
Properties of Symmetric Boolean functions

Abstract

In the present paper we consider symmetric Boolean functions with special property. We study
properties of the maximal intervals of these functions. Later we show characteristics of corresponding
interval graphs and simplified interval graphs. Specifically we prove, that these two graphs are isomorphic
for symmetric Boolean function. Then we obtain the vertex degree of these graphs. We discuss also
disjunctive normal forms.
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1 INTRODUCTION

A Boolean function can be represented by several types of graphs. Among them,
the greatest attention has been devoted to the study of the graph G( f ) induced by
the vertices of the n-cube, on which the Boolean function f takes the value 1. This
geometric representation has been introduced by Jablonski in [1]. The concept of the
interval graph and simplified interval graph of a Boolean function has been defined by
Sapozhenko in [3].

In the present paper we study properties of symmetric Boolean functions. Boolean
function is a symmetric Boolean function, if there exists a set {P1, . . . ,Pk}, where
1≤ k ≤ n and Pi ∈ {0,1, . . . ,n} while the function gains value 1 in the vertices which
contain value 1 on Pi positions. We denote level of Boolean cube Bn as Pi and
symmetric Boolean function with levels P1, . . . ,Pk as Bn

P1,...,Pk
.

The complexity of symmetric Boolean function was studied by Fagin, Klawe,
Pippenger and Stockmeyer [6] and Denenberg, Gurevich and Shelah [7]. Their
results were improved by Wegener [5]. Symmetric Boolean functions, expecially
their cryptografic properties were studied by Canteaut and Videau [8].

Some results regarding disjunctive normal forms have already been obtained for
almost all Boolean functions and were presented by Jablonski and Lupanov in [2]. In
addition they described an algorithm for finding minimal d.n.f. for symmetric Boolean
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functions Bn
Pi,...,Pj

, where i = j. The principle of the algorithm is the numbering of the
literals and cyclic movement of the indices. In this paper we extend this approach
and prove results also for case i 6= j. Jablonski and Lupanov furthermore present
asymptotic estimate for cases i = n

3 a i = n
4 . It can be interesting to compare with our

results.

2 PRELIMINARIES AND NOTATION

We use the standard notation from Boolean function theory. An n-ary Boolean
function is a function f : {0,1}n→{0,1}.

We use an algebraic representation of Boolean functions - disjunctive normal form.
A d.n.f. with minimal number of literals in this class is called the minimal d.n.f. of f

and the one with minimal length in this class is called the shortest d.n.f. of f .

We also use a geometric representation of Boolean functions. The Boolean n-cube
is the graph Bn with 2n vertices α̃ = (α1, . . . ,αn), where αi ∈ {0,1}, in which those
pairs of vertices that differ in exactly one coordinate are joined with an edge. For an
n-ary Boolean function f let N f denote the subset {α̃; f (α̃) = 1} and N−f denote the
subset {α̃; f (α̃) = 0} of all vertices α̃ . Notice that there is a one-to-one
correspondence between the sets N f and Boolean functions f . The subgraph of the
Boolean n-cube induced by the set N f is called the graph of f and is denoted by
G( f ).

The set of vertices Ni ⊆ {0,1}n corresponding to an elementary conjunction Ki of
rank r is called the interval of rank r. Notice that to every elementary conjunction
K = x

αi1
i1
∧ . . .∧ xαir

ir there corresponds an interval of rank r consisting of all vertices
(β1, . . . ,βn) of Bn such that βi j = αi j for j = 1, . . . ,r and values of other vertex
coordinates are arbitrary. In the present paper, we often work with intervals
corresponding to elementary conjunctions.

In the geometric model, every interval of rank r represents an (n− r)-dimensional
subcube of Bn. Therefore we call the interval of rank r also the (n− r)-dimensional
interval. An interval N is called the maximal interval of Boolean function f if N ⊆ N f

and there is no interval N′ ⊆ N f such that N ⊆ N′. A d.n.f. which consists of all
elementary conjunctions corresponding to maximal intervals is called the abbreviated
d.n.f. and it is denoted by DA( f ).

