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Abstract

The problem of estimating lifetime distribution parameters under progressively Type-II censoring
originated in the context of reliability. But traditionally it is assumed that the available data from this
censoring scheme are performed in exact numbers. However, some collected lifetime data might be
imprecise and are represented in the form of fuzzy numbers. Thus, it is necessary to generalize classical
statistical estimation methods for real numbers to fuzzy numbers. This paper deals with the estimation of
lifetime distribution parameters under progressively Type-II censoring scheme when the lifetime
observations are reported by means of fuzzy numbers. A new method is proposed to determine the
maximum likelihood estimates of the parameters of interest. The methodology is illustrated with two
popular models in lifetime analysis, the Rayleigh and Lognormal lifetime distributions.

Mathematics Subject Classification 2000: 62N02
Additional Key Words and Phrases: Progressive Type-II censoring, Fuzzy lifetime data, Maximum
likelihood estimation, EM algorithm.

1 INTRODUCTION

In many life test studies, it is common that the lifetimes of some test units may not be
able to be recorded exactly. For example, in Type-II censoring, the test ceases after a
predetermined number of failures in order to save time or cost. Furthermore, some
test units may have to be removed at different stages in the study for various reasons.
This would lead to progressive censoring. Progressive Type-II censored sampling is
an important method of obtaining data in lifetime studies. Some of the earlier work
on progressive censoring was conducted by [Cohen (1963)], [Mann (1971)], and
[Thomas and Wilson (1972)]. Recently, inferences under progressive Type-II
censoring have been discussed by several authors. [Viveros and Balakrishnan (1994)]
have derived explicit expressions for the best linear unbiased estimators (BLUEs) of
the parameters of both one- and two-parameter exponential distributions, and also
discussed conditional inference for general location-scale distributions.
[Balakrishnan and Kannan (2000)], [Balakrishnan et. al. (2003) ] and [Balakrishnan
and Asgharzadeh (2005)] have discussed inference procedures based on MLEs and
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approximate MLEs for logistic, normal and half-logistic distributions, respectively.
[Pradhan and Kundu (2009)] have obtained maximum likelihood estimates of the
parameters of generalized exponential distribution. [Kim and Han (2009)] have
considered estimation of the scale parameter of the Rayleigh distribution under
general progressive censoring. However, in real situations, lifetime of units
sometimes can not be recorded or measured precisely due to machine errors, human
errors or some unexpected situations. For instance, the lifetime observations may be
reported as imprecise quantities such as: ’about 1000h’, ’approximately 1400h’,
’almost between 1000h and 1200h’, ’essentially less than 1200h’, and so on. The
lack of precision of lifetime data may be described using fuzzy sets. The classical
statistical estimation methods are not appropriate to deal with such imprecise cases.
Therefore we need suitable statistical methodology to handle these data as well.

In recent years, several researchers pay attention to applying the fuzzy sets to
estimation theory. Huang et al. (2006) proposed a new method to determine the
membership function of the estimates of the parameters and the reliability function of
multiparameter lifetime distributions. Coppi et al. (1991) presented some
applications of fuzzy techniques in statistical analysis. [Denoeux (2011)] considered
the maximum likelihood estimation based on fuzzy data using the EM algorithm. Pak
et al. (2013),(2014) conducted a series of studies to develop the inferential
procedures for the lifetime distributions on the basis of fuzzy data. In this paper, our
objective is to study the maximum likelihood estimation procedure for the lifetime
distribution parameters when the progressively Type-II censored data are reported in
the form of fuzzy numbers. In Section 2, we first present in greater detail the problem
addressed in this paper. Some preliminary concepts about fuzzy numbers is included
in this section. In Section 3, we introduce a generalization of the likelihood function
under progressive Type-II censoring and obtain the maximum likelihood estimates in
general setting. Two popular models in lifetime analysis, via, Rayleigh and
Lognormal distributions, are used to illustrate the proposed method, respectively, in
Sections 4 and 5.

