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Bi-Objective Bilevel Programming Problem:
A Fuzzy Approach

S. HASEEN AND A. BARI

Abstract:

In this paper, a likely situation of a set of decision maker’s with bi-objectives in case of fuzzy multi-choice
goal programming is considered. The problem is then carefully formulated as a bi-objective bilevel
programming problem (BOBPP) with multiple fuzzy aspiration goals, fuzzy cost coefficients and fuzzy
decision variables. Using Ranking method the fuzzy bi-objective bilevel programming problem (FBOBPP)
is converted into a crisp model. The transformed problem is further solved by adopting a two level
Stackelberg game theory and fuzzy decision model of Sakawa. A numerical with hypothetical values is
also used to illustrate the problem.

Additional Key Words and Phrases: Bi-Objective Bilevel Programming Problem, Multichoice Goal
Programming, Trapezoidal Fuzzy Numbers, Ranking Function, Fuzzy Decision Model

1. INTRODUCTION

Bilevel Programming Problem (BPP) was first introduced by Bialas et al.
[1980], they called it a two level programming problem with two levels of decision
makers (DM), viz., the leader or first level decision maker (FLDM) and the follower
or second level decision maker (SLDM). They also developed the Kt/ algorithm to
solve their problem.

A BPP can be viewed as a standard mathematical program whose constraint
region has been modified to include an implicitly defined function. To see this,
suppose that each of the First and Second level decision maker wishes to maximize
his own objective function, F' and f respectively. As in the conventional setting
FLDM has control over the set X C R" and SLDM has control over the set Y C R™
where X NY = ¢. It shall be assumed that FLDM has the first choice and selects
x € X, followed by SLDM who selects y € Y, and that each objective function jointly
depends on both of these choices; that is, F, f : R” x R™ — R. A further assumption
is that the choice made by the FLDM may affect the set of feasible strategies
available to the SLDM.

Bard [1982] defined BPP and solved the problem using grid search algorithm.

There are many researchers who used different methods to get a better pareto optimal
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solution for the hierarchical problem of BPP. Among them are U.P. Wen [1986],
Mathieu et al. [1994], Lu et al. [2005],Shi et al. [2005], Liu [1998] etc. who solved
the BPP using different approaches.

Zadeh introduced fuzzy sets as sets with boundaries that are not precise. A
fuzzy set can be defined mathematically by assigning to each possible individual in
the universe of discourse a value representing its grade of membership in the fuzzy
set. The fuzzy programming approach [Inuiguchi and Ramik [2000],Rommelfanger
[1996], Slowinski and Teghem [1990]] is useful and efficient for treating a
programming problem under uncertainty. =~ While a classical and stochastic
programming approach may cost a lot to obtain the exact coefficient value or
distribution, fuzzy programming approach does not [Rommelfanger [2004]]. From
this fact, fuzzy programming approach can be very advantageous when the
coefficients are not known exactly. Fuzzy programming offers a powerful means of
handling optimization problems with fuzzy parameters. Fuzzy programming has
been used in different ways in the past. The fuzzy programming method for
multi-objective programming problems was proposed by Zimmermann [1978] and
has been advanced by Sakawa and colleagues [Sakawa [1993b]]. An interactive
fuzzy satisfying method for multi objective linear programming problems and the
interactive fuzzy decision making for multi-objective nonlinear programming using
augmented minimax problems have been also introduced Luhandjula [1987], Sakawa
[1984], Seo and Sakawa [1988]. The fuzzy programming method in which fuzziness
in the decision making process is represented by using the fuzzy concept has also
been studied extensively and many results have been published [Rommelfanger
[1996], Teghem Jr et al. [1986]]. This method can be applied to not only the linear
multi-objective but also the nonlinear multi-objective programming. There are many
more authors who work on fuzzy problems some of them are Ganesan and
Veeramani [2006], Allahviranloo et al. [2008], Ezzati et al. [2013] who have studied
fuzzy linear program with triangular and trapezoidal fuzzy numbers

