyz(2)

increase, whereas the saving in cost for t(0)1 and t(0)1 remains constant as the values
of ρyz(2) increase.

The sample sizes for t0, which have the same precision than ȳ∗, decreases as the
values of ρyz(2) increase and the sample sizes for t(0)1 and t(0)2 , which have the
same precision than ȳ∗, remains constant as the values of ρyz(2) increase.

(viii) For the case ρyz < ρyz(2), the saving in cost for t0, t(0)1 and t(0)2 with respect to ȳ∗

decreases as the values of ρyz increase.

The sample sizes for t0, t(0)1 and t(0)2 which have the same precision than ȳ∗,
decreases as the values of ρyz increase.

(ix) For the case ρyz = ρyz(2), the saving in cost for t0, t(0)1 and t(0)2 with respect to ȳ∗

decreases as the values of ρyz and ρyz(2) increase.

The sample sizes for t0, t(0)1 and t(0)2 which have the same precision than ȳ∗,
decreases as the values of ρyz and ρyz(2) increase.
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(x) For the case ρxz > ρxz(2), the saving in cost for t0 increases as the values of ρxz(2)

increase, whereas the saving in cost for t(0)1 and t(0)2 remains constant as the values
of ρxz(2) increase.
The sample sizes for t0, which have the same precision than ȳ∗, increases as the
values of of ρxz(2) increase and the sample sizes for t(0)1 and t(0)2 , which have the
same precision than ȳ∗, remains constant as the values of ρxz(2) increase.

(xi) For the case ρxz < ρxz(2), the saving in cost for t0, t(0)1 and t(0)2 with respect to ȳ∗

increases as the values of ρxz increase.
The sample sizes for t0, t(0)1 and t(0)2 which have the same precision than ȳ∗,
increases as the values of ρxz increase.

(xii) For the case ρxz = ρxz(2), the saving in cost for t0, t(0)1 and t(0)2 with respect to ȳ∗

increases as the values of ρxz and ρxz(2) increase.
The sample sizes for t0, t(0)1 and t(0)2 which have the same precision than ȳ∗,
increases as the values of ρxz and ρxz(2) increase.

(xiii) The saving in cost for t0, t(0)1 and t(0)2 with respect to ȳ∗ increases as the values
of W2 increase.
The sample sizes for t0 and t(0)1 which have the same precision than ȳ∗ remains
constant as the values of W2 increase, whereas the sample sizes for t(0)2 which have
the same precision than ȳ∗ decreases as the values of W2 increase.

(xiv) The saving in cost for t0, t(0)1 and t(0)2 with respect to ȳ∗ decreases as the values
of (ν −1) increase.
The sample sizes for t0, t(0)1 and t(0)2 which have the same precision than ȳ∗

decreases as the values of (ν −1) increase.

(xv) The saving in cost for t0, t(0)1 and t(0)2 with respect to ȳ∗ increases as the values of
p increase.
The sample sizes for t0, t(0)1 and t(0)2 which have the same precision than ȳ∗

increases as the values of p increase.
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Table III. Sample sizes and corresponding expected cost of survey, which have the same precision than the proposed estimates t0, t(0)1 and t(0)2 over the direct estimate
ȳ∗ for different values of S2

y , S2
y(2), ρxy, ρxy(2), ρyz and ρyz(2) (when ∆1 = ∆2 = ∆1(2) = ∆2(2) = 1)

S2
y > S2

y(2)
0.2 0.3 -0.4 -0.8 0.5 0.2 1.5 0.8 0.5 0.4 0.3 43 49 36 2200.1 1505.3 1112.6
0.2 0.3 -0.4 -0.8 0.5 0.2 1.5 0.8 0.6 0.4 0.3 54 51 43 2794.8 1574.1 1312.1
0.2 0.3 -0.4 -0.8 0.5 0.2 1.5 0.8 0.7 0.4 0.3 54 51 44 2786.0 1576.3 1346.6