2 PROBLEM DESCRIPTION

Consider a reliability experiment in which n independent units are placed on a
life-test. Let X1, ...,Xn denote the lifetimes of these experimental units. As usual, it is
assumed that Xi, i = 1, ...,n are independent and identically distributed with
probability density function fX (x;θ) and cumulative distribution function FX (x;θ),
where θ denotes the vector of parameters. Prior to the experiment, a number m < n is
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determined and the censoring scheme (R1,R2, ...,Rm) with Ri ≥ 0 and
m
∑

i=1
Ri +m = n

is specified. During the experiment, ith failure is observed and immediately after the
failure, Ri functioning items are randomly removed from the test. Let x1:m:n, ...,xm:m:n

denote the m completely observed lifetimes. The likelihood function based on this
progressively Type-II censored sample is then (see [Balakrishnan and
Aggarwala(2000)])

L(θ) =C
m

∏
i=1

fX (xi:m:n;θ) [1−FX (xi:m:n;θ)]Ri , (1)

where

C = n(n−R1−1)(n−R1−R2−2)...(n−R1− ...−Rm−1−m+1).

The maximum likelihood estimators are those values of θ which maximize (1).

Precisely reported lifetimes are common when data comes from specially designed
life tests. In such a case a failure should be precisely defined, and all tested items
should be continuously monitored. However, in real situations these test
requirements might not be fulfilled. In these cases, it is sometimes impossible to
obtain exact observations of lifetime. The obtained lifetime data may be imprecise
most of the time. In order to model imprecise lifetimes, a generalization of real
numbers is necessary. These lifetimes can be represented by fuzzy numbers. A fuzzy
number is a subset, denoted by x̃, of the set of real numbers (denoted by R) and is
characterized by the so called membership function µx̃(.). Fuzzy numbers satisfy the
following constraints ([Dubois and Prade(1980)]):

(1) µx̃ : R−→ [0,1] is Borel-measurable;

(2) ∃x0 ∈ R : µx̃(x0) = 1;

(3) The so-called λ−cuts (0 < λ ≤ 1), defined as Bλ (x̃) = {x ∈ R : µx̃(x) ≥ λ},
are all closed interval, i.e., Bλ (x̃) = [aλ ,bλ ], ∀λ ∈ (0,1].

With the definition of a fuzzy number given above, an exact (non-fuzzy) number can
be treated as a special case of a fuzzy number. For a non-fuzzy real observation
x0 ∈ R, its corresponding membership function is µx0(x0) = 1. Usually, LR-type
fuzzy numbers (the triangular and trapezoidal fuzzy numbers are special cases of the
LR-type fuzzy numbers) are most convenient and useful in describing fuzzy lifetime
observations. Therefore, we shall focus on the set of LR-type fuzzy numbers.

Definition 2.1. ([Zimmermann(1991), pp.62] pp.62). Let L (and R) be decreasing,
shape functions from R+ to [0,1] with L(0) = 1; L(x)< 1 for all x > 0; L(x)> 0 for
all x < 1; L(1) = 0 or (L(x)> 0 for all x and L(+∞) = 0). Then a fuzzy number x̃ is
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called of LR-type if for c,α > 0, β > 0 in R,

µx̃(x) =

{
L( c−x

α
) x≤ c

R( x−c
β
) x≥ c

where c is called the mean value of x̃ and α and β are called the left and right spreads,
respectively. Symbolically, the LR-type fuzzy number is denoted by x̃ = (α,c,β ).

Definition 2.2. Let (Rn,A ,P) be a probability space in which A is the σ−field
of Borel sets in Rn and P is a probability measure over Rn. Then, A fuzzy event in Rn

is a fuzzy subset Ã of Rn, whose membership function µÃ is Borel measurable. The
probability of a fuzzy event Ã is defined by:

P(Ã) =
∫

µÃ(x)dP.

For more details about the membership functions and probability measures of fuzzy
sets, one can refer to Singpurwalla and Booker (2004).

It must be noted that, our viewpoint in this paper is based on an epistemic

interpretation of fuzzy data, which are assumed to ”imperfectly specify a value that
is existing and precise, but not measurable with exactitude under the given
observation conditions” ([Gebhardt et. al.(1998)], p. 316). In this model, a fuzzy
datum is thus seen as a possibility distribution associated to a precise realization of a
random variable that has been only partially observed. In the next section, we
introduce a generalization of the likelihood function and obtain the maximum
likelihood estimate (MLE) of θ .

