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Ratio-cum-product estimation in presence of
non-response in successive sampling
A. V. GARCIA LUENGO

Abstract

The problem of estimating the finite population mean on the samples selected over two occasions has
been considered, when there is non-response (i) on both the occasions, (ii) only on the second occasion for
both matched and unmatched portions of the sample, and (iii) only on the second occasion for unmatched
portion of the sample. For the case when two auxiliary variables are positively and negatively correlated
with the study variable, a double sampling ratio-cum-product estimate from the matched portion of the
sample is presented. Expressions for optimum matching fraction and of the combined estimate have been
derived. The gain in efficiency, the sample sizes and the cost function of the combined estimators over the
direct estimate using no information gathered on the first occasion is computed. The comparison between
the proposed strategy with other estimators is also carried out. An empirical study is also included for
illustration.

Mathematics Subject Classification 2000: 62D05
Additional Key Words and Phrases: Successive sampling, Non-response, Ratio-cum-product estimation,
Gain in efficiency.

1 INTRODUCTION

Usually, in many national sample surveys, information collected regularly on the same
population from one period to the next period. In such repetitive surveys, the next
sampling procedure may be used:

Performing a partial replacement of units from one occasion to another, sampling
on successive occasions, also called rotation sampling when the units are constructed
in the number of stages in which they are to become part of the sample, as it happens
with the EPA-Spanish survey of working population-which are performed quarterly,
and most of the family surveys carried out by the INE-Spanish Statistics Institute. (see
Garcia Luengo, A. V. and Odia, 1. (2010), pp. 2).

In surveys, the problem of non-response often happens due to the refusal of the
subject, absenteeism and sometimes due to the lack of information. Hansen and
Hurwitz (1946) considered the problem of non-response while estimating the
population mean by taking a sub-sample from the non-respondents group with the

help of some extra efforts and an estimator was proposed by combining the
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information available from response and non-response groups. The method has been
applied by Okafor and Lee (2000) in double sampling for ratio and regression
estimation. Further, Choudhary, Bathla and Sud (2004) and Singh and Kumar (2009,
2010) used the Hansen and Hurwitz technique for estimating the population mean for
current occasion in the context of sampling on two occasions in presence of
non-response. (see Singh, Kumar and Bhougal (2011), pp. 592).

In repetitive surveys for estimating the same characteristic at different points of
time, it is possible to use the information collected on previous occasion to improve
upon the usual estimators for the current period by using ratio and product methods
of estimation. Generally the correlation between such observations is positive but
situations do exist when the value of study variable at two successive occasions are
negatively correlated e.g. amount of fertilizers contains required by the soil in two
successive seasons and some biological phenomenon in medical sciences. (see Gupta
(1979)). The study of environmental issues also involves negatively correlated
characteristics.

It is to be mentioned that when several auxiliary variables are positively correlated
with the study variable, Artés, Garcia Luengo and Ofia (2001) developed an optimum
estimate of the population mean on the second occasion by combining (i) a double-
sampling multivariate ratio estimate from the matched portion of the sample and (ii) a
sample mean based on a random sample from the unmatched portion of the sample on
the second occasion assuming that total response from the sample units are available
on both the occasions.

And when several auxiliary variables are negatively correlated with the study
variable, Artés and Garcia Luengo (2005) developed an optimum estimate of the
population mean on the second occasion by combining (i) a double-sampling
multivariate product estimate from the matched portion of the sample and (ii) a
sample mean based on a random sample from the unmatched portion of the sample
on the second occasion assuming that total response from the sample units are
available on both the occasions.

Theory of successive sampling had been developed by Artés, Rueda and Arcos
(1999) by using a double sampling ratio-cum-product estimate from the matched
portion of the sample, for the case when two auxiliary variables are positively and
negatively correlated with the study variable.

The present study looks at the situation where some sample units do not supply

the necessary information. The estimate due to Artés, Rueda and Arcos (1999) of



JAMSI, 12 (2016), No. 1 57

population mean on second occasion has been adjusted for the case when two auxiliary
variables are positively and negatively correlated with the study variable, for unit non-
response using Hansen and Hurwitz (1946) technique.

In this conditions, estimators of the population mean on second occasion, by using a
double sampling ratio-cum-product estimate from the matched portion of the sample,
when there is non-response, have been proposed. Three different possible cases:

(i) on both the occasions.

(ii) only on the second occasion for both matched and unmatched portions of the
sample.

(iii) only on the second occasion for unmatched portion of the sample.

Expressions for optimum matching fraction and of the combined estimate have been
derived. The gain in efficiency, the sample sizes and the cost function of the combined
estimators over the direct estimate using no information gathered on the first occasion
is computed. The comparison between the proposed strategy with other estimators is

also carried out. An empirical study is also included for illustration.

2 THE TECHNIQUE

In some of practical problems, we may have information from a antecedent occasion
on the value of two auxiliary variables x and z where one of the auxiliary variables
may be value of the study variable y on the previous occasion. Let y be positively and
negatively correlated with the auxiliary variables x and z respectively, whose
population means are unknown. Suppose a simple random sample of size n be drawn
on both occasions from a population of size N. For the sake of simplicity, we assume
that the population size N is large enough so that finite population correction (fpc)
terms can be ignored. We assume that the population can be divided into two classes,
those who will respond at the first attempt and those who will not. Let the sizes of
these two classes be N; and N,, respectively. Let on the first occasion, schedules
through mail are sent to n units selected by simple random sampling. On the second
occasion, a simple random sample of m = np units, for 0 < p < 1, is retained while
an independent sample of u = ng = n— m units, for ¢ = 1 — p, is selected (unmatched
with the first occasion). We assume that in the unmatched portion of the sample on
two occasions, # units respond and u; units do not. Similarly, in the matched portion
m units respond and m; units do not.