A new area of research was originated by Healy [1964] known as a multiple
choice programming problem. In these problems there is a requirement to choose,
among several possible combinations as an alternative to optimize an objective
function subject to a set of constraints. It is a mixed binary programming in which all
binary variables constitute a number of mutually exclusive choices where only one
variable is to be selected. Multi-choice linear programming problem has been
discussed by several authors such as Rav, Hiller and Lieberman [1990] etc. Chang
[2007] proposed multichoice goal programming problem (MCGPP) in which
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objectives of mathematical programming problem can have multiple choices for their
goals. Again, Tabrizi et al. [2012] proposed fuzzy goal programming for solving the
MCGPP with multiple fuzzy aspiration levels and developed fuzzy membership
function to get a compromise solution and recently [Biswal and Acharya [2009],
Biswal and Acharya [2011]] consider the problem where the right hand side
parameter has multiple choices.

In this paper the author has considered a case of BPP with two objectives at
each level with multiple fuzzy choices for goals for every objective. They have
further considered the cost coefficients and decision variables to be symmetric
trapezoidal numbers. The problem is formulated and then crisp values using ranking
functions are used to solve the formulation adopting the two planner Stackelberg
function [see Anandalingam [1988]], the well-known fuzzy decision model of
Sakawa [1993a] for a tolerance membership function.

2. PRELIMINARIES

Some basic definitions which are frequently used in the theory of BPP and fuzzy set
theory.

Forx € X C R,y cC R™,F : X][Y — R! and f: X][Y — R!, the linear bilevel
programming problem (BLPP) can be written as follows:

inF = d
min (x,y) =cix+diy
subject to A1 + B < by

min f(x,y) = cox+day
yey

subject toArx+ Byy < by,
where c¢i,c» € R",di,d» € R",b; € RP,by € R?,A; € RP1" B, € RPII™ 4, €

ReM" B, ¢ Rallm,
Definition 1(a) Constraint region of the linear BLP problem:

S={(x,y):xeX,ye€Y,Aix+Biy < b;,Axx+Byy < by}

The linear bilevel programming problem constraint region refers to all possible
combinations of choices that the leader and the follower may make.

Definition 1(b) Projection of S onto the leader’s decision space:
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SX)={xeX:FyeY,Aix+B1y<b|,Axx+Bry < by}
Definition 1(c) Feasible set for follower after every fixed x € X:
S(x)={y €Y :Byy<by—Aux}
Definition 1(d) Follower’s rational reaction set for x € S(X):

P(x)={y€eY:yearg min[f(x,9) : § € S(x)]},

where arg min[f(x,§) : § € S(x)] = {y € S(x) : f(x,y) < F(x.5,9 € S(x)}.
Definition 1(e) Inducible region:

IR= {(x,y): (x,y) €S,y € P(x)}.

S is assumed non-empty and compact and for all decisions taken by leader, the
follower has some room to respond i.e. P(x) # ¢. P(x) defines response while IR
represents the set over which leader may optimize. The rational reaction set P(x)
defines the response while the inducible region IR represents the set over which the
leader may optimize his objective.

Thus in terms of the above notations, the linear BLP problem can be written as

min{F (x,y) : (x,y) € IR}

Even with the stated assumptions, problem may not have a solution.

Fuzzy Set: Let A be the universe whose generic element be denoted by a. A fuzzy
set A in A is a function A : A — [0, 1].

Fuzzy number: A fuzzy number A is a fuzzy set of the real line A, whose
membership function pj(a) must posses the following properties with
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0 a< a(l),
N (1 (2
Uiy a'/<a<a
pila)={ "M (1)
l'Llj(a) a(2> <a S a(3>

0 a>a®

where u;(a) : [a,a®] — [0,1] is continuous and strictly increasing and

g (a) : [a®,aD] — [0, 1] is continuous and strictly decreasing.

