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On the quotient moment of lower generalized
order statistics and characterization

D. KUMAR

Abstract

In this paper we consider general class of distribution. Recurrence relations satisfied by the quotient
moments and conditional quotient moments of lower generalized order statistics for a general class of
distribution are derived. Further the results are deduced for quotient moments of order statistics and lower
records and characterization of this distribution by considering the recurrence relation of conditional
expectation for general class of distribution satisfied by the quotient moment of the lower generalized
order statistics.
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1. INTRODUCTION

Kamps [15] introduced the concept of generalized order statistics (gos). It is
known that ordinary order statistics, sequential order statistics, Stigler’s order
statistics and upper record values are special cases of gos. In this article we will
consider the lower generalized order statistics (I gos) defined as follows:

Let neN, k=1, me R, be the parameters such that

7r =k+(n-r)(m+1) >0 forall 1<r<n.

Then X™*(,n,m,k),...,X"(n,n,m,k) are called |gos from an absolutely

continuous distribution function (df) F(x) with the probability distribution function

(pdf) f(x) if their joint pdf has the form

n-1 n-1
k(Hlﬂ J(H[F )™ F (i )][F(Xn)]k_l f(xq) (1.1)
=

i=1

for F1(1)>x >x,>...2%, >F 2(0).
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The marginal pdf of r —th 1 gos, X *(r,n,m,k), is

_ CI’—l yr—1 r-1 1.2
i 0= g Sy (OO 00 (F(9): (1.2)
The joint pdf of X *(r,n,m,k) and X™(s,n,m,k), 1<r<s<n, is expressed
from (1.1) as
_ Csa

(r=Di(s-r-1!

(x,) [FOOI™ f () g (F(X)

fx*(r,n,m,k),x*(s,n,m,k)

X[ (F(¥)) = hey (FOO)P " F TS £ (y), x>y, (1.3)
Let X*(r,n,mKk), r=212,...,n be I gos from a continuous population with df
F(x) and pdf f(x), then the conditional pdf of X*(s,n,mk) given

X*(r,n,mk)=X,1<r <s<n, inview of (1.2) and (1.3), is

_ Csfl _ s—r-1
e i eamio Y P = e [ (FO) = (FOO)

X%f ), X3y (1.4)
[F O™

and the conditional pdf of X *(r,n,m,k) given X*(s,n,m,k) =y, 1<r<s<n, is

r-1
emmon anm (19 = b In FOD ¢
X* (r,n,m,K)|X ¥ (s,n,m, k) (r=D!(s-r-D! gL(F(y))

x [F 001" [(hyn (F () =i (FOO)1T (1.5)

where

Coa=TTr 7 =k+m—i)m+1)
i=1
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and
O () =hp (%)~ @), x<[0,2).

We shall also take X *(0,n,m,k)=0.1fm=0, k=1, then X *(r,n,m,k) reduces

to the (n —r + 1) —th order statistic, X from the sample X,, X,,..., X,, and

n—r+ln
when m = -1, then X *(r,n,m,k) reduces to the r — th lower k record value

(Pawlas and Szynal, [26]). The work of Burkschat et al. [5] may also refer for | gos.

Recurrence relations are interesting in their own right. They are useful in reducing
the number of operations necessary to obtain a general form for the function under
consideration. Furthermore, they are used in characterizing distributions, which in
important area, permitting the identification of population distribution from the

properties of the sample.