For an arbitrary Boolean function f and each of its d.n.f.s K1 ∨ . . .∨Ks, we have
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that

N f =
s⋃

j=1

N j.

In other words, every d.n.f. of a Boolean function f corresponds to a covering of N f

by intervals N1, . . . ,Ns such that N j ⊆ N f . Conversely, every covering of N f by
intervals N1, . . . ,Ns contained in N f corresponds to some d.n.f. of f . Using the
geometric interpretation of d.n.f.s, we can express the irreducibility of d.n.f.. The
d.n.f. D of a Boolean function f cannot be simplified if every interval N j of the
covering corresponding to D contains at least one vertex belonging to just this one
interval of the covering. Such a d.n.f. is called an irredundant d.n.f..

Let r j denote the order of the interval N j. Then the number of literals in d.n.f. is

r =
s
∑
j=1

r j and the construction of a minimal d.n.f. in the geometric model can be

formulated as a problem of constructing a covering of N f by intervals N j ⊆ N f with
minimal r. On the other hand, the construction of a covering corresponding to the
shortest d.n.f. requires to minimize the number of intervals in a covering of N f .

The set of all conjuctions K j from K1, . . . ,Ks corresponding to intervals for which

N j 6⊆
s⋃

i=1
i 6= j

Ni.

is called the core of d.n.f. D =
s∨

j=1
K j of a Boolean function f . It is denoted by

γ(D( f )).
Now we can define the interval graph Γ( f ) as the graph associated with a Boolean

function f as follows: its vertices correspond to maximal intervals of f and the vertices
corresponding to intervals Ni and N j are joined with an edge in Γ( f ) if Ki ∧K j is
nonempty.

Let us introduce the graph of Boolean function f which we get from Γ( f ) by
omitting all vertices corresponding to maximal intervals such that they belong to
γ(DA( f )) or do not belong to any irreducible covering. Such a graph is called a
symplified interval graph.

For more information about Boolean functions we suggest to see [11], as this paper
is its extension.
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3 PROPERTIES OF SYMMETRIC BOOLEAN FUNCTIONS

In this section we study properties of symmetric Boolean function Bn
Pi,...,Pn− j

, i+ j < n.
We do not consider the trivial case i+ j = n. We evaluate the number, dimension,
radius and diameter of its maximal intervals. Then we discuss the characteristics of
graphs Γ and Γ′ corresponding to Bn

Pi,...,Pn− j
. In the end we count the vertex degrees of

interval and simplified interval graphs.
Let α be (1, . . . ,1︸ ︷︷ ︸

n

) and β be (0, . . . ,0︸ ︷︷ ︸
n

).

Fig. 1. Function Bn
Pi ,...,Pn− j

THEOREM 3.1. The dimension of maximal intervals of Bn
Pi,...,Pn− j

is

n− (i+ j).

PROOF. We know that j levels from vertex α and i levels from vertex β belong to
N−f . Therefore each vertex belonging to N f contains at least i coordinates with value
1 and j different coordinates with value 0. The rest of the coordinates are arbitrary. It
generates the intervals of dimension n− (i+ j). Inequality i+ j < n implies existence
of such intervals.

COROLLARY 3.2. The dimension of maximal intervals of Bn
Pi,...,Pn−i

is

n−2i.

The Theorem also implies, that all maximal intervals have the same dimension.
Therefore all corresponding vertices in Interval graph have the same vertex degree.
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The graph Γ(Bn
Pi,...,Pn−i

) is uniquely determined by the number of maximl interval and
the vertex degree.

Let α ′ ∈ N f and β ′ ∈ N f be the vertices of maximal interval containing at least i

coordinates with value 1 and at least j coordinates with value 0, respectively. Distance
between α ′ and β ′ is n− (i+ j). It is easy to see that α ′ is situated on level n− j and
β ′ on level i.

THEOREM 3.3. The number of maximal intervals of Bn
Pi,...,Pn− j

is(
n− i

n− (i+ j)

)
.