Membership function p;(a): We frequently define function A and say that the fuzzy
set A is characterized by its membership function 4 : A — [0, 1]

Symmetric Trapezoidal Fuzzy Number (STFN): A symmetric trapezoidal fuzzy
number can be completely specified by the foursome A = (a“),am,}/7 7) on real
numbers R if there exist real numbers a(l),am;a(l> < a® and Y < 0 such that the

membership function is

a+7;a(l> a) —y<a<a
1 a <a§a(2),

PO T catelr ) < <o 4y v
0 otherwise

The symmetric trapezoidal fuzzy number (STFN) is depicted in the figure below

#a(x)

" o - D -
0| -a+a@+y  a@® al® aty-a X

Ranking Function: If A = (a(V),a®,y,y) and A = (b)) b B.B) are two STEN

then their product can be defined as
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(@V,a®,y,y) x (6V,6?,B,B)

dDra®\ [ b 4p@ dDara®\ [ b 1p@

(55) (2527) o, (452 (25527) 4 @B+ 10 [0 B+ )
Where,w:%
t = min{a(l)b(l),am,b<2),a(2>b(1>,a(2)b(2)}

= max{a(‘)b(‘)7a(1),b(2>,a<2>b(‘>,a<2)b<2>}

3. FORMULATION OF BI-OBJECTIVE BILEVEL PROGRAMMING
PROBLEM (BOBPP)

Again, the BPP can have more than one objective function at each level. So we
consider here a linear bilevel programming problem with two objectives of
maximization type at each level. Let the leader, FLDM have control over decision
variable x € R" and the follower, SLDM, have y € R”™. Moreover, the decision
variables are trapezoidal fuzzy number with fuzzy cost coefficients. Cost coefficients
are also fuzzy trapezoidal number. Mathematically, Bilevel Programming Problem
(BPP) with two objectives of maximization type and fuzzy parameters can be written
as follows

For¥xe X CR",yeY CR"

where ¥ solves

subjectto A1 X+ By < by

max fi(5) = &3+ ds§
yey

H(XF) = eax+ds§
subjectto  AxX¥+ By < by
x>0,5>0.

Now, in real life problem there may be situation where there are more than one
choices in goals in such case the DM’s of BOBPP have multiple fuzzy aspiration

goals. Then BOBPP with multiple fuzzy aspiration goals may be formulated as

max Fi(%,5) = G
X where ¥ solves 3

R(%,3) = G

=
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subjectto A X+ B3 < by

max [iEF) =&
fH(EY) =&

subjectto  AxX¥+ B2y < by
£>0,5>0

where é,-,i = 1,2. are fuzzy aspiration gaols of FLDM and g;,i = 1,2. are fuzzy
aspiration gaols of SLDM. Since there are fuzzy aspiration goals at each objective
the fuzzy bi-objective bilevel goal programming problem (FBOBPP) can be written
as different cases.

Case 1. When there are two fuzzy aspiration goals to choose the FBOBPP will be

2
max Yioi B

fmwﬁz F(%5) -G
d; 1

subjectto  pp <1-—

(1) o (2) o
G '—F(xy G~ —F(xy
w,él—{ Moian, y o ”(1—@}

=
dy

AX+B1y < b
max Y& “4)

s (1) 2
. fi(x9)— i fi(%, —8;
subject to éfi <1- |: (X)d} : ki + (xydza : (1 _kl)]

<1 {gﬁ”mx&) ky 4 SR )]
Axxi+Bi < by
ur, > 0,87 >0,
£205>0i=12r=12..,p.

Case 2. When there are three fuzzy aspiration goals to choose the FBOBPP will be
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2
max Yioi B

(7.5)— G (52
subjectto  pip <1— | ==z + ——"—
il

I —Fi(Xy
S

D F(xy
%Zl(l 7Z2)
i3

A1X+B17 < b

max

subject to

21‘2:1 5fi

[ A9 —g!” kika 4 filis)—g?