Recurrence relations for single and product moment of lower generalized order
statistics from the inverse Weibull distribution are derived by Pawlas and Szynal
[26]. Khan and Kumar [17,18 & 19], Kumar [20, 21] have established recurrence
relations for moments of lower generalized order statistics from exponentiated
Pareto, gamma, generalized exponential, Kumaraswamy and J-shaped distributions.
Ahsanullah [2] and Mbah and Ahsanullah [25] characterized the uniform and power
function distributions based on distributional properties of lower generalized order
statistics respectively. EI-Din and Kotb [8] have established recurrence relations for
quotient moments of generalized order statistics and characterization. Lee and
Chang [22, 23 & 24] and Chang [6] have derived recurrence relations of quotient
moments of exponential distribution, Pareto distribution, power function distribution
and Weibull distribution by record value respectively. Characterizations of particular
distributions based on the moments and conditional moments of order statistics were
presented by some authors such as Wu and Ouyang [27], Grudzien and Szynal [10],
Khan and Abouammoh [12], Ahmad [1], Asadi et al. [3], Govindarajulu [9], amongs
others. Kamps [13] investigated the importance of recurrence relations of order

statistics in characterization. Characterizations based on gOS have been studied by

some authors. Keseling [14] characterized some continuous distributions based on
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conditional distributions of gos. Bieniek and Szynal [4] characterized some
distributions via linearity of regression of gos. Cramer et al. [7] gave a unifying
approach on characterization via linear regression of ordered random variables.
Khan et al. [16] characterized some continuous distributions through conditional

expectation of functions of gos.

The aim of the present study is to give some recurrence relations for quotient
moments of | gos from general class of distribution. In section 2 we give recurrence
relations for quotient moments of general class of distribution. Then we show that
results for order statistics and record values are deduced as special cases. In section
3 we give recurrence relations for conditional quotient moments of general class of
distribution and we show that results for order statistics and record values are
deduced. In last section of the paper we prove a characterization result on this
distribution based on recurrence relation for conditional quotient moment of the

lower generalized order statistics.
Let the general form of distribution be

F(x)=[ah(x) +b]®, a<x<p (1.6)
Where a, b and c are such that F () =0, F(f) =1 and h(x) is a monotonic and
differentiable function of X in the interval [«, £].
Then

PN LL{ €

LR Y (L7)
h(x)+b/a
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2. RECURRENCE RELATION OF QUOTIENT MOMENTS
THEOREM 2.1. For1<r<s-2, k>1,i=0,1,2,...and j=1,2,...,

EM g X ¥ (r,n,m, k) h(X (s,n,m,k))
X ¥ (S, n, m,k) C7s X *j+l(s, n,m, k) h'(X(S’ n,m, k))

. #j *]
N jb £ _ X7 (r,n,m,Kk) LE X_ (r,n,m,k) . @)
acys | X *1*1(s,n,m, k) h’'(X(s,n, m,k)) X (s =1,n,m,k)

PROOF. We have from (1.3)

X *(r,n, m,K)
E -
{X (s, n,m, k):l (r- 1)'(5

x [P (F(¥)) = i (F OO R (y))75 7 £ (y)dlydx.

A X IFOOI" {95 F )

On using (1.7), we obtain
E X’_‘i(r,n,m,k)
X *1*1(s,n, m, k)

B cCyy
S (r=Di(s—r-1t'e

D(X(s,n, m, k))}

[PXTFOOI™ £ (095 (FOO) (x)dx 22)

where
@(y) =[h(y) +b/a]/h’(y) and

1(x)= I [h (F(¥))~ha (FOI " F (y))" dy (2:3)

Integrating 1(x) by parts treating il for integration and the rest of the integrand
y!"

for differentiation, we get

|(X)—ysf —[h (F(y)) = (FOOI* " [F (0I5 f (y)dy

_Eore S L (F ) — By (FO 2[RI F()dy- 2:)
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Substituting the value of 1(x) in (2.2) and simplifying the resulting expression we

get the result given in (2.1).