Let my, = (my/v);(v > 1) denotes the size of the subsample drawn from the
non-response class from the matched portion of the sample on the two occasions for
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collecting information through personal interview. Similarly, denote by
up, = (u2/Vv); (v > 1) the size of the subsample drawn from the non-response class in
the unmatched portion of the sample on the two occasions. (see Singh and Priyanka
(2007)).

Let

_ mj xml + mlfmhz

X, =
m m

be the Hansen and Hurwitz estimator of the population mean X of the auxiliary

variable x for the matched portion of the sample on the first occasion,

L MK +uzxy, )

X, =
“ u

be the Hansen and Hurwitz estimator of the population mean X of the auxiliary

variable x for the unmatched portion of the sample on the first occasion, where
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be the Hansen and Hurwitz estimator of the population mean Z of the auxiliary

variable z for the matched portion of the sample on the first occasion,
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be the Hansen and Hurwitz estimator of the population mean Z of the auxiliary

variable z for the unmatched portion of the sample on the first occasion, where
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be the Hansen and Hurwitz estimator of the population mean ¥ of the study variable y

for the matched portion of the sample on the second occasion,
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be the Hansen and Hurwitz estimator of the population mean ¥ of the study variable y

for the unmatched portion of the sample on the second occasion, where

1M 1 1o 1 &
Yy =— 2 Imy, = —— 2.V Yuy=— ) Yas Yu,, =— ) VB>
i my ,:Zi "y nmp, ; “ up 021 iy Up, ﬁg1 P

Y is the population mean of the study variable y, on the second occasion,

17(2) is the population mean of the study variable y, pertaining to the non-response
class,

X is the population mean of the auxiliary variable x, on the first occasion,

}_((2) is the population mean of the study variable x, pertaining to the non-response
class,

Z is the population mean of the auxiliary variable z, on the first occasion,

Z(z) is the population mean of the study variable z, pertaining to the non-response
class,

X is the sample mean of the auxiliary variable x on the first occasion based on the
large sample of size n,

7 is the sample mean of the auxiliary variable z on the first occasion based on the
large sample of size n,

S)z, is the population variance of the study variable y,

S}Z,(z) is the population variance of the study variable y pertaining to the non-response
class,

S)zc is the population variance of the auxiliary variable x,

Sf@) is the population variance of the auxiliary variable x pertaining to the non-
response class,

S2 is the population variance of the auxiliary variable z,

S§(2> is the population variance of the auxiliary variable z pertaining to the non-
response class,

Pxy is the correlation coefficient between study variable y and the auxiliary variable
x for matched portion,

Pxy(2) 1s the correlation coefficient between study variable y and the auxiliary
variable x pertaining to the non-response class for matched portion,

Py is the correlation coefficient between study variable y and the auxiliary variable
z for matched portion,

Pyz(2) is the correlation coefficient between study variable y and the auxiliary

variable z pertaining to the non-response class for matched portion,
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Px; 1s the correlation coefficient between the auxiliary variable x and the auxiliary
variable z for matched portion,

Pxz(2) is the correlation coefficient between the auxiliary variable x and the auxiliary
variable z pertaining to the non-response class for matched portion,

p= % matched proportion of the sample at the second occasion,

g = (1 — p) unmatched proportion of the sample at the second occasion.

0=Wr(v—1)

where Wo = (N> /N) and v = (ma/my, ) = (u2/up,)
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3 THE MULTIVARIATE RATIO-CUM-PRODUCT METHOD OF
ESTIMATING THE MEAN ON THE SECOND OCCASION IN
PRESENCE OF NON-RESPONSE

The unmatched (x units) and matched (mm units) portions of the current (second)
occasion sample in presence of non-response provide two independent Hansen and
Hurwitz (1946) estimates: y*, and y* for the population mean ¥ of the study variable
y on the second occasion.

Thus, agree with Singh (1967) and proceeding as Cochran (1977), for the matched
portion an improved estimate of population mean ¥ of the study variable y may be

obtained using a double sampling ratio-cum-product estimate as:
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(see Artés, Rueda and Arcos (1999), pp. 22).
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. 955(2) 052

2
P % (22 = Z1) 2P0 M1 2 2202))

Var = —Sg 14+gA +—9 1+Ap)S> 3
(tm) ( q ) ( (2)) v(2) 3
where

A=7—7Z) = 2p:MD2, Ay =2Zy0) —Z1(2) — 2Pxz2)A102)A2(2)
Zi =A1(2py— A1), Zr=DMr(2p 4+ A).

Zig) =Mi2) (2P0 ~ M), Za) = o) (200 +A22)
If, however, the direct estimate based on the m sampling units, its variance would be
2 0
y 2
P i)

we obtain that 7, is more efficient than the direct estimate based on the m sampling

units if

Zy—Z1 —2py;A1Ap <0 and ZZ(Z) _Zl(Z) — 2sz(2)A1(2)A2(2) <0.

