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Abstract 

 
In this paper we consider general class of distribution. Recurrence relations satisfied by the quotient 

moments and conditional quotient moments of lower generalized order statistics for a general class of 
distribution are derived. Further the results are deduced for quotient moments of order statistics and lower 

records and characterization of this distribution by considering the recurrence relation of conditional 
expectation for general class of distribution satisfied by the quotient moment of the lower generalized 

order statistics. 
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1. INTRODUCTION 

Kamps [15] introduced the concept of generalized order statistics (gos). It is 

known that ordinary order statistics, sequential order statistics, Stigler’s order 

statistics and upper record values are special cases of  gos. In this article we will 

consider the lower generalized order statistics (l gos) defined as follows: 

Let  Nn , 1k , m , be the parameters such that 

 
0)1()(  mrnkr    for all  nr 1 . 

Then ),,,(,),,,,1( kmnnXkmnX    are called gosl  from an absolutely 

continuous distribution function (df) F(x) with the probability distribution function 

(pdf)  f(x) if their joint pdf
 
 has the form 
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The marginal pdf of r – th l gos, ),,,( kmnrX  , is 
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 The joint pdf of ),,,( kmnrX   and ),,,( kmnsX  , nsr 1 , is expressed 

from (1.1) as 
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Let ),,,( kmnrX 
, nr ,,2,1   be gosl  from a continuous population with df  

)(xF  and pdf
 

f(x), then the conditional pdf
 

of ),,,( kmnsX   given 

xkmnrX  ),,,( , nsr 1 , in view of (1.2) and (1.3), is 
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and the conditional pdf
 
 of ),,,( kmnrX 

 given ykmnsX  ),,,( , 1≤ r < s ≤ n, is 
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and 

 )1()()( mmm hxhxg  , )1,0[x . 

We shall also take 0),,,0(  kmnX . If m = 0, k = 1, then ),,,( kmnrX   reduces 

to the (n – r + 1) –th  order statistic, nrnX :1  from the sample nXXX ,,, 21   and 

when m = -1, then ),,,( kmnrX   reduces to the r – th lower k record value 

(Pawlas and Szynal, [26]). The work of Burkschat et al. [5] may also refer for l gos. 

Recurrence relations are interesting in their own right. They are useful in reducing 

the number of operations necessary to obtain a general form for the function under 

consideration. Furthermore, they are used in characterizing distributions, which in 

important area, permitting the identification of population distribution from the 

properties of the sample.  

Recurrence relations for single and product moment of lower generalized order 

statistics from the inverse Weibull distribution are derived by Pawlas and Szynal 

[26]. Khan and Kumar [17,18 & 19], Kumar [20, 21] have established recurrence 

relations for moments of lower generalized order statistics from exponentiated 

Pareto, gamma, generalized exponential, Kumaraswamy and J-shaped distributions. 

Ahsanullah [2] and Mbah and Ahsanullah [25] characterized the uniform and power 

function distributions based on distributional properties of lower generalized order 

statistics respectively. El-Din and Kotb [8] have established recurrence relations for 

quotient moments of generalized order statistics and characterization. Lee and 

Chang [22, 23 & 24] and Chang [6] have derived recurrence relations of quotient 

moments of exponential distribution, Pareto distribution, power function distribution 

and Weibull distribution by record value respectively. Characterizations of particular 

distributions based on the moments and conditional moments of order statistics were 

presented by some authors such as Wu and Ouyang [27], Grudzien and Szynal [10], 

Khan and Abouammoh [12], Ahmad [1], Asadi et al. [3], Govindarajulu [9], amongs 

others. Kamps [13] investigated the importance of recurrence relations of order 

statistics in characterization. Characterizations based on gos  have been studied by 

some authors. Keseling [14] characterized some continuous distributions based on 



76 D. Kumar  

 

 

 

conditional distributions of gos. Bieniek and Szynal [4] characterized some 

distributions via linearity of regression of gos. Cramer et al. [7] gave a unifying 

approach on characterization via linear regression of ordered random variables. 

Khan et al. [16] characterized some continuous distributions through conditional 

expectation of functions of gos. 

The aim of the present study is to give some recurrence relations for quotient 

moments of l gos
 
from general class of distribution. In section 2 we give recurrence 

relations for quotient moments of general class of distribution. Then we show that 

results for order statistics and record values are deduced as special cases. In section 

3 we give recurrence relations for conditional quotient moments of general class of 

distribution and we show that results for order statistics and record values are 

deduced. In last section of the paper we prove a characterization result on this 

distribution based on recurrence relation for conditional quotient moment of the 

lower generalized order statistics. 

Let the general form of distribution be 

 cbxahxF ])([)(  ,   x         (1.6) 

Where a, b and c are such that 0)( F , 1)( F  and )(xh is a monotonic and 

differentiable function of x  in the interval ],[  . 