REMARK 2.1. Putting m = 0, k = 1, in (2.1), we obtain a recurrence relation

for quotient moment of order statistics as

E >(rll—r+l'n — J E n r+ln h(xn s+ln)
XD o c(n—-s+1) er+i-+]_n h'(Xn_sszn)

+ jb E o Xr|1—r+].'n +E Xrl}—r+l'n )
ac(n =S _1) Xn s+ln h'(xnfSJrl'n) X n—-s+2:n

REMARK 2.2. Setting m = -1 and k > 1 in theorem 2.1, we get a recurrence

relation for quotient moment lower K record as

X! X! i [ X! h(X s
£ I}(r).k _E jL(r).k +lkE |j_ﬂ).k( L(s)k)
X L(s)k X L(s-1)k ¢ X L(s)k h'(X L(s)k )
. X1
. b E L(r)k
ack

|_( )kh (XL(s)k)

THEOREM 2.2. For 1<r<s-2, k>1,i=0,1,2,...and j=1,2,...,

X*'(rnmk)h(X(rnmk)) be X * (r,n, m, k)
X *1(s,n,m, k) h'(X (r,n,m,k)) "a X *1(s,n,m, k) h'(X (r,n,m,k))

c7s g XA —1nmK)(_ah(X(r,n,m,K)) +b o(m1)
i+1 | X*I(s—1,n,mk) Lah(X(s—1n,m,k))+b

_ors g XM rnmK) (ah(X(r-1n,m,k)+b om+)
i+1 X*j(s—l,n,m,k) ah(X(s—-1,n,m,k)) +b

_om+1) X (r,n,m, k) | 25)
i+1 X *1(s,n,m, k)
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PROOF. We have from (1.3)

gl X MK o rnm k)

X (s,n,m,k)

. cC s—1 ,Bl -1

C(r=Di(s-r- 1).f [FYs™ f(y)I(y)dy (2.6)
where

1(y) =[x TFOO1™ g (F OO (F () — i (FOO)T k. (2.7)

Integrating 1 (y) by parts treating x' for integration and the rest of the integrand

for differentiation, we get

(m”) 2 [XHEON™ (95 (F O (F ()~ i (FOI "

1(y) =
+ %Ifxi+l[F (X)]2m+1 f (X)grl;z (FODIhy, (F(y)) — hpy (F(X))]S—r—l dx

(Iﬁjﬁ FEE (012 £ (x) gL (F () N (F(¥)) — s (F G0N 2

(2.8)

Substituting the value of 1(y) in (2.6) and simplifying the resulting expression we

get the result given in (2.5).

REMARK 2.3. Putting m =0, k =1, in (2.5), we obtain a recurrence relation

for quotient moment of order statistics as

E[X” rotn N(Xn r+ln)}9,{ X ritn }__ c {E[xr‘ﬁmﬂ]}
n-stn N (Xn_ri1n) D XoZrsn) i+1| g[xJ

n s+].n:I

c(n S+ 1) E r|1+1r+2:n ah(X n—r+2:n) +b ¢
i+1 X J h'(Xp_s+2n) +D

n—s+2:n

. c
B c(n—s+1) E X;)tlr+1:n ah(Xp_r41n) +0 )
i+1 X h'(Xp_ss2n) +b

J
n—-s+2:n
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REMARK 2.4. Setting m = -1 and k > 1 in theorem 2.2, we get a recurrence

relation for quotient moment lower K record as

X (X L. xi
E Ij_(r).k (X k) b | L)k
X L(s)k h'(X L(r)k ))& (X L(s)k h'(X L(r):k)

41 i+1
zi E XLJEr—l):k _E X'II_JEr):k .
1| X sk X sk
3. RECURRENCE RELATION OF QUOTIENT CONDITIONAL
EXPECTATION

THEOREM 3.1. For the distribution as given in (1.6) and for 1<r<s<n-2,
i=01,..,j=12...andk=1,2,...,

X * (r,n,m,k)
X*I(s—1,n,m,k)

E[ X (r,n,m,k)

: ‘X*(r,n,m,k):x}zE{
X *¥(s,n,m,k)

‘X*(r,n,m,k)zx}

;E{ X" (1., m. ) (X (5,0, K)