3.1 Estimation of the mean population for current occasion in the presence of

non-response on both occasions

Hence, we suggest an estimate of the population mean on the second occasion in
presence of non-response, f, by combining the two independent estimates, 7, and 7,
with weights ¢ and (1 — ).

t= o, +(1-9), @

where 7, is defined at (1) and 7 = ¥} is the unmatched sample mean on second

occasion estimating ¥ in presence of non-response. The variance of ¢ is given by
Var (1) = @* Var (7)) + (1 — @) Var (%) Q)

where Var (7)) is given by

S5 6
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The best estimate of the mean ¥ on the second occasion in presence of non-response
is obtained by using the values of ¢ that minimizes Var (). Differentiating (5) with
respect to ¢ and equating to zero, we get the optimum value of ¢ as
2 2
Var () p (Sy + GSy(Z))

D _ @)
Var(@) +Var () (534082, ) +q (gAS}+04)52))

Substituting the value of ¢ in place of ¢ in (4) yields the optimum estimator for the

population mean ¥ of the study variable y on second occasion as

to = @of, + (1= @)t

Substituting the variances of 7, and 7, and the optimum value of ¢ from (7), we get

the variance of 7y as

Vi () = Var (i) Var (7;) S5+6S75\ S3(1+4gA)+65S, (1 +Ap)
Var () + Var () n S2(14q%A) + 955(2)(1 +4A())’

3
where 6 = Wo(v —1). If 8 =0, i.e., there is no non-response, the variance of #,
reduces to
S (1+44)

n (1+4%A)

where 1 is the usual estimator of the mean for the current occasion in the context

Var (1) =
of sampling on two occasions when there is complete response, which is same as

obtained by Artes, Rueda and Arcos (1999).

Minimizing (8) with respect to # and equating to zero, we get the optimum matching

fraction as

($34+1)+ 082 (A +1)) - \/(S§ +082)) (S301+4) 4652, (1+4))

Po= 5
S5A

or

(824652, (A +1) - \/(Sg +082%) ) (S31+4)+ 652, (1+4)))
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The minimum variance of #( is given by

2 2
S3+ 652,
.

min. Var (19) = (

2
$2A

2\/ (824652, ) (S2(1+4) + 052, (1 +40) ) — (257 + 652, (A +2))

We can compute the gain in precision of the combined estimate 7, obtained by using a
double sampling ratio-cum-product estimate from the matched portion of the sample
on the second occasion, over direct estimator 7 of population mean ¥ on second

occasion, using no information collected on the first occasion,

2 2
Var(5* —p(qs2A+082, A
=Vl 00 = G e D) x 100,
Val"(t()) Sy(l—f'qA)—f—eSy(z)(l—‘rA(z))
S; 6
where Var(y*) = 7) + ;S§(2)'
or
Var(7*
Gopr(1) arl) 100 =

~ min. Var (t0)

2\/(53 + 953(2))(55(1 +A)+ OS)%(Z)(I +Ap))— (2 +A(2))GS§<2> —(2+A4)8? 100
= X .
AS?

Consider the special case where —pyy = Py = P1, —Pyy(2) = Pyz(2) = P1(2)> Pxz = P05
Pxz(2) = Po(2) C,=C,=C,=C, Cx(Z) = Cy(z) = Cz(z) = C<2) which gives an expression
more simple for the variance

2 2 2 * 2 "
$5+6S5,) > S5(1+gA") + 057, (1+A7))

S2(1+q2A*) + 9S§(2)(1 +4A})

Var (19) = (

n

where

A" =2-4p; —2py, AQ =2-4pi2)—2pPo()-
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3.2 Estimation of the mean population for current occasion in the presence of
non-response only on the second occasion for both matched and unmatched

portions of the sample

When there is non-response only on the second occasion, we define an estimator for

population mean Y of the study variable y on the current occasion is defined by

t = of,,+(1- ) )
where
e X Z _
ffm=yi;)a§ and 7y =3,

The variance of the estimator #; is given by

Var (1) = ¢* Var (7},,) + (1 — ¢)* Var (7)) (10)

where
Var(f —Sgl A 952 11
af(flm)—z( +q )+E v(2) 1D

and Var(f}) is given at (6).

Differentiating (10) with respect to ¢ and equating to zero, we get the optimum

value of ¢ as

_ 2 2
g V@) P (53+65%)
O Var(@)+ Var(f,)  (1+4%A)S}+65S:

12)
)

Substituting the value of @p in place of @ in (9) yields the optimum estimator for the

population mean ¥ of the study variable y on second occasion as
0 1) = 1)y
0 =0 T (1= 03 )F,

Substituting the variances of f},, and 7, and the optimum value of ¢ from (12), we get

the variance of t1<0) as

= —% 2 2 2 2
Var (l<0)) = Var (tlm) Var (7)) _ S}' + GS,V(Z) (1+44) Sy + GS,V(Z)
! Var (7},,) + Var (%) (1+4%A)S3+ 653,

Differentiating (13) with respect to u and equating to zero, we get the optimum value

13)

n
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of p as

(a1 v053,) - (1058, (0000 052,
S2A

W=

or

(5+053) -/ (5052 (000053,
S}%A

524052
min. Var (tf())) = (yy(2)> .

n

-

(Sf + 933(2)) * \/(55 + 953(2)) (S-% (1a)+ 985‘”)
: 2(53+6S,)

We can compute the gain in precision of the combined estimate t{o), obtained by using

a double sampling ratio-cum-product estimate from the matched portion of the sample
on the second occasion, over direct estimator 7 of population mean ¥ on second

occasion, using no information collected on the first occasion,

7" —pgAS?
= Var(}(’())) —1x100= X100,
Var(r,”) (1+qA) S5+ 657,
2 9
where Var(y") = ;) + ;S§(2)‘
or
Var(7*
Gopr(2) = VG 00—

min. Var (tl(o))

2\/ (534652, (S3(1+A) +652,)) — 2052, — (2+A)S}
= 5 x 100.
AS?

