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Abstract:

Robust regression methods have been developed not only as a diagnostic tool for standard least squares
estimation in statistical and econometric applications, but can be also used as self-standing regression
estimation procedures. Therefore, they need to be equipped by their own diagnostic tools. This paper is
devoted to robust regression and presents three contributions to its diagnostic tools or estimating
regression parameters under non-standard conditions. Firstly, we derive the Durbin-Watson test of
independence of random regression errors for the regression median. The approach is based on the
approximation to the exact null distribution of the test statistic. Secondly, we accompany the least trimmed
squares estimator by a subjective criterion for selecting a suitable value of the trimming constant. Thirdly,
we propose a robust version of the instrumental variables estimator. The new methods are illustrated on
examples with real data and their advantages and limitations are discussed.
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ROBUST REGRESSION

We consider the linear regression model

Yi = β0 +β1X1i + · · ·+βpXpi + ei, i = 1, . . . ,n. (1)

Because the standard least squares (LS) estimator of β = (β0, . . . ,βp)
T is highly

vulnerable to the presence of outlying measurements in the data, numerous robust
regression methods have been proposed as alternatives to the least squares.
Nevertheless, they are sensitive to violations of the assumptions of the linear
regression model, i.e. they require the random errors (disturbances) e1, . . . ,en to be
independent, homoscedastic, and uncorrelated with the regressors [Jurečková et
al. 2012]. Therefore, diagnostic tools for robust regression methods or specific
estimation procedures for non-standard situations are highly desirable [Vı́šek 2004].

Regression median (or least absolute deviation, L1-estimator) is a robust estimator
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of β obtained as

argmin
n

∑
i=1

∣∣Yi−b0−b1X1i−·· ·−bpXpi
∣∣ , (2)

where the minimization is considered over all estimators b = (b0, . . . ,bp)
T of β . It can

be interpreted as the regression quantile with the parameter α = 0.5 [Koenker 2005].
Thus, it divides the set of the disturbances to a half of values below the regression
median and the remaining half of values above the regression median. Still, diagnostic
tools are not available for the regression median. We use the asymptotic representation
given by Jurečková and Sen [1996] to derive the asymptotic behavior of the Durbin-
Watson test statistic computed with residuals of the regression median. The Durbin-
Watson test for the regression median is presented in Section 2.

Section 3 will present a new method for selecting a suitable value of the trimming
constant h for the least trimmed squares (LTS), which is one of highly robust
regression estimators [Rousseeuw and Leroy 1987]. So far, there has been no
criterion for a sophisticated choice of the number h of observations truly used for the
computation, while the remaining n−h observations are ignored.

The least weighted squares (LWS) estimator for the model (1) generalizes the LTS
[Vı́šek 2011] based on implicit weighting of individual observations, down-weighting
but not trimming away potential outliers. If the estimator is computed with the data-
dependent adaptive weights of Čı́žek [2011], it attains a 100 % asymptotic efficiency
of the least squares under Gaussian errors. At the same time, the estimator has a high
breakdown point, i.e. a high resistance against noise or outliers in the data [Huber
and Ronchetti 2009], and is robust to heteroscedasticity [Vı́šek 2011]. Just like other
methods based on ranks have suitable properties in a variety of situations [Murakami
2014], the idea of the LWS, i.e. the implicit weights based on ranks of residuals, is
successful in a variety of recent applications including a robust correlation coefficient
[Kalina 2012] or robust dimensionality reduction [Kalina and Schlenker 2015]. We
use the idea of implicit weights assigned to individual observations to define a robust
instrumental variables estimator in Section 4.

Throughout the paper, the novel methods will be illustrated on an investment data
set of the time series of real gross domestic product (GDP) and real gross private
domestic investment (INVESTMENT) in the United States in the years from 1980 to
2001. Both variables are expressed as multiples of 109 of dollars. The data, which are
adjusted for deflation of money for the sake of interpretation, come from the website
www.stls.frb.org/fred of the U.S. Department of Commerce. The data were routinely
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analyzed by means of robust regression by Kalina [2011].