§rp<1-—

En<1-—

il
3

D8 (1 k)

di3

dp

D f(z5

T
di 2

=

(l*kl)szr

(1 —ki)ko+

&)

U (
8i dﬁ(x))klkz-i-g’
L il
B)_rrzs 1
+gi dJJE(an) kl(l _kZ)
i3
ArX+ By < by
ur, > 0,84 >0,

¥>0,y>0;i=1,2;r=1,2,...,p.

where dit and d;,,i =1,2;r = 1,2,...p are the positive and negative deviation
of " choice of fuzzy goal from the optimum value of the i’ objective respectively.
We see a binary function is associated with these cases and we may generalize the
term as a function of Q;(z,k), then the generalized FBOBPP may be written in

precise as
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2
max Yioi BF
(25 —G\")
subjectto  up <1-— [ - Wﬂi(z,k)]
m G('r)_ HED)
tg <1-— { " ‘;Wﬂi(zyk)]
A1X+B1y < by
max Y& (6)
- Cem fED-8"
subjectto &7 <1 g Qi (z,k)

(r)7 e
<1 g
ArX+ By < by
ur, > 0,84 >0,

¥>0,y>0;i=1,2;r=1,2,...,p.

i(Z,k):|

where the membership function for i objective function in first level is given

by
0 if F(%,5) < G +d;
i(X,y)— m r r -
- [%Qi(z,k)} it G < F(x5) < G +d
pE =11 1fF,(i,)7)=G,(r);i=172;'":1»2,~~~P @)
) _F (x5 r r
1— [Gidi_wgi(z,k)} if G\ —dt < Fy(z.5) < GV
0 if otherwise
and membership function for i objective function in second level is
0 if F(%.5) < g +d,
(X, V)— (r) . r r _
1— [7]3(;(,22; = Qi(Z,k)} if gl( )< g,( ) +d;,
£ =41 if]?i(j’y):gl(r);i:1,2;r:1,2,...p (8)
" _ (x5
- [El00en)] ifgl! -df <g)”
0 if otherwise.
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4. SOLUTION OF BOBPP WITH MULTIPLE FUZZY ASPIRATION GOALS

Now, we adopt the two level Stackelberg function and fuzzy decision model of
Sakawa [1993a] to solve the above model of BOBPP with multiple fuzzy aspiration
goals. According to this method as given by Emam [2006] the FLDM gets a
satisfactory acceptable solution. Then decision variable and some goal are give to
FLDM with some room for SLDM to get an optimal solution which is closest to the
optimal solution of FLDM.

4.1. Solution of the FLDM problem

The FLDM obtains the optimal individual solution, say F;* of all the objectives in
upper level and solves the given problem.
Now we can get the solution of the FLDM problem by solving the following problem

Max Yiibs
(w5
subjectto  pp < 1— {szl Wﬂi(z,k)]
GV —F(xy
e <1- [ p GEED g k) ©)

AX+B1y < b
Axk+ By < by
0>ur<1; i=1,2,....m
Y220, j=12,...,n

whose solution is assumed to be
<F sF pF.:__
X F =12, ,m.

4.2. Solution of the SLDM problem

In similar way the SLDM solves his/her problem and denote its individual optimal
solution as f;". Again the solution of the SLDM’s problem is obtained by solving the

problem given below
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Max Yiiés
(25— ")
subjectto  &f < 1— { b, f’(x’i;_g’Qi(Lk)}
" _ ¢35
Ep<1- [zfl g'jﬂ"”szmz,k)} (10)
A1X+B1y < b

ArX+Brj < by
0>&,<1; i=12,...,m
Yikj>0, j=12,....n

whose solution is assumed to be ¥, 7, F%;i =1,2,...,m
Now the solution of the FLDM and SLDM are disclosed. However, two solutions
are usually different because of nature between both levels objective functions. The
FLDM knows that using the optimal decisions & as a control factor for the SLDM is
not practical. It is more reasonable to have some tolerance that gives the SLDM an
extent feasible region to search for his/her optimal solution, and also reduce searching
time or interactions.
In this way, the range of decision variables % should be around %/ with maximum
tolerances ¢ and the following membership function specify & as

“:x—(xt# For<i<it (11)
where 7 is the most preferred solution.
First, the FLDM goals may reasonably consider all F; > FF' /i = 1,2,...,m absolutely
acceptable and all F;(%,5) < F/ = F;(&5,55),i = 1,2,...,m absolutely unacceptable,
and that the preference with [F/ ,F,-F ,i=1,2,...,m] is linearly increasing. This is due
to the fact that the SLDM obtained the optimum at (¥%,7), which in turn provides
the FLDM the objective function values F/, makes any F;(%,5) < F/,i=1,2,....,m
unattractive in practice.