Consider the special case where —p,, = py; = p1, Px; = po, Cx = C, = C; = C, which
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gives an expression more simple for the variance

2 2 “ o )
VMO@): S5+0850)\ (1+947)S)+6S),,
n (1+4%A*) S} + 65,

where

A* = 2—4p1 —Zpo.

3.3 Estimation of the mean population for current occasion in the presence of non-

response only on the second occasion for unmatched portion of the sample

When there is non-response only on the second occasion for unmatched portion of the
sample, we define an estimator for population mean ¥ of the study variable y on the

current occasion is defined by

= Qtu+(1-0)i, (14)
where
_ X Zm _
tm = _m — d Fk == *
S

The variance of the estimator #, is given by

Var (12) = @* Var () + (1 — @) Var (7;) (15)
where
2
Var(7,,) = ;)(l +qA) (16)

and Var(f}) is given at (6).
Differentiating (15) with respect to ¢ and equating to zero, we get the optimum

value of ¢ as

o Var(@) P(S§ +95>2~<2>)
P Var @) + VarG) (11 PA) S+ (1- )88

a7
)

2)

Substituting the value of (po2 in place of @ in (14) yields the optimum estimator for

the population mean ¥ of the study variable y on second occasion as

1" = ot + (1= o)

Substituting the variances of #,, and 7, and the optimum value of ¢ from (17), we get
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the variance of téo) as

_ . 2 2
Var (t(o)) _ Var(f)Var(@) (S5 (1HaA) (8 +0S,)
2 Var (7,,,) + Var () n | (144%A) S% +(l—gq) 9S§(2)

(18)

Differentiating (18) with respect to u and equating to zero, we get the optimum value

of p as
2
o SA+1- \/Sg(sg+ 052,))(1+4)
Po-= S2A
or
o S - \/Sg(s_§+ 0%,))(1+4)
o _

2
S2A

2 2 2
min. Var (éO)) _ <S}> ’ A(S5+0S75))
n 2\/53(53 +082,))(1+A) =283 -0,

We can compute the gain in precision of the combined estimate ¢, ’, obtained by using

(0)
2

a double sampling ratio-cum-product estimate from the matched portion of the sample
on the second occasion, over direct estimator 7 of population mean ¥ on second

occasion, using no information collected on the first occasion,

2 2
Gy= VU)o 100 = ( ) })XIOO.
Var(£\") S3(1+qA)
58
where Var(y") = Zy + ;S§(2)'
or
Var(7*

Gopr(3) = Vel 0=

min. Var (té()))

B 2\/55(53 +05%,))(1+A) = 082, — (2+4)S?

100.
AS2 .

Consider the special case where —p,, = py; = p1, Px; = po, Cx = C, = C; = C, which
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gives an expression more simple for the variance

* 2 2
var(0) = () a6+ 0%)
2 (1+¢2A%) S} + (1 - )88},

n
where

A* = 2—4p1 —Zpo.

The gain in precision of fy, t1(0> and téo) over the direct estimate y* for different

values of Sﬁ, S}z,(z), Pxys Pxy(2)> Pyzs Pyz(2)s Pxzs Pxz(2) are presented in tables I-II. It
is assumed that N = 300 and n = 50. From these tables, we obtain the following

conclusions:

(i) For the case S§ > S)Z,(z), the gain in precision of ¢y and téo) with respect to y*

. . .. 0) .
decreases as the values of S§ increases, whereas the gain in precision of t1< ) with

respect to y* increases as the values of S% increase.

(i) For the case S§ < 53(2), the gain in precision of ¢y and tf()) with respect to y*

increases as the values of 53@) increase, whereas the gain in precision of té ) with

respect to y* decreases as values of Sf(z) increase.

(iii) For the case S = Si(z)’ the gain in precision of 7o, tfo) and éo) with respect to y*

decreases as the values ong and Si(z) increase.

(iv) For the case pyy > pyy(2), the gain in precision of 7 with respect to y* increases
as the values of p,,») increase, whereas the gain in precision of tfo) and téo) with

respect to y* remains constant as values of pyy,) increase.

(v) For the case pyy < pyy(2), the gain in precision of 7, tl(o) and téo) with respect to

¥* increases as the values of p,, increase.

(vi) For the case pxy = Py (2), the gain in precision of 7, t{o) and téo) with respect to

¥ increases as the values of pyy and p,y ;) increase.
(vii) For the case py; > p,.(2), the gain in precision of 7y with respect to y* decreases
as the values of p,. ) increase, whereas the gain in precision of t§0> and téo) with

respect to §* remains constant as values of p,. () increase.

(viii) For the case py; < p,(2), the gain in precision of o, t{o) and téo) with respect to

¥* decreases as the values of p,; increase.
(ix) For the case py; = p,(), the gain in precision of 7, tl(o) and té()) with respect to

. .
¥ decreases as the values of py; and p,(,) increase.
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(x) For the case px; > Py;(2). the gain in precision of 7y with respect to y* increases
as the values of p,, () increase, whereas the gain in precision of t§0> and téo) with

respect to y* remains constant as values of p,;(;) increase.