(
n
i

)
.

PROOF. The number of edges between α ′ and level n− j+1 is n− j. We already
know that the dimension of all maximal intervals is n− (i+ j). Each maximal interval
of dimension k starting in α ′ is uniquely determined by choosing k edges between α ′

and level n− j + 1. Thus the number of different maximal intervals which contain
vertex α ′ and have the dimension n− (i+ j) is

( n− j
n−(i+ j)

)
. As there are

(n
j

)
possibilities

of choosing α ′ on level n− j, we get the result
( n− j

n−(i+ j)

)
.
( n

n− j

)
.

Result for vertex β ′ on level i can be obtained analogicaly.

It holds that (
n− i

n− (i+ j)

)
.

(
n
i

)
=

(
n− j

n− (i+ j)

)
.

(
n

n− j

)
,

which validate the Theorem.

COROLLARY 3.4. The number of maximal intervals of Bn
Pi,...,Pn−i

is(
n− i

n−2i

)
.

(
n
i

)
.

THEOREM 3.5.(
n− [pn]

n− ([pn]+ [qn])

)
.

(
n

[pn]

)
∼ 1

2πn
.

1
p[pn]+1/2 .

1
q[qn]+1/2 .

1
(1− p−q)n−[pn]−[qn]

,

where i = p.n, p < 1
2 , p,q ∈ Q, [x] stands for nearest integer to x.

PROOF. For the sake of simplicity let us assume pn,qn are already their rounded
versions in the remainder of this paper.(

n− pn
n− (pn+qn)

)
.

(
n
pn

)
=

n!
pn!.qn!.(n− (pn+qn))!
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Using Stirling formula we get

n!
pn!.qn!.(n− (pn+qn))!

∼

∼
( n

e )
n
√

2.π.n

( qn
e )

qn
√

2πqn( pn
e )pn
√

2π pn( n−(pn+qn)
e )n−(pn+qn)

√
2π(n− (pn+qn))

=

=

√
2πn√

2π(n− (pn+qn))
√

2πqn
√

2π pn
.

1
ppnqqn .

1
(1− p−q)n−(pn+qn)

=

=
1

2πn
.

1
ppn+1/2 .

1
qqn+1/2 .

1
(1− p−q)n−pn−qn

THEOREM 3.6. For graphs Γ and Γ′ associated with the function Bn
Pi,...,Pn− j

it holds

that Γ∼= Γ′.

PROOF. We divide the proof into two parts. First we show that none of maximal
interval belongs to the core of Bn

Pi,...,Pn− j
. Then we proove that each maximal interval

belongs to at least one irredundant d.n.f..
First part of the statement means that all vertices of each maximal interval are

covered by another maximal interval of Bn
Pi,...,Pn− j

. Let NI be an arbitrary maximal
interval with dimension n− (i+ j). NI contains 2n−(i+ j) vertices. Let δ ∈ NI be an
arbitrry vertex such that δ ∈ Pk, i ≤ k ≤ n− j. Degree of vertex δ is n, with
n− (i+ j) edges contained in NI . Let us take a look at the remaining i+ j edges.
According to the position of N f in Bn, i and j of them are incident with vertices on
level Pk−1 and Pk+1 respectively, or vice versa. It implies that i ( j) edges are joined
with level containing vertices from N−f . If we use one of these edges together with
n − (i + j) − 1 edges from NI we obtain maximal interval N′I with dimension
n− (i+ j) containing vertex δ . Thus NI do not belong to the core.

Maximal interval does not belong to any irredundant d.n.f. iff all of its vertices are
covered by core intervals [1]. This together with the first part completes the proof.
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THEOREM 3.7. The degree of each vertex of Γ(Bn
Pi,...,Pn− j

) is

n−(i+ j)−1
∑

m=0
(−1)m

n−(i+ j)−m
∑

k=0

(n−(i+ j)
m

)(n−(i+ j)−m
k

)[( n−m−k−i
n−m−k−(i+ j)

)(k+i
k

)
−1
]
.