3 MAXIMUM LIKELIHOOD ESTIMATION

Suppose that n independent units are put on a test and that the lifetime distribution of
each unit is given by f (x;θ). Now consider the problem where under the progressively
Type-II censoring scheme, failure times are not observed precisely and only partial
information about them are available in the form of fuzzy numbers x̃i = (αi,ci,βi), i=

1, ...,m , with the corresponding membership functions µx̃1(.), ...,µx̃m(.). Let c(1) ≤
c(2) ≤ ...≤ c(m) denote the ordered values of the means of these fuzzy numbers. The
lifetime of Ri surviving units, which are removed from the test after the ith failure, can
be encoded as fuzzy numbers z̃i1, ..., z̃iRi with the membership functions

µz̃i j(z) =

{
0 z≤ c(i)
1 z > c(i)

, j = 1, ...,Ri.

The fuzzy data w̃ = (x̃1, ..., x̃m, z̃1, ..., z̃m), where z̃i is a 1 × Ri vector with
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z̃i = (z̃i1, z̃i2, ..., z̃iRi), for i = 1, ...,m, is thus the set of observed lifetimes. The
corresponding likelihood function can be obtained, using Zadeh’s definition of the
probability of a fuzzy event ([Zadeh(1968)]), as

LO(w̃;θ) =∏
i=1

∫
µx̃i(x) f (x;θ)dx

m

∏
i=1

Ri

∏
j=1

∫
µz̃i j(z) f (z;θ)dz

and the observed-data log likelihood is

L(w̃;θ) =
m

∑
i=1

log
{∫

µx̃i(x) f (x;θ)dx
}
+

m

∑
i=1

Ri

∑
j=1

log
{∫

µz̃i j(z) f (z;θ)dz
}

. (2)

Since the observed fuzzy data w̃ can be seen as an incomplete specification of a
complete data vector w, the EM algorithm is applicable to obtain the maximum
likelihood estimates (MLE) of the parameters. The EM algorithm, introduced by
Dempster et al. (1977), is a very popular tool to handle any missing or incomplete
data situation. This algorithm is an iterative method which has two steps. In the
E-step, it replaces any missing data by its expected value and in the M-step the
log-likelihood function is maximized with the observed data and expected value of
the incomplete data, producing an update of the parameter estimates. In the
following, we use the EM algorithm to determine the MLE of θ .

First of all, denote the lifetime of the failed and censored units by X = (X1, ...,Xm)

and Z = (Z1, ...,Zm), respectively, where Zi is a 1×Ri vector with Zi = (Zi1, ...ZiRi),

for i = 1, ...,m. The combination of (X,Z) = W forms the complete lifetimes and the
corresponding log-likelihood function is denoted by L(W;θ).

The E-step of algorithm requires the calculation of

E
(

L(W;θ) | w̃,θ (h)
)
, (3)

which mainly involves the computation of the conditional expectation of functions of
X and Z conditional on the observed values x̃ and z̃, respectively, and the current value
of the parameters. To this end, we need to determine the conditional probability of X
and Z given x̃ and z̃, respectively, from the following formula:

f (u | ũ;θ
(h)) =

µũ(u) f (u;θ
(h))∫

µũ(u) f (u;θ
(h))du

. (4)

In the M-step on the (h + 1)th iteration of the algorithm, the value of θ which
maximizes E(L(W;θ) | w̃,θ (h)) will be used as the next estimate of θ (h+1). The MLE
of θ can be obtained by repeating the E- and M-step until convergence occurs. It is
showed in ([Denoeux (2011)]) that the observed-data log-likelihood L(W;θ) is not
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decreased after an EM iteration. Hence, convergence to some value L∗ is ensured as
long as the sequence L(W;θ (h)) for h = 0,1, ... is bounded from above.

4 RAYLEIGH LIFETIME DATA

The Rayleigh distribution is a special case of the two parameter Weibull distribution
and a suitable model for life testing studies. [Polovko (1968)] and [Dyer and
Whisenand (1973)] demonstrated the importance of this distribution in electro
vacuum devices and communication engineering.