The following membership functions of the FLDM can be stated as

0 if F(%,5) > FF

u= 1= [ R <R <E (12)

1 ifF(%7y) <F i=12,....m.
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Second, the SLDM may be willing to build a membership function for his/her
objective functions, so that he/she can rate the satisfaction of each potential solution.
In this way, the SLDM has the following membership functions for his/her goals:

0 if fi(%,5) > fF
& = “['fi(fxf'_);f’l it ff < fil%5) < f (13)
1 it (59 <fl  i=12,....m

where f/ = fi(#,5")
Finally, in order to generate the satisfactory solution, which is also a Pareto optimal

solution with overall satisfaction for all DMs, solve the following Tchebycheff

problem.
max 1)
FeX
subject to M > 6
A1X+B1y < by

AxX+ By < b
E<1— [Ew),ﬂ

T
27:12j£01
Y k>0
0>06>1
0>u <1
0>&<1

t>0; i=1,2,....om; j=12,....n

where § is the overall satisfaction.

After solving the above equation if the FLDM is satisfied with solution then
satisfactory solution is reached. Otherwise, the FLDM should provide new
membership functions for the control variable and objectives to the SLDM until a

satisfactory solution is reached.
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5. NUMERICAL EXAMPLE

Consider a BOBPP with multiple fuzzy aspiration goals given below

maxF, =205+30y  ~ 240,275
xeX

. . where 7 solves
2 =30%+20y ~ 210,260,290

subjectto  11x+ 125 <130

max f, =08+235  ~ 160,180,200
y€
fr  =108+245 ~ 160,185
subjectto 16X+ 177 < 120
—12%+95 <35
£>0,§>0

Let the fuzzy cost coefficients and decision variables are symmetric trapezoidal fuzzy
numbers where

20 = 16,20,22,22; 30 = 15,30,45,45; 9=17,9,12,12

23 =120,23,25,25; 10=7,10,12,12; 24 =20,24,28,28

Thus, the above problem in terms of symmetric trapezoidal fuzzy numbers can be

rewritten as

maxF; = (16,20,22,22) ® (x1,x2,x3,X3)+

xeX

+(15,30745745)®()’17)’27)’37)’3) %2407275
m%?(Fz = (15,30,45745) & (xl,)Cz,)C3,)C3)—|—
xe

+(16320722a22)®(y17y27y37y3) %2107260,290
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subjectto 11 ® (x1,x2,%x3,x3) +12® (y1,y2,¥3,¥3) < 130

r;lea)}fl =(7,9,12,12) ® (x1,x2,x3,x3) +

£(20,23,25,25) @ (y1,2,73,Y3) ~ 160, 180,200
I;lea;(fz =(7,10,12,12) ® (x1,x2,%3,x3) +

+(20,24,28,28) ® (y1,¥2,¥3,¥3) ~ 160,185

subjectto 16 ® (x1,x2,x3,x3) +17® (y1,y2,¥3,¥3) < 120
—12® (x1,x2,x3,%3) + 9@ (y1,¥2,¥3,y3) < 35

(x17x27x37x3) > Oa (ylayZay3ay3) >0

The symmetric trapezoidal individual optimal values of the objectives of FLDM,
SLDM, £ and § are given in table below

F{ | 202.5463 | 301.8519 | 201.0311 | 201.0311
Fy | 198.7609 | 274.6685 | 176.2234 | 176.2234
fi ] 209.2438 | 216.5021 | 132.7426 | 132.7426
f3 | 192.0062 | 222.9630 | 134.9465 | 134.9465

Table 1: Individual optimal values of each objective function

Now, using eq. (9) the FLDM’s problem is as given below

max n+ U
subject to u <1-— {Flg’y;);fomm + F‘g‘_);f;s (1 —11)}

240—F (%5 275—F (%7
<1 - 2B + A (1)

F(%5)-210 Fy(,5)—260 Fy(%,5)—290
M2 < 1— [ 2%{)210 223+ 21(’)25‘}7)260 2(1 _23)21%{7)290(1 _Z2)23}