(xi) For the case py; < Py (2), the gain in precision of 7, t{o) and t§0> with respect to

v* increases as the values of p,, increase.

(xii) For the case py; = Py (2), the gain in precision of 7, tl(o) and t§0> with respect to

¥ increases as the values of p,; and p,;(;) increase.

(xiii) The gain in precision of 7y and tl(o) with respect to §* decreases as the values of

(0)

W, increase, whereas the gain in precision of #,” with respect to y* increases as

the values of W, decrease.

(xiv) The gain in precision of 7o and tl(o) with respect to y* decreases as the values of

(v —1) increase, whereas the gain in precision of téo) with respect to y* increases

as the values of (v — 1) increase.

(xv) The gain in precision of 7y and t{o) with respect to y* first increases and after

. o .. 0) .
decreases as values of p increase, whereas the gain in precision of té ) with respect

to y* decreases as the values of p increase.
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Table II. Gain in precision, G(y), G(3) and G(3) of the proposed estimates fo, tl(o) and tZ(O) over the direct estimate 3 for different values of W», (v — 1) and p (when

Al =M =AMy =My =1).

Py Pu@) Px  Pu@) Pc Pee (V1) W S 5)2,@) r  Gu G G(3)

0.2 0.3 -0.8 -02 05 0.2 0.5 03 03 04 02 2615 40 100
0.2 0.3 -0.8 -02 05 0.2 0.5 04 03 04 02 2043 3429 106.67
0.2 0.3 -08 -02 05 0.2 0.5 05 03 04 02 1636 30 113.33

(v-1)
0.8 0.6 -04 -08 05 -07 1.0 04 05 03 04 51.18 84 270
0.8 0.6 -04 -08 05 -07 1.5 04 05 03 04 3391 6462 300
0.8 0.6 -04 -08 05 -07 2.0 04 05 03 04 2379 525 330
p
0.2 0.3 -0.8 -02 05 0.2 0.5 07 08 07 02 1786 31.60 110.63
0.2 0.3 -0.8 -02 05 0.2 0.5 07 08 07 03 19.60 3464 100.62
0.2 0.3 -08 -02 0.5 0.2 0.5 07 08 07 04 1871 3398 90.63
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4 EFFICIENCY COMPARISON OF THE ESTIMATORS Ty, T, % AND T( )

We have compared the variances of the estimators #y, tl(o> and téo) obtained in three

different possible situations:

(0)

4.1 Comparison of the estimators #p and 1,

From (8) and (13), we have

Var (19) — Var (40)) Var (7,,) Var (?1 Var (77,,,) Var (7))

Var (7)) 4 Var (f;) ~ Var (7},,) + Var (7)

(Var (7;))* (Var (i) — Var (ij,)))
(Var (7,) + Var (z;)) (Var (Ff,,) + Var (7;))

) 04 (Var () »
m(Var (%) + Var () (Var (7},,) + Var ()

which is always positive. Thus

Var (f9) > Var (zfo)) . (19)

4.2 Comparison of the estimators #y and tz(o)

From (8) and (18), we have
Var (7)) Var (7)) B Var (7,,) Var (7;)
Var (5,) + Var(7;)  Var (5,) + Var(i;)

Var (19) — Var (téo))

 (Var(R))*(Var(£,) — Var ()
(Var () + Var () (Var (7,) + Var (7))

B 6 (Var (fy;))*(1+ @) 5(2) 50
m(Var () + Var (7)) (Var (tlm) + Var (7))

which is always positive. Thus

Var (f9) > Var (ré‘”) . (20)
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4.3 Comparison of the estimators t§0> and t2<0)

From (13) and (18), we have

0) )\  Var(f},) Var(7;) Var (,,,) Var (7))
Var (tl ) - Var (t2 ) ~ Var (f,,) + Var (7) ~ Var (7)) + Var (7;)

_ (Var(5))*(Var(73,,) — Var (fm))
~ (Var (7,,) + Var (7)) (Var () + Var (%))

))2S2

S v

6 (Var (7,
m(Var (7},,) + Var (;

which is always positive. Thus
Var (r§°>) > Var (r§°>) . @1

From (19), (20) and (21), we have the following inequality,
Var (téo) ) < Var (tl(o) ) < Var (1)) ,

which shows that the estimator téo) is more efficient than 7y and t{o).

5 EFFICIENCY COMPARISON OF THE ESTIMATORS T, Tjz) AND Tjp)

5.1 Estimator ratio

In presence of non-response, the optimum estimate of the population mean on second
occasion in sampling on two occasions by using a double sampling ratio estimate

using one auxiliary variable from the matched portion of the sample is given by

Var (19(,)) = 9o Var( ())+(1_(P0)2Var(f,:) where

LS 0
Var(F (r))=Ey(l+61V1)+%(1+V1<2))S§(2); Vi==Z1, Vig)=—Zy).

m

(see Singh, Kumar and Bhougal (2011), pp. 595)

The optimum estimate of the population mean on second occasion in sampling on
two occasions by using a double sampling ratio-cum-product estimate in presence of
non-response will be more efficient than the optimum estimate of the population mean

on second occasion in sampling on two occasions by using a double sampling ratio
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estimate using one auxiliary variable from the matched portion of the sample if

Var (1o(,)) — Var (1) > 0

Var (f;j1 (r)) Var (%) Va

r
Var (o, ) — Var (o) =
(O( )) Var (t_;:l(r)) + Var () ~ Var(7,

(Var (7)) (Var (t";l(r)> ~Var(7))
= >0 or equivalently
(Var (7%) + Var (7)) (Var (t';;(r)) +Var (7))

Zz — 2szA1A2 < 0 and 22(2) — 2sz(2)A1(2)A2(2) < 0.