The probability density function (p.d.f.) of the Rayleigh distribution is defined as

f (y;σ) =
y

σ2 exp(− y2

2σ2 ) , y > 0, σ > 0. (5)

The log-likelihood function based on the complete lifetimes W becomes proportional
to

L(W;σ) ∝−2n logσ − 1
2σ2

[
m

∑
i=1

x2
i +

m

∑
i=1

Ri

∑
j=1

z2
i j

]
. (6)

In the E-step, one needs to compute

−2n logσ − 1
2σ2

[
m

∑
i=1

E(X2
i | x̃i;σ

(h))+
m

∑
i=1

Ri

∑
j=1

E(Z2
i j | z̃i j;σ

(h))

]
, (7)

where σ (h) denotes the current fit of σ at iteration h. The conditional expectations
α
(h)
i = E(X2

i | x̃i;σ (h)) and β
(h)
i j = E(Z2

i j | z̃i j;σ (h)) can be computed using

E(U2 | ũ;σ
(h)) =

∫
u2µũ(u) f (u;σ (h))du∫
µũ(u) f (u;σ (h))du

. (8)

Hence, in the (h+1)th iteration, the values of σ (h+1) are computed by the following
formula:

σ̂
(h+1) =

{
1

2n

(
m

∑
i=1

α
(h)
i +

m

∑
i=1

Ri

∑
j=1

β
(h)
i j

)}1/2

. (9)

In order to assess the accuracy of the MLEs computed through the procedure
described above, we have carried out a simulation study. First, for different choices
of n , m , σ and (R1, ...,Rm), we have generated progressively censored sample
x1, ...,xm from Rayleigh distribution using the method proposed by [Balakrishnan
and Sandhu (1995)]. Then we have defined fuzzy numbers x̃1, ..., x̃m with the
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Table I. The average values (AV) and mean squared errors (MSE) for the MLE of σ for different sample
sizes and different sampling schemes.

n m Censoring Scheme σ = 1 σ = 2
AV MSE AV MSE

20 5 (0,0,0,0,15) 0.9793 0.0497 1.9548 0.2108
20 5 (15,0,0,0,0) 0.9777 0.0474 1.9520 0.1994
20 5 (0,15,0,0,0) 0.9836 0.0511 1.9561 0.2049
20 10 (0,...,0,10) 0.9865 0.0258 1.9634 0.0996
20 10 (10,0,...,0) 0.9849 0.0234 1.9754 0.0963
20 10 (0,10,0,...,0) 0.9934 0.0231 1.9735 0.0911
20 15 (0,...,0,5) 0.9923 0.0162 1.9942 0.0662
20 15 (5,0,...,0) 0.9909 0.0174 1.9782 0.0662
20 15 (0,5,0,...,0) 0.9934 0.0160 1.9751 0.0672

30 10 (0,...,0,20) 0.9830 0.0239 1.9823 0.0945
30 10 (20,0,...,0) 1.0138 0.0233 1.9714 0.0923
30 10 (0,20,0,...,0) 0.9799 0.0227 1.9853 0.0910
30 15 (0,...,0,15) 0.9890 0.0154 1.9966 0.0642
30 15 (15,0,...,0) 0.9890 0.0166 1.9872 0.0627
30 15 (0,15,0,...,0) 0.9886 0.0152 1.9873 0.0661
30 20 (0,...,0,10) 0.9947 0.0130 1.9944 0.0519
30 20 (10,0,...,0) 0.9933 0.0127 1.9949 0.0509
30 20 (0,10,0,...,0) 1.0034 0.0131 1.9920 0.0478