PROOF. Let NI be a maximal interval corresponding to vNI in Γ(Bn
Pi,...,Pn− j

). In
order to count a vertex degree of vNI we find out the number of maximal intervals
which have nonempty intersection with NI .

The process of evaluation consists of taking all intervals belonging to NI , one at a
time. Let the actual one be denoted as NM . We count the maximal intervals different
from NI such that NM is a subset of their intersection with NI . Let m be a summation
variable adressing to dimension of NM . According to Theorem 3.1. m can gain values
from 0 to n− (i+ j)− 1. To make sure that we count each maximal interval having
nonempty intersection with NI only once, we use the inclusion-exclusion principle.

Figure 2 shows possible location of NM . There are n− (i+ j)−m fixed coordinates
in NI , thus we have

(n−(i+ j)
m

)
possibilities to choose m arbitrary coordinates generating

NM . The other summation variable k determines the position of interval NM , 0≤ k ≤
n− (i+ j)−m. To do so, we choose k coordinates with value 0 from n− (i+ j)−m

fixed coordinates. It ensures that we go through all levels.
To sum it up there is

(n−(i+ j)
m

)(n−(i+ j)−m
k

)
possibilities to choose intersection NM .

Fig. 2. Possible location of NM in NI

Each feasible maximal intervals (different from NI and containing NM) is uniquely
defined by n− (i+ j) edges. m of them generate NM so we need to choose aditional
n− (i+ j)−m edges incident to α ′ ∈ NM or β ′ ∈ NM .
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We have to choose these edges in such way that the location of maximal intervals is
between i and n− j. Therefore we choose k out of k+ i edges from α ′ ∈ NM towards
α . We have to pick other n− (i+ j)−m− k from the edges joined with β ′ ∈ NM and
leading to β . (There are n−m− k− i such edges.)

The number
[( n−m−k−i

n−m−k−(i+ j)

)(k+i
k

)
−1
]

expresses the number of ways to choose
other n− (i+ j)−m edges except the case when we choose interval NI itself.

Putting it all together we can see that the vertex degree of vNI in Γ(Bn
Pi,...,Pn− j

) is

n−(i+ j)−1
∑

m=0
(−1)m

n−(i+ j)−m
∑

k=0

(n−(i+ j)
m

)(n−(i+ j)−m
k

)[( n−m−k−i
n−m−k−(i+ j)

)(k+i
k

)
−1
]
.

COROLLARY 3.8. The degree of each vertex of Γ(Bn
Pi,...,Pn− j

) is

n−2i−1
∑

m=0
(−1)m

n−2i−m
∑

k=0

(n−2i
m

)(n−2i−m
k

)[( n−m−k−i
n−m−k−2i

)(k+i
k

)
−1
]
.

Vertex degree as a function of parameters i and n is computed and shown in the
following Figure.
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Fig. 3. Vertex degree, cases when 1 < n < 10, 1 < i < 5
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Fig. 4. Vertex degree, cases when 1 < n < 20, 1 < i < 10

In Figures 3−4 we illustrate obtained result. Red color represents N−f .
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Fig. 5. Geometric representation of B4
P2,P3

Fig. 6. Geometric representation of B5
P2 ,P3 ,P4
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Fig. 7. Geometric representation of B5
P1,P2

Definition 3.9. Let G be a graph and let α,β ∈ G. The distance from α to β is
the length of a shortest path from α to β . It is denoted by d(α,β ).

Definition 3.10. The number e(α) = max{d(α,β )|β ∈ G} is called the
excentricity of vertex α .

Definition 3.11. The number r(G)α∈G = min{e(α)} is called the radius of G.

Definition 3.12. The number d(G)α∈G = max{e(α)} is called the diameter of G.

LEMMA 3.13. The excentricity of all vertices of an n-cube is equal to n.

PROOF. Distance between two vertices in an n-cube is given by the number of
coordinates where the vertices differ. For each vertex in an n-cube there exists an
”opposite” vertex which differs in all n coordinates. It implies our statement.

Using this Lemma we directly obtain the following results.