5.2 Estimator product

In presence of non-response, the optimum estimate of the population mean on second
occasion in sampling on two occasions by using a double sampling product estimate
using one auxiliary variable from the matched portion of the sample is given by

Var (ty,)) = @y° Var (f,;(p)) +(1—@)*Var (') where

N 6
Var(f,,,)) = *y(l +4V2) + E(l + Vz(z))Si(z); Va=2, Vap) =2y

(see Singh and Kumar (2009), pp. 160)

The optimum estimate of the population mean on second occasion in sampling on
two occasions by using a double sampling ratio-cum-product estimate in presence of
non-response will be more efficient than the optimum estimate of the population mean
on second occasion in sampling on two occasions by using a double sampling product

estimate using one auxiliary variable from the matched portion of the sample if
Var (1o, ) — Var (f0) > 0
Var (o)) Var @) Var() var(sy)

Var — Var = E
(lo(p)) (o) Var (ﬁ;(p)) + Var (t_u) Var (7,) + Var (7)
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(Var (7)) (Var (7)) = Var (7)) ,
= >0 or -equivalently
(Var (7) + Var (7)) (Var (7, ) + Var (7))

Z1+ przAlAz >0 and ZI(Z) + 2sz(2)A1(2)A2(2) > 0.

6 COMPARING ESTIMATORS IN TERMS OF SURVEY COST

We give some ideas about how saving in cost through mail surveys in the context of
successive sampling on two occasions for different assumed values of Py, Pry(2), Pyzs
Pyz(2)> Przs Pxz(2)> Wa, (v —1) and p.

Let N =300, n =50, ¢y = 1, ¢c; =4, and ¢, = 45 (see Choudhary et al., p. 339),
where cg, c1, and ¢, denote the cost per unit for mailing a questionnaire, processing
the results from the first attempt respondents, and collecting data through personal
interview, respectively. In addition, C, is the total cost incurred for collecting the data
by personal interview from the whole sample, i.e., when there is no non-response. The
cost function in this case is given by (assuming the cost incurred on data collection for
the matched and unmatched portion of the sample are same and cost incurred on the

data collection on both occasions is same)
Coo = 2ncs. (22)

Substituting the values of n and ¢, in Eq. (22), the total cost work out to be 4500.
Let n; denotes the number of units which respond at the first attempt and n, denotes

the number of units which do not respond. Thus,

(i) The cost function for the case when there is non-response on both occasions is

given by

Co=2|con+cin + 62321} .

The expected cost is given by

(i) The cost function for the case when there is only non-response on the second

occasion is

CT =2con+cin+ [Clnl + 521121:|
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and the expected cost is given by where

(1+gA) S5 + 653 )
2
(1+4%A) 2 + 652

nj=n
(2
(iii) The cost function for the case when there is non-response on second occasion for

unmatched portion of the sample only is given by

C; = [clnl + —521121} +2con+cyn,

which expected cost is expressed as where
n(1+4A)S;
1 +4%A) S§ +(1— qr)GS)Z,<2>

n; = (

By equating the variances #, t1(0> and téo) respectively, to Var(¥*) and using the
assumed values of different parameters, the values of the sample size for the three
cases and the corresponding expected cost of survey were determined with respect of
to, t§0) and t§0>. The sample sizes associated with the three estimators which provide
equal precision to the estimator 3* are denoted by ng, n} and n3. The results of this
exercise are presented in tables III-IV. From these tables, we obtain the following

conclusions:

(i) For the case Sf > S§(2>, the saving in cost for #( first increases and after decreases

. . 0 0) .
as the values of S% increases, and the saving in cost for tf ) and té ) increases as

the values of Sf increase.

The sample sizes for 7y and t{o), which have the same precision than y*, as the

(0)

values of S§ increases and the sample sizes for ¢, ’, which have the same precision

than y*, increases as the values of S)z, increase.

ii) For the case S2 < S2,.., the saving in cost for 1o, t<0) and t(O) increases as the values
y S 9y(2) g 1 2

2 .
of Sy<2) increase.
The sample sizes for fy and tl(o) which have the same precision than y* remains
constant as the values of 5}2,(2) increase and the sample sizes for téo), which have
the same precision than y*, first increases and after remains constant as the values
2 .
of Sy<2> increase.
iii) For the case $2 = SZ, , the saving in cost for fy and t(o) increases as the values of
Y2 g 1
S)Z, and S%Q) increase whereas the saving in cost for téo) decreases as the values of

2 2
Sy and Sy(z) increase.



JAMSI, 12 (2016), No. 1 77

The sample sizes for #y which have the same precision than ¥, increases as the

values of S}z, and S§(2) increase whereas the sample sizes for tfo), which have the

same precision than y* first increases and after remains constant as the values of

Sf and S§(2> increase and the sample sizes for téo), which have the same precision

than 7, decreases as the values of S% and Si(z) increase.