50 20 (0,...,0,30) 0.9916 0.0120 1.9892 0.0491
50 20 (30,0,...,0) 0.9880 0.0122 1.9789 0.0486
50 20 (0,30,0,...,0) 0.9972 0.0124 1.9837 0.0472
50 25 (0,...,0,25) 0.9927 0.0102 1.9967 0.0404
50 25 (25,0,...,0) 0.9936 0.0099 1.9893 0.0407
50 25 (0,25,0,...,0) 1.0012 0.0100 1.9869 0.0407
50 30 (0,...,0,20) 0.9956 0.0074 2.0021 0.0330
50 30 (20,0,...,0) 0.9939 0.0084 1.9901 0.0345
50 30 (0,20,0,...,0) 0.9991 0.0080 1.9913 0.0315

corresponding membership functions

µ∼xi
(x) =

{
x−(xi−hi)

hi
xi−hi < x≤ xi

xi+hi−x
hi

x
i
< x≤ xi +hi

, i = 1, ...,m.

where hi = 0.05xi. This procedure simulates the situation where the observer has
only approximate knowledge of the failure times, and can only provide a guess xi and
an interval of plausible values [xi−hi,xi +hi]. From these fuzzy numbers, we obtain
the MLE of σ , using the iterative algorithm (9). We have used the initial estimate to

be σ (0) = ( 1
2m

m
∑

i=1
x2

i )1/2. The iterative process stops when the relative change of the

log-likelihood becomes less than 10−6. The average values (AV ) and mean squared
errors(MSE) of the estimates based on 1000 replication are presented in Table 1.
From this table we observe that, as the sample size increases or the effective sample
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size increases, the performances of the MLEs in terms of mean squared errors
become better. Note that the above estimation results can be attributed to the
assumed fuzzy numbers. The rationales for such fuzzy numbers, which are
characterized by the membership functions, may influence the estimate results.

times of 23 ball bearings in endurance test is used to demonstrate the above estimation
procedure. For this data set, [Raqab and Madi (2002)] indicated that the one-parameter
Rayleigh distribution provides a satisfactory fit. The data are presented in Table 2. But,
in practice measuring the lifetime of a ball bearing may not yield an exact result. A
ball bearing may work perfectly over a certain period but be braking for some time,
and finally be unusable at a certain time. So, such data may be reported as imprecise
quantities. Assume that imprecision of the failure times of ball bearings is formulated
by fuzzy numbers x̃i = (hi,xi), where hi = 0.005xi, i = 1, ...,16, with membership
functions

µx̃i(x) =

{
x−(xi−hi)

hi
xi−hi ≤ x≤ xi

0 x > xi
, i = 1, ...,16.

From these fuzzy data and using the starting value σ (0) = ( 1
32

16
∑

i=1
x2

i )
1/2 = 40.0687,

which is the estimate of the parameter computed over the centers of each fuzzy
numbers, the final MLE of σ is found from (9) to be σ̂ = 48.8245. Fig. 1 shows a
plot of the observed-data log-likelihood as a function of σ (h). We can check that the
MLE corresponds in this case to a global maximum of the observed-data
log-likelihood.

Table II. Progressively censored sample for Example 2
i 1 2 3 4 5 6 7 8
xi 17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84
Ri 2 0 0 1 0 0 1 0
i 9 10 11 12 13 14 15 16
xi 51.96 54.12 55.56 67.80 68.64 68.88 84.12 93.12
Ri 0 0 1 0 0 0 0 2

EXAMPLE 1: A progressively Type-II censored sample from the data on the failure
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Fig. 1. Plot of the observed-data log-likelihood as a function of σ (h)

5 LOGNORMAL LIFETIME DATA

Lognormal distribution is another commonly used lifetime distribution model in
lifetime data analysis. Let X be the original lifetime variable that follows a
Lognormal distribution with parameters µ and σ . The density of X is given by

f (y; µ,σ) =
1√

(2π)σy
exp
[
− 1

2σ2 (logy−µ)2
]

,y > 0, (10)

where µ and σ are the scale and shape parameters, respectively.