S2
y < S2

y(2)
0.8 0.5 -0.4 -0.8 0.3 -0.7 1.5 0.4 0.7 0.6 0.2 51 53 50 1576.3 1089.2 1029.1
0.8 0.5 -0.4 -0.8 0.3 -0.7 1.5 0.4 0.6 0.7 0.2 51 53 51 1579.1 1089.7 1031.5
0.8 0.5 -0.4 -0.8 0.3 -0.7 1.5 0.4 0.5 0.8 0.2 51 53 51 1581.0 1090.2 1033.1

S2
y = S2

y(2)
0.4 0.4 -0.4 -0.8 0.8 0.2 1.5 0.4 0.5 0.5 0.2 55 54 52 1701.2 1102.7 1058.9
0.3 0.4 -0.4 -0.8 0.8 0.2 1.5 0.4 0.6 0.6 0.3 57 55 51 1764.7 1122.5 1038.3
0.2 0.4 -0.4 -0.8 0.8 0.2 1.5 0.4 0.7 0.7 0.4 59 55 48 1811.8 1123.7 988

ρxy > ρxy(2)
0.8 0.5 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 51 53 50 1837.7 1227 1156.4
0.8 0.6 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 52 53 50 1862.1 1227 1156.4
0.8 0.7 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 53 53 50 1884 1227 1156.4

ρxy < ρxy(2)
0.5 0.8 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 51 51 47 1832.4 1186.7 1079.7
0.6 0.8 -0.4 -0.8 0.3 .0.7 1.5 0.5 0.5 0.5 0.2 52 52 48 1859 1201.7 1109.2
0.7 0.8 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 53 53 49 1882.4 1215.1 1134.8

ρxy = ρxy(2)
0.7 0.7 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 52 52 49 1860.5 1215.1 1134.8
0.8 0.8 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 53 53 50 1903.1 1227 1156.4
0.9 0.9 -0.4 -0.8 0.3 -0.7 1.5 0.5 0.5 0.5 0.2 54 45 51 1937.3 1237.7 1175.2

ρyz > ρyz(2)
0.2 0.3 -0.5 -0.8 0.5 0.2 0.7 0.5 0.4 0.6 0.4 56 53 46 3934.2 2122.6 1838.2
0.2 0.3 -0.5 -0.7 0.5 0.2 0.7 0.5 0.4 0.6 0.4 55 53 46 3866.7 2122.6 1838.2
0.2 0.3 -0.5 -0.6 0.5 0.2 0.7 0.5 0.4 0.6 0.4 54 53 46 3794.3 2122.6 1838.2

ρyz < ρyz(2)
0.2 0.3 -0.8 -0.5 0.5 0.2 0.7 0.5 0.4 0.6 0.4 56 56 51 3961.7 2262.7 2045.5
0.2 0.3 -0.7 -0.5 0.5 0.2 0.7 0.5 0.4 0.6 0.4 55 55 49 3886.5 2219.7 1983
0.2 0.3 -0.6 -0.5 0.5 0.2 0.7 0.5 0.4 0.6 0.4 54 54 48 3805 2173.2 1914.2

ρyz = ρyz(2)
0.2 0.3 -0.8 -0.8 0.5 0.2 0.7 0.5 0.4 0.6 0.4 59 56 51 4134 2263 2045.5
0.2 0.3 -0.7 -0.7 0.5 0.2 0.7 0.5 0.4 0.6 0.4 57 55 49 4014.5 2219.7 1983
0.2 0.3 -0.6 -0.6 0.5 0.2 0.7 0.5 0.4 0.6 0.4 55 54 48 3876.6 2173.2 1914.2
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Table IV. Sample sizes and corresponding expected cost of survey, which have the same precision than the proposed estimates t0, t(0)1 and t(0)2 over the direct estimate
ȳ∗ for different values of ρxz, ρxz(2), W2, (ν −1) and p (when ∆1 = ∆2 = ∆1(2) = ∆2(2) = 1) .