(iv) For the case pxy > pyy(2), the saving in cost for 7y increases as the values of p,()

. . . 0 0 .
increase, whereas the saving in cost for tl( ) and tf ) remains constant as the values

of pyy(2) increase.

The sample sizes for f, which have the same precision than y*, increases as the

(0) (0)
2

values of p,,») increase and the sample sizes for 7, and 7, ’, which have the

same precision than y*, remains constant as the values of p,, ) increase.

(v) For the case pyy < pyy(2), the saving in cost for 7, tio) and éo) increases as the

values of p,, increase.

The sample sizes for t, tl(0> and 12(0), which have the same precision than y*,

increases as the values of p,, increase.

(vi) For the case pxy = Pyy(2), the saving in cost for 7, t1<0) and téo) increases as the

values of pyy and p,,(2) increase.

The sample sizes for fo, tl(o) and téo), which have the same precision than j*,

increases as the values of pyy, and p,, () increase.

(vii) For the case py; > p,(2), the saving in cost for 7 decreases as the values of p ()

. .. 0 0 .
increase, whereas the saving in cost for tf ) and tf ) remains constant as the values

of py;(2) increase.

The sample sizes for ¢y, which have the same precision than ¥*, decreases as the
values of p ;) increase and the sample sizes for tl(o) and téo), which have the
same precision than j*, remains constant as the values of py. () increase.

(viii) For the case py; < py(3), the saving in cost for 7, tl(o) and t2<0) with respect to y*

decreases as the values of py, increase.

. 0 0 . . . _
The sample sizes for 7y, tf ) and té ) which have the same precision than j*,
decreases as the values of py, increase.

(ix) For the case py; = py(2), the saving in cost for 7, tl(o) and t§0> with respect to y*

decreases as the values of py; and p, () increase.
The sample sizes for f, tfo) and téo) which have the same precision than y*,

decreases as the values of py; and p,.,) increase.
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(x) For the case px; > Py;(2), the saving in cost for 79 increases as the values of p,;()

. . 0 0 .
increase, whereas the saving in cost for tf ) and té ) remains constant as the values

of py;(2) increase.
The sample sizes for fg, which have the same precision than y*, increases as the
values of of p,;(y) increase and the sample sizes for th) and téo), which have the

same precision than y*, remains constant as the values of p,;(;) increase.

(xi) For the case px; < Py (2), the saving in cost for 7, t}(o) and téo) with respect to y*

increases as the values of p,, increase.
. 0 . .. _
The sample sizes for f, tfo) and tz( ) which have the same precision than y*,

increases as the values of p,, increase.

(0) 2(0) with respect to y*

(xii) For the case px; = Py;(2), the saving in cost for 79, 7, " and 7.
increases as the values of py; and p, () increase.
The sample sizes for 7o, tl(o) and t2<0) which have the same precision than j*,

increases as the values of py. and p,;(2) increase.

(xiii) The saving in cost for 7y, tl(o) and téo) with respect to y* increases as the values

of W5 increase.

The sample sizes for 7o and tl(o) which have the same precision than y* remains

constant as the values of W, increase, whereas the sample sizes for téo) which have

the same precision than 7* decreases as the values of W, increase.

(0) (0)

(xiv) The saving in cost for fy, ; ” and t20 with respect to j* decreases as the values

of (v — 1) increase.
The sample sizes for 7y, tl(o) and téo) which have the same precision than 7*

decreases as the values of (v — 1) increase.

(xv) The saving in cost for 7y, tl(o) and téo) with respect to y* increases as the values of

p increase.

(0)

The sample sizes for 1y, #;” and téo)