The log-likelihood function based on the complete lifetimes is proportional to

L(W; µ,σ) ∝−n log(σ)− 1
2σ2

[
m

∑
i=1

(logxi−µ)2 +
m

∑
i=1

Ri

∑
j=1

(logzi j−µ)2

]
. (11)

In the E-step, one requires to compute

n log(σ)− 1
2σ2

[
m

∑
i=1

E((logXi)
2 | x̃i; µ

(h),σ (h))+
m

∑
i=1

Ri

∑
j=1

E((logZi j)
2 | z̃i j; µ

(h),σ (h))

]
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+
µ

σ2

[
m

∑
i=1

E(logXi | x̃i; µ
(h),σ (h))+

m

∑
i=1

Ri

∑
j=1

E(logZi j | z̃i j; µ
(h),σ (h))

]
− nµ2

2σ2 . (12)

The conditional expectations α
(h)
i = E((logXi)

2 | x̃i; µ(h),σ (h)),
γ
(h)
i = E(logXi | x̃i; µ(h),σ (h)), β

(h)
i j = E((logZi j)

2 | z̃i j; µ(h),σ (h)) and

η
(h)
i j = E(logZi j | z̃i j; µ(h),σ (h)) can be computed using

E((logU)2 | ũ; µ
(h),σ (h)) =

∫
(logu)2

µũ(u) f (u; µ(h),σ (h))du∫
µũ(u) f (u; µ(h),σ (h))du

, (13)

and

E(logU | ũ; µ
(h),σ (h)) =

∫
(logu)µũ(u) f (u; µ(h),σ (h))du∫

µũ(u) f (u; µ(h),σ (h))du
. (14)

From the usual results for complete data maximum likelihood estimation for
lognormal distribution, the explicit formulas for the MLE of µ and σ are

µ̂ =
1
n

n

∑
i=1

logwi,

σ̂ =

[
1
n

n

∑
i=1

(logwi− µ̂)2

]1/2

.

Therefore, in the (h+1)th iteration, the value of µ(h+1) and σ (h+1) are computed by
the following formulas:

µ̂
(h+1) =

1
n

[
m

∑
i=1

γ
(h)
i +

m

∑
i=1

Ri

∑
j=1

η
(h)
i j

]
, (15)

σ̂
(h+1) =

{
1
n

[
m

∑
i=1

α
(h)
i +

m

∑
i=1

Ri

∑
j=1

β
(h)
i j

]
−
(

µ̂
(h+1)

)2
}1/2

. (16)

Table III. Simulated progressively censored sample from standard lognormal distribution
i 1 2 3 4 5 6 7 8
xi 0.2721 0.2910 0.2929 0.3882 0.5594 0.5831 0.7041 0.8272
Ri 1 0 0 1 0 0 1 0
i 9 10 11 12 13 14 15
xi 0.8454 0.8963 1.1084 1.7867 2.0148 2.2213 4.2340
Ri 0 0 0 0 0 0 2
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perform the following experiment. We first generated a progressively Type-II censored
sample of size m = 15 from standard lognormal distribution. The data are presented in
Table 3. Each realization of lifetimes was fuzzified by fuzzy numbers x̃1, ..., x̃m with
the corresponding membership function

µx̃i(x) =

{
exp
(
−(xi− x)2

)
x≤ xi

exp
(
−(x− xi)

2
)

x > xi
, i = 1, ...,m.

Since the mean and standard deviation of the 15 observed sample points equal to
−0.2015 and 0.8192, respectively, thus we can put µ(0) =−0.2015 and σ (0) = 0.8192
as the starting values of the algorithm. After a few iterations, the estimates converge
to the values µ̂ = 0.1276 and σ̂ = 1.0161.

6 CONCLUSION

Although the maximum likelihood estimation method based on the progressively
Type-II censored data has been studied extensively, traditionally it is assumed that
the data available are performed in exact numbers. In real world situations, however,
we deal with non-precise (fuzzy) data. Therefore, the conventional procedures used
for estimating the unknown parameters of lifetime distributions will have to be
adopted to the new situation. In this paper we have proposed a new method for
obtaining maximum likelihood estimates of lifetime distribution parameters under
progressively Type-II censoring scheme when the lifetime observations are fuzzy
numbers. Two popular lifetime models, Rayleigh and Lognormal distributions, have
been used to demonstrate how the the proposed method works. For the two cases, the
subsequent guesses of the parameters are in explicit expression. The study of the
applicability of the proposed approach in estimating the parameters of lifetime
distributions under the other censoring schemes such as Hybrid Type-II and Hybrid
progressive Type-II censoring are possible topics for further research.
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