THEOREM 3.14. The diameter of maximal intervals of Bn
Pi,...,Pn− j

is n− (i+ j).

THEOREM 3.15. The radius of maximal intervals of Bn
Pi,...,Pn− j

is n− (i+ j).

THEOREM 3.16. The diameter of subgraph of Bn induced by N f of Bn
Pi,...,Pn− j

is

min(n,2n−2max(i, j)).
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PROOF. We divide the proof into two cases.
First let us assume that i≤bn/2c∧ j≤bn/2c. It implies that N f contains all vertices

from level n/2 (for n even) or from levels (n− 1)/2 and (n+ 1)/2 (for n odd). For
every vertex α from level n/2 there exists vertex α ′ with opposite coordinates from
the same level (for n even). Similarly for every vertex β from level (n− 1)/2 there
exists a vertex β ′ with opposite coordinates from level (n+1)/2 (for n odd). It is clear
that in this case the diameter equals n.

Otherwise all vertices from N f contain at most bn/2c coordinates with value 0 (or
1). Let us refer to this value as k and to its maximal appearance as m. Let us assume
vertex δ which contains coordinate k exactly s≤m times. The opposite vertex δ ′ ∈N f

can be found by negating as many coordinates as possible. It is possible to turn s

coordinates k into k̄ and m coordinates k̄ can be switched into k. Therefore excentricity
of δ is given by s+m. As s ≤ m it implies that diameter equals 2m. It is clear that
m = n−max(i, j) which completes the proof.

THEOREM 3.17. The radius of subgraph of Bn induced by N f of Bn
Pi,...,Pn− j

is n−
|i− j|.

PROOF. With the help of ideas from previous proof we obtain that vertices with
the smallest excentricity are located on the level farthest from central levels. It can
be the level i if i ≤ j or n− j if i ≥ j. The vertex on level n− j contains exactly j

zeros, vertex on level i contains exactly i ones. Let us look for the vertices with the
maximal distance. Without loss of generality, let us choose α = {1, . . . ,1,︸ ︷︷ ︸

n− j

0, . . . ,0︸ ︷︷ ︸
j

} and

β = {0, . . . ,0,︸ ︷︷ ︸
n−i

1, . . . ,1︸ ︷︷ ︸
i

}. The length of the path between two vertices can be obtained

as the number of identical coordinates subtracted from n. In the representation of
vertices α and β exists a section where coordinates of α and β are equal. Its length is
given by the difference between i and j, in other words |i− j|. This facts implies that
the diameter of subgraph is n−|i− j|.

Diameter and radius of graph induced by the set N f of Boolean function B5
P2,P3,P4

is
illustrated in the following figure.

JAMSI, 12 (2016), No. 1 17 

 

 



Fig. 8. An illustration of of radius and diameter

4 DISJUNCTIVE NORMAL FORM

In this section we take a look at disjunctive normal forms of Bn
Pi,...,Pn− j

.

REMARK 4.1. The fact that no maximal interval belongs to the core together with

the definition of Quin’s d.n.f gives us DA = DQ.

THEOREM 4.2. The number of conjunctions of an abbreviated d.n.f. of function

Bn
Pi,...,Pn− j

is (
n− i

n− (i+ j)

)
.

(
n
i

)
.

PROOF. Straigthforward from Theorem 3.2.

According to the previous sections the following holds(
n− pn

n− (pn+qn)

)
.

(
n
pn

)
∼ 1

2πn
.

1
ppn+1/2 .

1
qqn+1/2 .

1
(1− p−q)n−pn−qn ,

where i = p.n, j = q.n, p < 1
2 , p ∈ Q.

THEOREM 4.3. The number of conjunctions of a minimal d.n.f. of function
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Bn
Pi,...,Pn− j

is (
n
i

)
, i f i > j,

(
n
j

)
, i f i < j.

PROOF. Let us divide the proof into two parts. In the first part we describe
construction of minimal d.n.f. of the function Bn

Pi,...,Pn− j
and verify its correctness for

case i < j and in the second part we repeat it for case i > j.