DURBIN-WATSON TEST FOR REGRESSION MEDIAN

This section is devoted to the Durbin-Watson test for regression quantiles. The
observations in (1) are assumed to be observed in equidistant time moments. The test
considers the null hypothesis H0 of autocorrelated errors e = (e1, . . . ,en)

T in (1)
against the one-sided alternative H1 that the errors form an autoregressive process
AR(1) with parameter ρ > 0. The Durbin-Watson test in the original form for least
squares regression was proposed by Durbin and Watson [1950].

We assume the assumptions of Jurečková and Sen [1996] for the asymptotic
representation for the regression median to be valid. Using the notation of above, let
us further denote a unit matrix of size n×n by I n, let us define

M = I n−X(XT X)−1XT (3)

and

A =



1 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 1


, (4)

where blank spaces represent zeros.

THEOREM 2.1. Let us consider (1) and let us assume normally distributed errors

e∼ N(0, σ
2I n). (5)

Let the statistic

d̃ =
∑

n
t=2(ũt − ũt−1)

2

∑
n
t=1 ũ2

t
=

ũT Aũ
ũT ũ

(6)

of the Durbin-Watson test be computed using residuals ũ1, . . . , ũn of the regression

median. Under H0, the statistic d is asymptotically equivalent in probability to

eT MAMe
eT Me

. (7)
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The proof follows from the asymptotic considerations of Kalina [2011]. The test
statistic (7) is exactly the Durbin-Watson statistic for the least squares regression,
which suggests how to compute the asymptotic test. The null distribution of d depends
on M (and thus on X). Upper and lower bounds for the critical value for the least
squares are tabelated. They are asymptotically valid for the regression median. It is
possible to approximate the exact p-value of the test for the regression median in the
following way.

THEOREM 2.2. The approximative p-value of the Durbin-Watson test statistic d̃

for the regression median based on the approximation of Theorem 2.1, assuming (5)

in (1), defined as the probability

PH0

[
ET MAME

ET ME
< d̃
]
, (8)

converges to the p-value of the exact test for least squares for n→ ∞, where E =

(E1, . . . ,En)
T are independent random variables with N(0,1) distribution.

To illustrate the method, we consider the model

INVESTMENTt = β0 +β1 ·GDPt + et , t = 1, . . . ,n = 22. (9)

for the investment data of Section 1. We compute several robust regression estimators.
Estimates of β0 and β1 are shown in Table 2. In order to verify the assumption of
uncorrelated regression errors, the Durbin-Watson test statistic (6) is computed for
the least squares as well as other estimators based on their residuals. Besides the
regression median, we perform the computations with the least squares, LTS with the
optimal h according to Section 3, LWS with linearly decreasing weights, and trimmed
least squares (TLS), which is computed as the least squares regression with those
observations which are in the “middle” part of the data between the first and third
regression quartile. The critical value of the Durbin-Watson test is asymptotically
valid, which was shown for the LTS by Vı́šek [2004] and for the LWS and TLS by
Kalina [2014].

The critical value lies between tabelated lower and upper bound, i.e. in the interval
[1.24; 1.43]. Based on 1000 simulation we compute the exact critical value (7) to be
1.24. The values of the test statistic are very similar for all regression estimators in the
table and the Durbin-Watson test is highly significant in each case.

The asymptotic Durbin-Watson test turns out to be an important diagnostic tool,
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LTS Regression
LS (h = 19) LWS TLS median

Intercept −582 −371 −465 −526 −517
Slope 0.239 0.203 0.221 0.231 0.230
D-W statistic 0.418 0.351 0.408 0.420 0.418
Asymptotic critical value 1.24 1.24 1.24 1.24 1.24
of the D-W test

Table I. Various regression estimates computed in the linear regression model for the investment data.
Results of the Durbin-Watson test of Section 2.

Regression method Est. of β0 Est. of β1

Least squares
(i.e. LTS, h = 22) -582 0.239
LTS, h = 21 −568 0.238
LTS, h = 20 −561 0.238
LTS, h = 19 −371 0.203
LTS, h = 18 −369 0.204
LTS, h = 17 −375 0.207
LTS, h = 16 −172 0.171
LTS, h = 14 −240 0.182
LTS, h = 15 −216 0.177
LTS, h = 13 −252 0.184

Table II. Various regression estimates computed in the linear regression model for the investment data.
Selection of a suitable trimming constant for the LTS (Section 3).

which can be easily performed using the classical critical value or p-value of the least
squares regression. On the other hand, these are valid only asymptotically and are
derived under the assumption of normally distributed random errors in (1).