which have the same precision than y*

increases as the values of p increase.
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Table I11. Sample sizes and corresponding expected cost of survey, which have the same precision than the proposed estimates 7o, #, * and ¢, over the direct estimate
7 for different values of 52, S§(2>, Pys Pay(2)s Pyz and Py o) (When Ay = Ay = A0y = Ay(y) = 1)
55> So
02 03 -04 -08 05 02 1.5 08 05 04 03 43 49 36 2200.1 15053 1112.6
02 03 -04 -08 05 02 1.5 08 06 04 03 54 51 43 27948 15741 13121
02 03 -04 -08 05 02 1.5 08 07 04 03 54 51 44 2786.0 15763 1346.6
§7< 53(2)
08 05 -04 -08 03 -07 1.5 04 07 06 02 51 53 50 15763 1089.2 1029.1
08 05 -04 -08 03 -07 1.5 04 06 07 02 51 53 51 1579.1 1089.7 1031.5
08 05 -04 -08 03 -07 1.5 04 05 08 02 51 53 51 1581.0 1090.2 1033.1
S\Z - S)zv(z)
04 04 -04 -08 08 02 1.5 04 05 05 02 55 54 52 17012 11027 10589
03 04 -04 -08 08 02 1.5 04 06 06 03 57 55 51 17647 11225 1038.3
02 04 -04 -08 08 02 1.5 04 07 07 04 59 55 48 1811.8 11237 988
Pxy > Pxy(2)
08 05 -04 -08 03 -07 1.5 05 05 05 02 51 53 50 18377 1227 1156.4
08 06 -04 -08 03 -07 1.5 05 05 05 02 52 53 50 1862.1 1227 1156.4
08 07 -04 -08 03 -07 1.5 05 05 05 02 53 53 50 1884 1227 1156.4
Pry < Pxy(2)
05 08 -04 -08 03 -07 1.5 05 05 05 02 51 51 47 18324 11867 1079.7
06 08 -04 -08 03 .07 1.5 05 05 05 02 52 52 48 1859 1201.7  1109.2
07 08 04 -08 03 -07 1.5 05 05 05 02 53 53 49 18824 1215.1 1134.8
Pxy = Pxy(2)
07 07 -04 -08 03 -07 1.5 05 05 05 02 52 52 49 1860.5 1215.1 1134.8
08 08 -04 -08 03 -07 1.5 05 05 05 02 53 53 50 1903.1 1227 1156.4
09 09 04 -08 03 -07 1.5 05 05 05 02 54 45 51 19373 1237.7 11752
Pyz > Pyz(2)
02 03 -05 -08 05 02 0.7 05 04 06 04 56 53 46 39342 2122.6 1838.2
02 03 -05 -07 05 02 0.7 05 04 06 04 55 53 46 3866.7 2122.6 1838.2
02 03 -05 06 05 02 0.7 05 04 06 04 54 53 46 37943 2122.6 1838.2
Pyz < Pyz(2)
02 03 -08 -05 05 02 0.7 05 04 06 04 56 56 51 3961.7 22627 20455
02 03 -07 -05 05 02 0.7 05 04 06 04 55 55 49 383865 2219.7 1983
02 03 -06 05 05 02 0.7 05 04 06 04 54 54 48 3805 21732 1914.2
Pyz: = Pyz(2)
02 03 -08 -08 05 02 0.7 05 04 06 04 59 56 51 4134 2263 2045.5
02 03 -07 -07 05 02 0.7 05 04 06 04 57 55 49 40145 2219.7 1983
02 03 -06 06 05 02 0.7 05 04 06 04 55 54 48 3876.6 21732 19142

T 'ON ‘(9T02) 2T ‘ISINVC
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Table I'V. Sample sizes and corresponding expected cost of survey, which have the same precision than the proposed estimates 7, tfo) and téo) over the direct estimate

7" for different values of py;, Py (2), W2, (v — 1) and p (When Aj = Ay = A () = Ay = 1) .

Pxz > pxz(Z)

02 03 -08 -02 05 02 0.7 04 05 06 02 52 54 52 31034 18438 1798.4
02 03 -08 -02 05 03 0.7 04 05 06 02 53 54 52 31189 1843.8 17984
02 03 -08 -02 05 04 0.7 04 05 06 02 54 54 52 31334 18438 1798.4
Pxz < Pxz(2)
02 03 -08 -02 02 05 0.7 04 05 06 02 51 51 50 30285 17743 1701.6
02 03 -08 -02 03 05 0.7 04 05 06 02 52 52 51 30739 18009 1739.6
02 03 -08 -02 04 0S5 0.7 04 05 06 02 53 53 52 3113.1 18239 17714
Pxz = Pxz(2)
02 03 -08 -02 03 03 0.7 04 05 06 02 52 52 51 3036.2 18009 1739.6
02 03 -08 -02 04 04 0.7 04 05 06 02 53 53 52 30973 18239 17714
02 03 08 -02 05 05 0.7 04 05 06 02 54 54 53 31472 18438 1798.4
W
02 03 -08 -02 05 02 0.5 03 03 04 02 53 54 54 33202 19347 19179
02 03 -08 -02 05 02 0.5 04 03 04 02 53 54 53 42235 24063 2359.8
02 03 -08 -02 05 0.2 0.5 05 03 04 02 53 54 52 5117.6 28649 2794.9
(v-1)

08 06 -04 -08 05 -07 1.0 04 05 03 04 58 60 57 24994 1574.3 1518

08 06 -04 -08 05 -07 1.5 04 05 03 04 57 359 56 1761.6 12039 1138.8
08 06 -04 -08 05 -07 2.0 04 05 03 04 56 58 54 13912 1017.3 943.9

p

02 03 -08 -02 05 02 0.5 07 08 07 02 53 54 52 6966.6 3798.6 3713.7
02 03 -08 -02 05 02 0.5 07 08 07 03 54 56 53 71255 39204 3772.1
02 03 08 02 05 02 0.5 07 08 07 04 55 57 54 72177 4015.6 3788.2

08
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7 CONCLUSION

In this article, the problem of estimating the finite population mean on the samples
selected over two occasions by using a double sampling ratio-cum-product estimate
from the matched portion of the sample has been presented to take care of unit non-
response.

Three different possible cases when there is non-response (i) on both the occasions,
(ii) only on the second occasion for both matched and unmatched portions of the
sample, and (iii) only on the second occasion for unmatched portion of the sample,
have been discussed. The gain in precision by #y (optimum estimate in case (i)), tfo)
(optimum estimate in case (ii)) and téo) (optimum estimate in case (iii)) over direct
estimator, y*, using no information gathered on the first occasion have been compared.

Also, we have derived the sample sizes and the cost function associated with the

three proposed estimates t, tl(o) and téo) which provide equal precision to the estimator

%

y.
It is perceived that the gain in precision due to t2<0) over y* is larger as compared to

to and t}(o) It has also been observed that the expected cost of the survey is minimum

for the estimator, téo)

and maximum for the estimator, 79. Thus, the proposed study is
recommended when there is need to correct for non-response in sampling over two

occasions.
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