. ‘X*(r,n,m,k)zx:l
X1 (s, n,m, k) h'(X (s,n,m, k))

L X (r,n,m k)
acys | X *1*1(s,n,m,k)h'(X (s,n,m,K))

‘X*(r,n,m, k)=x} (3.1)

and

*j o
E X (r,n,m,k) ‘X*(r,n,m,k)zx :X|7J
X (r+1,n,m,k)

L >_<*i (r,n,m,K)h(X (r +1,n,m,k))
Crrsn | X (r +1,n,m, k) h'(X (r +1,n,m, k))

‘X*(r,n,m,k):x}

. *|
L b E{ X * (r,n, m, k)

_ ‘X*(r,n,m,k):x :
acyry | X (r +1,n,m k) h'(X(r +1,n,m, k))

3.2)
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PROOF. From (1.4) and (1.7), we obtain

X *(r,n, m, k)

_ d(X " (s,n,m, k)X " (r,n,m,k)=x
X (s, n,m, k)

i
- CxCss 1(x (3:3)
Cra(s—r-DIF)]
where |(x) is defined in (2.3). Substituting the value of 1(x) from (2.4) in (3.3)

and simplifying the resulting expression we get the result given in (3.1).
When s=r+1

1(x) = I [F(y)]7r+1 dy- (3.4)

Integrating by parts and substituting the resulting expression in (3.3) for S=1r +1,

we get the result given in (3.2).

REMARK 3.1. Putting m=0,k=1,in(3.1) and (3.2), we obtain a recurrence

relation for quotient conditional moment of order statistics as

Xhorar X bt
E[Xr}_—HLn'X n-r+ln = X] = E{XT—HM'X n—r+ln = XJ

n—-s+ln n—-s+2:n

j h(X )
J E( n—r+1ln n—s+ln ‘ rln :XJ

+
cn—-s+1) | X h(X; sitn)

X|
+ jb S j— n—r+Ln P
ac(n—-s-1) | x [ . h (Xn-s+2n)

n—s+1ln
and

I o ' h(X 1)
E n—_r+]_n X n =X =Xl—j+ J E n—-r+ln n-r:n X n =X
[XAm e c(n-r) Xﬁhhunm)‘””“

b X}
+ J E ") n-r+ln ‘Xn—r+]_'n =X
ac(n—r) X,{ rn N'(Xnzrn)
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REMARK 3.2 Setting m=-1and k> 1 intheorem 2.1, we get a recurrence

relation for quotient conditional moment lower K record as

>(Ii_ 'k Xli_ 'k
E{ 0 ‘XL(r)zk = X} = ELX 7 (") ‘XL(r):k =X

X ﬂ(s):k L(s-1)k

- Xi . h X . - Xi i
g Kok (XLsyk) b o L(ryk

- X K =X |[+— X L =X
[T ‘ L(r)k - ‘ L(r)k
ek X o X o) ack | X G (X sy
and
X Ii_(r)'k i X Ii_(r)'k h(X L (r+2k)
: ol i : . B
E j—XL(r):k_X =X +&E x 1 hiex ‘XL(r):k—X
X ek Lerayk VXL graayx)
. i
Jb X L(r)k
- E XLy =x |

j+1l ’
ack X L(r+1):k h'(X L(r+1)k )

THEOREM 3.2. For the distribution as given in (1.6) and for 1 <r<s<n-2,
i=01,.,j=12...andk=1,2,...,

E{ X * (r,n,m, k) h(X (r,n,m,k))

- X*(s,n,m,k) =
X*J(s,n,m,k)h’(X(r,n,m,k))‘ (&n.m.k) y}

b { X *(r,n,m, k)

z i *(s,n,m,k) =
tat X*J(s,n,m,k)h’(X(r,n,m,k))‘X (s m.k) y}

a

_c(s-) E_X “+1(r —1,n,m,K)
(+D9n(F(Y) | X*(s-1n,m,k)