TRIMMING CONSTANT FOR THE LEAST TRIMMED

We illustrate our subjective method for selecting a suitable value of h for the LTS
on the example with investment data with n = 22. The following code in R software
introduces the data and shows the method for computing the LTS estimator for various
values of h:

x=c(4900.9, 5021, 4919.3, 5132.3, 5505.2, 5717.1, 5912.4, 6113.3,

6368.4, 6591.8, 6707.9, 6676.4, 6880, 7062.6, 7347.7, 7543.8,

7813.2, 8159.5, 8508.9, 8856.5, 9224, 9333.8);

y=c(655.3, 715.6, 615.2, 673.7, 871.5, 863.4, 857.7, 879.3, 902.8,

936.5, 907.3, 829.5, 899.8, 977.9, 1107, 1140.6, 1242.7, 1393.3,

1558, 1660.1, 1772.9, 1630.8);

n=length(x);
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library(robustbase);

FitLeastSquares=lm(y~x);

for (h in 13:22) FitLTS=ltsReg(x,y,alpha=h/n);

Table II presents estimates of β0 and β1 obtained with least squares and LTS. The
common approach is to put h to be equal to

h =
⌊n

2

⌋
+

⌊
p+1

2

⌋
, (10)

where bac denote the integer part of a [Rousseeuw and Leroy 1987]. Such choice
ensures the highest possible breakdown point (asymptotically up to 50 %), but has the
disadvantage of ignoring a too large number of observations. This explain why the
LTS is habitually used only as a diagnostic tool, without being very efficient due to
a loss of relevant information. However, the value of h can be improved to reflect the
true level of data contamination.

Let us now describe our approach for the selection of such suitable h. The
computation of LTS is performed for each h between (10) and n. The optimal (but
unknown) value of h will be denoted as h∗. Values of bLT S happen to be quite similar
to each other for h < h∗. The same is true also for estimates of the variance σ2 of the
random regression errors. However, these values appear to be very different for
values of h exceeding h∗, i.e. in the situation with the value of (n− h)/n below the
level of the contamination of the data. In our example, the value h = 19 seems to be a
suitable estimate of h∗. The least squares estimator correspond to the LTS with
h = n = 22. We can observe values of β1 and β0 to be very different from values
obtained for all smaller values of h.

The results brings arguments in favor of the choice h = 19, while this subjective
approach is not guaranteed to be helpful for each particular data set.

LEAST WEIGHTED INSTRUMENTAL VARIABLES

The instrumental variables (IV) estimation is a regression approach popular in
econometrics, which is helpful in model (1) with errors correlated with the
regressors, if there are some instrumental variables Zi = (Z1i, . . . ,Zli)

T available for
the each of the observations with index i = 1, . . . ,n [Greene 2011]. Here, l as the
number of instruments must fulfil l ≥ p. Because it is based on the least squares
estimation, it is highly vulnerable with respect to outlying measurements. A robust
instrumental variables estimator was proposed by Vı́šek [2006]. However, it requires
exactly l = p. In this section, we present a very different approach to robust
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instrumental variables, which can be computed also for the general case with l ≥ p.

Only in a very special case, this formula reduces to the weighted instrumental
variables estimator of Vı́šek [2006].

We propose the least weighted instrumental variables (LWIV) estimator as
a following two-stage procedure, where both stages ensure the robustness of the
result by means of implicitly assigned weights to individual observations. The LWS
estimator, which was described in Section 1, can be recommended again with the
adaptive weighting scheme of Čı́žek [2011].