The dimension of maximal intervals corresponding to the conjunctions of minimal
d.n.f. is n− (i+ j). It implies, that the number of literals in each conjunction is i+ j.
Maximal intervals are located between levels i and n− j. As all vertices between
these levels contain at least i coordinates with value 1 and at least j with value 0, each
conjunction contains i non-negated variables and j negated variables. Independently
of the choice of arbitrary coordinates we never get the vertex from levels 0, . . . , i−
1,n− j+1, . . . ,n.

In the first part we consider the case i < j. There are
(n

j

)
different ways to choose j

negated variables out of n variables. We get
(n

j

)
incomplete conjunctions, to which we

add i non-negated variables. They can be obtained by shifting the indices of negated
variables. Let us perform this operation for i variables with the biggest indices in
a descending order. The index of each negated variables in the current conjunction
is decreased to the closest suitable value. It means that there cannot be the same
variable in negated and non-negated form at the same time in one conjunction. The
shift operation is also cyclic. It is easy to see, that the set of non-negated and negated
variables have an empty intersection. We join these two sets with operation AND.
Using this construction we get

(n
j

)
different conjunctions.

Now we show the correctness of our construction. To achieve that, each vertex δ

belonging to levels i, . . . ,n − j is contained in at least one maximal interval
corresponding to conjunction in our minimal d.n.f.. As there is at least one
coordinate with value 1 and one with value 0, there has to exist the pair of
coordinates (1,0) (indices are cyclic). In case that more such pairs exist, we always
take one with the biggest index of variable corresponding to 0. We omit this pair and
repeat this operation i times. As there are at least i coordinates with each value, we
can find i such pairs, let us refer to these 0s and 1s as special 1s and 0s. If we take
those i special zeros together with other j − i randomly chosen ones and shift i

biggest ones of them as described above, we get the positions of i special 1s. Hence
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δ is covered by the maximal interval with negated variables on places of chosen 0s (i
special and j− i random) and non-negated variables on places of special 1s.

It is easy to see that the number of maximal intervals cannot be lower than
(n

j

)
as at

least one of the vertices on level n− j would not be covered.
Second part of the proof can be obtained analogicaly.
It implies that the number of conjunctions of a minimal d.n.f. of function Bn

Pi,...,Pn− j

is (
n
i

)
, i f i > j,

(
n
j

)
, i f i < j.

REMARK 4.4. As all maximal intervals have the same dimension (the number of

literals in corresponding conjunctions), minimal d.n.f. of function Bn
Pi,...,Pn− j

is also the

shortest one.

Without loss of generality, let as asume that i > j.

THEOREM 4.5. It holds that(
n
pn

)
∼ 1

2πn
.

1
ppn+1/2 .

1
(1− p)n−pn+1/2 ,

where i = p.n, p < 1
2 , p ∈ Q.

PROOF. Applying Stirling’s formula we get(
n
pn

)
∼

( n
e )

n
√

2πn

( n−pn
e )n−pn.

√
2π(n− pn).( pn

e )pn.
√

2π pn
=

=
1√

2π pn
√

1− p
.

1
ppn .

1
(1− p)n−pn =

1
2πn

.
1

ppn+1/2 .
1

(1− p)n−pn+1/2 .

These results can be further applied to evaluation of parameters of symmetric
Boolean function Bn

Pi1 ,...,Pi2 ,...,Pik−1 ,...,Pik
shown in the following Figure.
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Fig. 9. Function Bn
Pi1 ,...,Pi2 ,...,Pik−1 ,...,Pik

5 EXAMPLES

In this section we use obtained results to find asymptotic properties of maximal
intervals, interval graphs and d.n.f.s of some chosen functions.

i = j = n/4
The number of maximal intervals, the length of abbreviated d.n.f., the number of
vertices of Γ:(

3n/4
n/2

)
.

(
n

n/4

)
=

n!( n
2

)
!
( n

4 !
)2 ∼

( n
e

)n√2.π.n.e
1

12.n( n
2e

) n
2
√

π.n.e
1

6.n
( n

4e

) n
2 π.n

2 .e
2

3.n
=

=
23n/2.