Then 
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2. RECURRENCE RELATION OF QUOTIENT MOMENTS 

THEOREM 2.1.   For 1 ≤ r ≤ s – 2,  k ≥ 1,  i = 0, 1, 2,… and  j = 1, 2,…,     
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PROOF.   We have from (1.3) 
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for differentiation, we get 
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Substituting the value of  I(x)  in (2.2) and simplifying the resulting expression we 

get the result given in (2.1).  

REMARK 2.1. Putting m = 0, k = 1, in (2.1), we obtain a recurrence relation 

for quotient moment of order statistics as  
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REMARK 2.2. Setting m = -1 and k ≥ 1 in theorem 2.1, we get a recurrence 

relation for quotient moment lower k  record as 

















































)(

)(

:)(
1

:)(

:)(:)(

:)1(

:)(

:)(

:)(

ksL
j

ksL

ksL
i

krL

j
ksL

i
krL

j
ksL

i
krL

XhX

XhX
E

ck

j

X

X
E

X

X
E  

 



















)( :)(

1
:)(

:)(

ksL
j

ksL

i
krL

XhX

X
E

ack

jb
. 

THEOREM 2.2.  For  1 ≤ r ≤ s – 2,  k ≥ 1,  i = 0, 1, 2,… and  j = 1, 2,…,     
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PROOF. We have from (1.3) 
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Substituting the value of  )(yI  in (2.6) and simplifying the resulting expression we 

get the result given in (2.5).  

REMARK 2.3.  Putting m = 0, k = 1, in (2.5), we obtain a recurrence relation 

for quotient moment of order statistics as  
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REMARK 2.4.  Setting  m = -1 and k ≥ 1 in theorem 2.2, we get a recurrence 

relation for quotient moment lower k  record as 
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3. RECURRENCE RELATION OF QUOTIENT CONDITIONAL 
EXPECTATION 

THEOREM 3.1.  For the distribution as given in (1.6) and for 21  nsr ,  

 i = 0,1,…,  j = 1,2… and k = 1,2,…, 
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PROOF.  From (1.4) and (1.7), we obtain 
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where )(xI  is defined in (2.3). Substituting the value of )(xI  from (2.4) in (3.3) 

and simplifying the resulting expression we get the result given in (3.1). 

When  s = r + 1 
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Integrating by parts and substituting the resulting expression in (3.3) for 1 rs , 

we get the result given in (3.2). 

REMARK 3.1.  Putting  m = 0, k = 1, in (3.1) and (3.2), we obtain a recurrence 

relation for quotient conditional moment of order statistics as  
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REMARK 3.2 Setting  m = -1 and  k ≥ 1  in theorem 2.1, we get a recurrence 

relation for quotient conditional moment lower k  record as 
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THEOREM 3.2.  For the distribution as given in (1.6) and for  1 ≤ r < s ≤ n – 2,  

i = 0,1,…,  j = 1,2… and k = 1,2,…, 
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PROOF.  From (1.5) and (1.7), we obtain 
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where )(yI  is defined in (2.7). Substituting the value of )(yI  from (2.8) in (3.7) 

and simplifying the resulting expression we get the result given in (3.5). 

When s = r + 1 
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Integrating by parts and substituting the resulting expression in (3.8) for s = r + 1, 

we get the result given in (3.6). 
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REMARK 3.3 Putting  m = 0, k = 1, in (3.5) and (3.6), we obtain a recurrence 

relation for quotient conditional moment of order statistics as  
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REMARK 3.4.  Setting 1m  and 1k  in theorem 2.1, we get a 

recurrence relation for quotient conditional moment lower k  record as 
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Table 3.1  Examples based on df  cbxahxF ])([)(  . 

Distribution F (x)  a  b  c  h (x) 
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Similarly several recurrence relations based on df
cbxahxF ])([)(   can be 

established with proper choice of  a, b, c and )(xh . 

4. CHARACTERIZATION 
 

THEOREM 4.1.   Let X be a non-negative random variable having an 

absolutely continuous distribution function F (x) with F (0) = 0 and 0 < F (x) < 1 for 

all x > 0, then 
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if and only if 
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PROOF. The necessary part follows immediately from equation (3.1). On 

the other hand if the recurrence relation in equation (4.1) is satisfied, then on using 

equations (1.4), we have 
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    (4.2) 

Integrating the first integral on the right hand side of equation (4.2) by parts and 

simplifying the resulting expression, we get 
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Now, applying a generalization of the Müntz-Szász Theorem (Hwang and Lin, [11]) 

to equation (4.3), we get 
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5. CONCLUSION 
 

This paper deals with the lower generalized order statistics from the general class of 

distribution. Recurrence relations satisfied by the quotient moments and conditional 

quotient moments of lower generalized order statistics for a general class of 

distribution are derived. Characterization of this distribution by considering the 

recurrence relation of conditional expectation for general class of distribution 

satisfied by the quotient moment of the lower generalized order statistics. Special 

cases are also deduced. 
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