_ [210-B(%) 260-F(55) (1 _ . \200-Fy(E5) 1 _
o <1 [F;—Zlo 223+ e 22(1 Z3>W(l 22)73

£+ 125 < 130

165+ 75 < 120

128495 < 35
2+ >1

1> u,u >0.
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Ff | 202.5463 | 204.8644 | 228.7890 | 228.7890
FF ] 193.9403 | 180.7770 | 274.5718 | 274.5718
I ] 202.5463 | 148.5584 | 125.3088 | 125.3088
71 192.0062 | 150.9034 | 134.9834 | 134.9834

Table 2: Values for FLDM’s solution

Again, using eq. (10) the solution of the SLDM’s problem can be obtained from

Max &i+&
subjectto & < 1— [fl("” ok + AGD 80 (1 k)%(l—kl)kz}

160— B 180— , 200— f
& < 1= | A ko + S (11— ko) 20 (1 ke ko

E<1- [ (x;) 160k +f2(fxy)1 185(1 k3)}

f2*7]60 185
1E+125 < 130

165+ 75 < 120
128495 < 35

E<1- [mosfz(m),c 4 185 fz(Xy)(l_k3)}

ki+ky >1
1251752 20

FP | 179.7286 | 167.7180 | 319.4375 | 319.4375
Fy | 168.6757 | 147.5871 | 263.8660 | 263.8660
f 188.7443 | 120.1569 | 196.2188 | 196.2188
2S 172.6852 | 122.7885 | 211.2017 | 211.2017

Table 3: Values for SLDM'’s solution

Finally, using eq. (11), eq.(12) and eq.(13) and assuming the FLDM’s control
decision xf around O with tolerance 1, the pareto-optimal solution which is
satisfactory to both DM’s is obtained solving the Fuzzy programming problem in
eq.(14).

Now the trapezoidal symmetrical fuzzy optimal values are converted into their
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F| | 179.7286 | 176.785 | 218.785 | 218.785
F) | 168.6757 | 145.995 | 233.0375 | 233.0375
|| 188.7443 | 141.3384 | 130.5005 | 130.5005
5 | 172.6852 | 144.6666 | 138.4983 | 138.4983

Table 4: Trapezoidal Fuzzy values for BOBLPP

respective crisp values
ie. F] =178.2568,F; = 157.33535,F; = 165.04135 and F; = 158.6756
Now when these crisp goals have been obtained the BOBLPP becomes

m%?(Fl =20x+30y =178.2568
XE
12} =30x+20y =157.33535

where y solves

subjectto  11x+ 12y <130

I;lél);(f] =9x+23y = 165.04135
2 =10x+24y  =158.6756
subjectto  16x+ 17y <120
—12x+9y <35
x>0,y>0

So the compromise solution finally obtained is (x©,y¢) = (1.403957,5.760832)

(FC,FS) = (200.9041,157.3354)
(/€ £5) = (145.1347,152.2995)

Figure (1) illustrates pareto optimal solution of the above problem.

If the FLDM is satisinAed with the above solution, then a satisfactory solution is
reached. Otherwise, one should provide new membership functions for the control
variable and objectives to the SLDM, who also should provide new membership
function for the control variable and objectives to the SLDM until a satisfactory

solution is reached.
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Figure 1: A Pareto Optimal Solution

6. CONCLUSION

In this paper the author considered a practical situation of multiple fuzzy choices of
goals for decision makers, fuzzy cost coefficients and fuzzy decision variables with
their own set of objectives. A two level problem with two objectives at each level and
fuzzy aspiration goals is formulated as a fuzzy bi-objective bilevel programming
problem (FBOBPP). The fuzzy cost coefficients and fuzzy decision variables are
considered symmetric trapezoidal fuzzy numbers. Using ranking function the model
is converted into a crisp model. The FBOBPP is then solved using two planner
stackelberg function and fuzzy decision model with tolerance function. A
comprehensive study of bi-objective bilevel programming problem in case of fuzzy
parameters has been done in this paper. Finally, a pareto-optimal solution for
decision maker’s of bilevel problem is obtained. The problem can be further
extended as a multi-objective multilevel programming problem with multiple fuzzy

aspiration goals.
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