√
2.2

πn
.e1/12n−2/6n =

2
3
2 (n+1)

πn.e1/4n

The dimension of maximal intervals: n/2
The radius and diameter of maximal intervals: d n

4e
Full d.n.f.:

3/4

∑
k=1/4

(
n
k

)
= 2n−2.

1/4

∑
k=0

(
n
k

)
Using

∑
k≤α.n

(
n
k

)
= 2n.H(α)− 1

2 . logn+O(1),
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where 0 < α < 1
2 and H(α) = α. log 1

α
+(1−α). log 1

1−α
, from [9] for α = 1/4 we

obtain

2n−2.
(

2n.(1/4lg4+3/4lg4/3)− 1
2 lgn/4+O(1)

)
=

= 2n−21+ n
2+

3n
2 +3n over4lg3+1− 1

2 lgn+O(1) =

= 2n−22n− 3
4 n lg3− 1

2 lgn+O(1)

i = j =
√

n logn
The number of maximal intervals, the length of abbreviated d.n.f., the number of
vertices of Γ:(

n−
√

n lgn
n−2

√
n lgn

)
.

(
n√

n lgn

)
=

n!

(n−2
√

n lgn)! [(
√

n lgn)!]2
=

=
2
√

n lgn

∏
k=0

(n− i)
[(
√

n lgn)!]2
=

=
n(n−1)
(
√

n lgn)2 .
(n−2)(n−3)
(
√

n lgn−1)2 .
(n−2

√
n lgn+2)(n−2

√
n lgn+1)

2
∼

∼
( n

e

)n√2.π.n.e
1

12.n .e
−1

12(n−2
√

n lgn) .e
−1

6(
√

n lgn)(
n−2
√

n lgn
e

)n−2
√

n lgn
.
(√

n lgn
e

)2
√

n lgn
.
√

2π(n−2
√

n lgn).(2π
√

n lgn)
=

=

(
1

1− 2√
n lgn

)n−2
√

n lgn+1/2(√
n

lgn

)2
√

n lgn

2π
√

n lgn

The dimension of maximal intervals: n−2
√

n lgn

The radius and diameter of maximal intervals: dn/2−
√

n lgne
Full d.n.f.:

n−
√

n lgn

∑
k=
√

n lgn

(
n
k

)
= 2n−2.

√
n lgn

∑
k=0

(
n
k

)
Using

∑
k≤α.n

(
n
k

)
= 2n.H(α)− 1

2 . logn+O(1),
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where 0 < α < 1
2 and H(α) = α. log 1

α
+(1−α). log 1

1−α
, z [9] for α = lgn√

n we obtain

2n−2.

2
n.

 lgn√
n lg 1

lgn√
n

+
(

1− lgn√
n

)
lg
(

1− lgn√
n

)− 1
2 lg
√

n lgn+O(1)

=

= 2n−21−
√

n lgn lg lgn+1/2
√

n(lgn)2−n lg(1− lgn√
n )+
√

n lgn lg(1− lgn√
n )−1/4(lg

√
n)2+O(1)

=

= 2n−2
√

n lgn lg lgn+1/2
√

n(lgn)2+
√

n lgn−5/4(lgn)2+O(1)

We have chosen the case i =
√

n logn because the following holds [10]:

|
n/2+

√
n logn⋃

t=n/2−
√

n logn

Bn
t |= |Bn|= 2n.

6 CONCLUSION

In the present paper we have studied the properties of symmetric Boolean functions
Bn

Pi,...,Pn− j
, i+ j < n. We have evaluated the number, dimension, radius and diameter

of its maximal intervals. We have also considered the characteristics of graphs Γ and
Γ′ corresponding to Bn

Pi,...,Pn− j
. Then we have counted the vertex degrees of interval

and simplified interval graphs. We have got some result regarding disjunctive normal
forms. Finally we have presented examples to illustrate obtained result.
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