(1) The LWS regression is used in the linear regression X = Zγ + v with some
parameters γ = (γ1, . . . ,γ l)

T and random errors v = (v1, . . . ,vn)
T . Let W1 denote

the diagonal matrix containing the weights in the optimal permutation
(i.e. determined by the LWS). The projections X̂ are obtained by

X̂ = Z γ̂ = Z(ZT W1Z)−1(ZT W1X). (11)

(2) The LWS regression is used in the linear regression of Y against X̂. Denoting the
diagonal matrix containing the weights in the correct permutation (optimal
permutation determined by the LWS) by W2, the LWIV estimator of β is
computed as

b =
(
X̂T W2X̂

)−1 X̂T W2Y. (12)

Assuming l = p, the LWIV estimator coincides with the proposal of Vı́šek [2006].
For this special case, we have previously illustrated the performance of the method on
real data [Kalina 2011]. Now we give another example for l > p, which reveals that
the LWIV estimator must be used with care. The estimator does not always yield a
clearly interpretable result even in simple situations, which is however not a limitation
of the robust approach itself, but rather a controversy of the instrumental variables
estimation in general.

As an example, we consider the model

Yt = β0 +β1Xt +β2Yt−1, t = 1, . . . ,n. (13)

with the investment data of Section 1. Table 4 presents estimates of β in (13) for
the least squares, LWS with data-adaptive weights, classical IV estimator, and LWIV
estimator. Both the least squares and the LWS estimators correspond well to the data
and their values are similar to each other. However, because the disturbances in the
model are autocorrelated, it can be recommended to use Xt−1 as instrument for Yt−1

and to retain Xt as an independent variable in the model. In other words, Yt−1 is
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Fig. 1. Raw data (’◦’) and fitted values using the LWIV estimator (’•’) in the example of Section 4.

Estimate of
Method β0 β1 β2

Least squares −260 0.102 0.611
LWS with adaptive weights −37.2 0.140 0.437
Instrumental variables −1723 0.689 −1.939
LWIV −1438 0.684 −2.211

Table III. Various regression estimates of β0, β1 and β2 in the model (13) computed for the investment data.
Comparison of various instrumental variables estimators (Section 4).

replaced by an instrument, while Xt can be interpreted as an instrument for itself.
Thanks to a high correlation between the instrument and the regressor Yt−1 (r = 0.958),
such instrument seems promising in terms of efficient estimation. Still, the IV estimate
does not give a satisfactory fit due to the ill-conditioned design matrix of the linear
regression due to multicollinearity.

Our proposal of a robust instrumental variables estimator allows both a simple
computation and a clear interpretation. As robust regression brings improvement
compared to least squares, the LWIV estimator brings improvement compared to the
classical IV estimator in an analogous way. Possible limitations include the practical
problem of finding suitable (not too weak) instruments. Further, we point out that it is
necessary to be careful while using the instrumental variables estimator in the robust
case. Nevertheless, the problematic results of our example are not a consequence of
the robust approach, but rather of the instrumental variables estimation itself.
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CONCLUSIONS

Numerous robust regression methods have been proposed since the development of
robust statistical estimation in 1960s [Huber and Ronchetti 2009]. Nevertheless, each
of the methods has been derived under its own assumptions and requires to be
equipped by diagnostic tests or specific estimation procedures for non-standard
situations. This paper fills the gap of such accompanying tools for highly robust
regression, which can be useful particularly in econometric applications.

In Section 2, the asymptotic Durbin-Watson test is proposed for the regression
median as a test of autocorrelation of random errors in the linear regression model.
The null distribution of the test statistic computed for the regression median can be
approximated by the exact null distribution in a classical case. The exact critical
value for the least squares, which can be computed by simulations in statistical
software, turns out to be also asymptotically valid for the regression median and the
test is rejected if the test statistic is smaller than the critical value. The computation
of the p-value or the critical value of the test can be performed by a numerical
simulation in the same spirit as the classical Durbin-Watson test.

We accompany the LTS estimator by a subjective criterion for the selection of
a suitable trimming constant in Section 3. It is found as an optimal value combining
two contradictory requirements, namely a high robustness (in terms of breakdown
point) and high efficiency for normal (non-contaminated) data.

In Section 4, the idea of the LWS regression is used to propose a new robust
estimator in the instrumental variables model. The resulting LWIV estimator is based
on the idea of implicit weighting of the data allowing to down-weight less reliable
data points, which brings the advantage of a high efficiency in a model without
contamination by outliers.

Examples on real data throughout this paper show advantages and at the same time
limitations of our proposals. The common advantage of the procedures is their
robustness to the presence of severe outliers in the data, while limitations of the
methods have been discussed separately in each section of the paper. The examples
also serve as a basis for interpreting the newly proposed methods.
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