‘X*(s,n,m,k)zy}

o c(s-)) E_ X1 (r,n,m k)
(i+Dgm(F(Y) | X*(s-1,n,m,k)

‘X*(s,n,m,k)zy}
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L Cm+2yr E_X “L(r +1,n,m,k)
i+1 | X*(s,n,mkK)

‘X*(s,n,m,k)zy}

_c(m+Dr E_X “L(r,n,m,k)
i+1 | X*(s,n,m,k)

‘X *(s,n,m,k) = y:l (3.5)

and

E{ X (r,n,m, k) h(X (r,n,m, k))

: ‘X*(r+1,n,m,k)=y}
X (r+1,n,mKk)h'(X(r,n,m,Kk))

b { X (r,n,m, k)

+—El— X*(r+1nmK)=y
X (r+1,n,m,k)h’'(X(r,n,m,k))

a

S N Y X (r —1,n,m,k)
(i +Dgn(F(Y) X* (r,n,m k)

*i+1
+c(m+1)r{yi_j+1_|{ X 7 (r,n.m,k) ‘x*(r+1,n,m,k)=y}}- (3.6)

‘X*(r +1,n,m,k):y:|}

i+1 X*1(r +1,n,m,k)

PROOF. From (1.5) and (1.7), we obtain

E{M@(X "(rnm k)X *(s,n,m, k) = y}
X (s,n,m, k)
B c(s-1!
T T T R
where |(y) is defined in (2.7). Substituting the value of 1(y) from (2.8) in (3.7)

3.7)

and simplifying the resulting expression we get the result given in (3.5).
Whens=r+1

1Y) = [ TFI™ g (F (). (38)

Integrating by parts and substituting the resulting expression in (3.8) for s =r + 1,

we get the result given in (3.6).
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REMARK 3.3 Putting m=0,k=1,in (3.5) and (3.6), we obtain a recurrence

relation for quotient conditional moment of order statistics as

X| h(X . X!
E n—r+ln ( n7r+]_n) ‘Xn—s+l'n =y +9 E J n—r+ln ‘X hsitn = yJ
Xr{ s+Ln h’ (xn—r+l'n) a Xn s+1n h’ (Xn—r+l'n)

c(s—1 X X iy
(|+1)([1 IZ(X)]{E[ Mor+2D Xnsizn =Y |—E Xr} i ‘Xn—s+l'n =Yy

n —s+2:n n—-s+2:n
cr X X
L E[ (n n ‘xn—sﬂ:n = y]_ E[r}rm]xnsﬂ;n =Y
(|+ ) n —s+ln xn—5+l'n
and

i
E[ nJ r+ln h(xn r+].n) |Xn—r+l'n _ y}+2 E[ ; n7r+l'n |Xn—r:n — y]
xnfr:n h’ (Xn7r+]_'n) a anr:n h (anrﬂ:n)

__ ot g Xafan _
_(i+1)[1—F(x)]{y E{XJ P y]}

n—r+1ln

cr | il X0
+— yl j+1_E n'r+ln‘xn_r:n=y .
(|+1) Xr{—r:n

REMARK 3.4. Setting m=-1 and k=>1 in theorem 2.1, we get a

recurrence relation for quotient conditional moment lower k record as

X Lryx (X L(r)k) b X Ii_(r):k
j(r) ' r ‘XL(S):k =Yy +5E j , ‘XL(S):k =Yy
X L(s):k h (X L(r)k ) X L(s)k h (X L(r):k )
c(s-1) X -1y X II_JE%) K
T GOEmEO || X Lok =X 7E X =x
X {(s-1)k X sk

and
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XLk MOXLryk)

J '
XL rany VX Lx)

cr

(i + D= In(F(y))]

yi—j+1 _ E x
X

ji‘x L(r+k = X] '

a

b X Ii_(r):k
XL =Y |[+=E j ;
X Lrank VX L)

i+1
L(r-1)k

L(r)k

‘X L(r+l)k = y]