ρxz > ρxz(2)
0.2 0.3 -0.8 -0.2 0.5 0.2 0.7 0.4 0.5 0.6 0.2 52 54 52 3103.4 1843.8 1798.4
0.2 0.3 -0.8 -0.2 0.5 0.3 0.7 0.4 0.5 0.6 0.2 53 54 52 3118.9 1843.8 1798.4
0.2 0.3 -0.8 -0.2 0.5 0.4 0.7 0.4 0.5 0.6 0.2 54 54 52 3133.4 1843.8 1798.4

ρxz < ρxz(2)
0.2 0.3 -0.8 -0.2 0.2 0.5 0.7 0.4 0.5 0.6 0.2 51 51 50 3028.5 1774.3 1701.6
0.2 0.3 -0.8 -0.2 0.3 0.5 0.7 0.4 0.5 0.6 0.2 52 52 51 3073.9 1800.9 1739.6
0.2 0.3 -0.8 -0.2 0.4 0.5 0.7 0.4 0.5 0.6 0.2 53 53 52 3113.1 1823.9 1771.4

ρxz = ρxz(2)
0.2 0.3 -0.8 -0.2 0.3 0.3 0.7 0.4 0.5 0.6 0.2 52 52 51 3036.2 1800.9 1739.6
0.2 0.3 -0.8 -0.2 0.4 0.4 0.7 0.4 0.5 0.6 0.2 53 53 52 3097.3 1823.9 1771.4
0.2 0.3 -0.8 -0.2 0.5 0.5 0.7 0.4 0.5 0.6 0.2 54 54 53 3147.2 1843.8 1798.4

W2
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.3 0.3 0.4 0.2 53 54 54 3320.2 1934.7 1917.9
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.4 0.3 0.4 0.2 53 54 53 4223.5 2406.3 2359.8
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.5 0.3 0.4 0.2 53 54 52 5117.6 2864.9 2794.9

(ν −1)
0.8 0.6 -0.4 -0.8 0.5 -0.7 1.0 0.4 0.5 0.3 0.4 58 60 57 2499.4 1574.3 1518
0.8 0.6 -0.4 -0.8 0.5 -0.7 1.5 0.4 0.5 0.3 0.4 57 59 56 1761.6 1203.9 1138.8
0.8 0.6 -0.4 -0.8 0.5 -0.7 2.0 0.4 0.5 0.3 0.4 56 58 54 1391.2 1017.3 943.9

p
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.7 0.8 0.7 0.2 53 54 52 6966.6 3798.6 3713.7
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.7 0.8 0.7 0.3 54 56 53 7125.5 3920.4 3772.1
0.2 0.3 -0.8 -0.2 0.5 0.2 0.5 0.7 0.8 0.7 0.4 55 57 54 7217.7 4015.6 3788.2
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7 CONCLUSION

In this article, the problem of estimating the finite population mean on the samples
selected over two occasions by using a double sampling ratio-cum-product estimate
from the matched portion of the sample has been presented to take care of unit non-
response.

Three different possible cases when there is non-response (i) on both the occasions,
(ii) only on the second occasion for both matched and unmatched portions of the
sample, and (iii) only on the second occasion for unmatched portion of the sample,
have been discussed. The gain in precision by t0 (optimum estimate in case (i)), t(0)1

(optimum estimate in case (ii)) and t(0)2 (optimum estimate in case (iii)) over direct
estimator, ȳ∗, using no information gathered on the first occasion have been compared.

Also, we have derived the sample sizes and the cost function associated with the
three proposed estimates t0, t(0)1 and t(0)2 which provide equal precision to the estimator
ȳ∗.

It is perceived that the gain in precision due to t(0)2 over ȳ∗ is larger as compared to
t0 and t(0)1 It has also been observed that the expected cost of the survey is minimum
for the estimator, t(0)2 and maximum for the estimator, t0. Thus, the proposed study is
recommended when there is need to correct for non-response in sampling over two
occasions.
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