Table3.1  Examples based on df F(x)=[ah(x)+b]°.
Distribution F (x) a | b | C h (x)
Inverse Weibull e (010"
110 P -x*
O<Xx<oo 0 e
Exponentiated [L—e ¢ x)° I
Weibull 111 T _g~0°
O< X<
Power function (x/A)°
110 p X/ A
O<x<4
Exponentiated [L-@+x) "1’
Pareto 0<x<om 111 (2 —@A+x)*
Exponentiated [L-e™*(x+1]’ —e ¥ (x+1)
gamma O<x< 111 0
(0 8]
Generalized [ —e X
exponential 0 1|1 0
<X<oo
Exponentiated (x/ )’ ¢ (x/o)”?
log-logistic [1+(X/O_)/3} 110 0 1+ (x/o)?
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O<x<oo
Generalized g 0talx’ p-(@/x/’
inverse Weibull
O<x<o 0
Extended type | 1 P A
generalized (l Lo j p A+e™®
logistic
—0 <X <0
Logistic [1+e—x]—1 g X
—0< X< -1
Gumbel expl-e ] 1 oe”
—0< X<

Similarly several recurrence relations based on df F(x)=[ah(x)+b]® can be

established with proper choice of a, b, cand h(x).

4. CHARACTERIZATION

THEOREM 4.1. Let X be a non-negative random variable having an

absolutely continuous distribution function F (x) with F (0) =0 and 0 < F (x) < 1 for

all x>0, then

El: X*(r,n,m,

X*I(s,n,m,

k)
k)

X (r,n,m,K)h(X (s,n,m, k))

X*(r,n,m k)

X*(r,n,m,k):x:I:E{

e
C7s {X*m(s,n,m,k)h’(X(s,n,m,k))

X *(r,n,m, k)

+ ib E{
acys

if and only if

X *1(s,n,m, k) h'(X (s,n,m,k))

X *I(s=1,n,m,k)

X*(r,n,m,k):x}

X“‘(r,n,m,k):x}

X*(r,n,m,k):x:l

(4.1)
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ch'(y)
h(y)+b/a

PROOF. The necessary part follows immediately from equation (3.1). On

f(y)= F(y) a<y<p.

the other hand if the recurrence relation in equation (4.1) is satisfied, then on using
equations (1.4), we have

C:sl

-1
G X ey —h (Fo O g
Cra(s—r- 1).I X o (O~ (P ooy | Y
=C—I f[h (F(y) = (FO= 2 O )

Cra(s—r-2)r« [F(x)]7"+
iICsq

PO g () - (O EO ¢

CysCral(s—r =11 yittpy ) [FOO
P ey o EOP
aC?’sCrfl(S—r—l)!jaijrlh’(y)L m(FO) =P (FOO)] [F(x)]+ (v)ay
(4.2)

Integrating the first integral on the right hand side of equation (4.2) by parts and
simplifying the resulting expression, we get

iCs x X' sra [F())s™
ySCr_l(s—r—l)!Ja 1l (F () =i (FOO)] FOT

h(y) b
= — = f(y)ldy=0. (4.3)
{ ) +—= () (y)+ach,(y) (y)} y

Now, applying a generalization of the Miintz-Szasz Theorem (Hwang and Lin, [11])
to equation (4.3), we get

f(y)=rU

“hiy)+bra O @EVEL



88 D. Kumar

5. CONCLUSION

This paper deals with the lower generalized order statistics from the general class of
distribution. Recurrence relations satisfied by the quotient moments and conditional
quotient moments of lower generalized order statistics for a general class of
distribution are derived. Characterization of this distribution by considering the
recurrence relation of conditional expectation for general class of distribution
satisfied by the quotient moment of the lower generalized order statistics. Special

cases are also deduced.
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