A novel multivariate generalized skewnormal distribution with two parameters $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$

B. FATHI, P. HASANALIPOUR

Abstract

In this paper we first introduce a new class of multivariate generalized asymmetric skew-normal distributions with two parameters λ_{1}, λ_{2} that we present it by $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$, and we finally obtain some special properties of $\operatorname{BGSN}_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$.

Additional Key Words and Phrases: $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$, Multivariate distribution, Skew-normal, Conditional $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$.

1. INTRODUCTION

The skew-normal distribution introduced by Azzalini [2]. As for extensions of the distribution, many classes of distributions have been proposed. For example, ArellanoValle [1], Sharafi and Behbodian [5] and Hasanalipour [3].

Jamalizadeh [4] considered a generalization of $S N(\lambda)$ so called two-parameters generalized skew-normal distribution defined in the following form

$$
\begin{equation*}
f\left(x ; \lambda_{1}, \lambda_{2}\right)=c_{n}\left(\lambda_{1}, \lambda_{2}\right) \phi(x) \Phi\left(\lambda_{1} x\right) \Phi\left(\lambda_{2} x\right), \quad x \in R, \tag{1}
\end{equation*}
$$

where $\lambda_{1} \in R, \lambda_{2} \geq 0$, and n, $m \geq 1$. This distribution denoted by $X \sim G S N\left(\lambda_{1}, \lambda_{2}\right)$.
In this paper, we want to introduce a new class of multivariate skew-normal distribution which generalizes (1) while preserving most of its properties.
in section 2, we present the definition and some interesting properties of the $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$

2. A NEW GENERALIZED MULTIVARIATE SKEW-NORMAL DISTRIBUTION

In this section we introduce the $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$ class and we present some of its properties.

2.1. Definition and simple properties

DEFINITION 1. We say that vector (X, Y) has the multivariate skew-normal distribution with two parameters if and only if it has the following probability density function,

$$
\begin{equation*}
f\left(x, y ; \lambda_{1}, \lambda_{2}\right)=c_{n, m}\left(\lambda_{1}, \lambda_{2}\right) \phi(x) \phi(y) \Phi^{n}\left(\lambda_{1} x\right) \Phi^{m}\left(\lambda_{2} y\right), \quad x, y \in R, \tag{2}
\end{equation*}
$$

where $\lambda_{1} \in R$ and $\lambda_{2} \geq 0$. For future reference we denote it by $\operatorname{BGSN} N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$. The coefficient $c_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$ which is a function of n, m and the parameters λ_{1}, λ_{2} is given by

$$
\begin{aligned}
c_{n, m}\left(\lambda_{1}, \lambda_{2}\right)= & \frac{1}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x) \phi(y) \Phi^{n}\left(\lambda_{1} x\right) \Phi^{m}\left(\lambda_{2} y\right) d x d y} \\
& =\frac{1}{E\left\{\Phi^{n}\left(\lambda_{1} U\right)\right\} E\left\{\Phi^{m}\left(\lambda_{2} V\right)\right\}}
\end{aligned}
$$

where $U, V \sim N(0,1)$.

We now present some simple properties of $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$.

1. $B G S N_{n, m}(0,0)=\phi(x) \phi(y)$.
2. $B G S N_{1,1}\left(\lambda_{1}, \lambda_{2}\right)=4 \phi(x) \phi(y) \Phi\left(\lambda_{1} x\right) \Phi\left(\lambda_{2} y\right)$.
3. $X \mid\{Y=y\}=c_{n}\left(\lambda_{1}\right) \phi(x) \Phi^{n}\left(\lambda_{1} x\right) \sim S N B_{n}\left(\lambda_{1}\right)$.
4. $Y \mid\{X=x\}=c_{m}\left(\lambda_{2}\right) \phi(y) \Phi^{m}\left(\lambda_{2} y\right) \sim S N B_{m}\left(\lambda_{2}\right)$.
5. $\lim _{\lambda_{1} \rightarrow \infty} \lim _{\lambda_{2} \rightarrow \infty} f\left(x, y ; \lambda_{1}, \lambda_{2}\right)=4 \phi(x) \phi(y) I_{\{x>0, y>0\}}$.
6. $\lim _{\lambda_{1} \rightarrow-\infty} \lim _{\lambda_{2} \rightarrow-\infty} f\left(x, y ; \lambda_{1}, \lambda_{2}\right)=4 \phi(x) \phi(y) I_{\{x<0, y<0\}}$.

2.2. Some important properties of $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$

In this step we introduce some special theorems of $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$ distribution.
THEOREM 1. If $X, Y, Z_{1}, \ldots, Z_{\mathrm{n}}$ and $W_{1}, \ldots, W_{\mathrm{m}}$ are i.i.d with $N(0,1)$ distribution, then we have:

$$
\begin{equation*}
(X, Y) \mid\left\{Z_{(n)} \leq \lambda_{1} X, W_{(m)} \leq \lambda_{2} Y\right\} \sim B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right) \tag{3}
\end{equation*}
$$

where $Z_{(\mathrm{n})}=\max \left\{Z_{1}, \ldots, Z_{\mathrm{n}}\right\}$ and $W_{(\mathrm{m})}=\max \left\{W_{1}, \ldots, W_{\mathrm{m}}\right\}$.

PROOF. Suppose $A=\left(Z_{(\mathrm{n})} \leq \lambda_{1} X, W_{(\mathrm{m})} \leq \lambda_{2} Y\right)$. Then, we write

$$
f_{(X, Y) \mid A}(x, z \mid A)=\frac{P(A \mid X=x, Y=y) f(x, y)}{P(A)}
$$

$$
\begin{gathered}
=\frac{P\left(Z_{(n)} \leq \lambda_{1} X, W_{(m)} \leq \lambda_{2} Y \mid X=x, Y=y\right) \phi(x) \phi(y)}{P\left(Z_{(n)} \leq \lambda_{1} X, W_{(m)} \leq \lambda_{2} Y\right)} \\
=\frac{P\left(Z_{1} \leq \lambda_{1} x, \ldots, Z_{n} \leq \lambda_{1} x, W_{1} \leq \lambda_{2} y, \ldots W_{m} \leq \lambda_{2} y\right) \phi(x) \phi(y)}{P\left(Z_{1} \leq \lambda_{1} X, \ldots, Z_{n} \leq \lambda_{1} X, W_{1} \leq \lambda_{2} Y, \ldots W_{m} \leq \lambda_{2} Y\right)} \\
=c_{n, m}\left(\lambda_{1}, \lambda_{2}\right) \phi(x) \phi(y) \Phi^{n}\left(\lambda_{1} x\right) \Phi^{m}\left(\lambda_{2} y\right)
\end{gathered}
$$

For random number generation, it is more efficient to use single variant of this result, namely to put

$$
Z=\left(Z_{1}, Z_{2}\right)= \begin{cases}(X, Y) & Z_{(n)} \leq \lambda_{1} X, W_{(m)} \leq \lambda_{2} Y \tag{4}\\ (-X,-Y) & Z_{(n)}>\lambda_{1} X, W_{(m)}>\lambda_{2} Y\end{cases}
$$

This make an important point for $\operatorname{BGSN}_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$ distribution, comparing with acceptance-rejection method simulation of independent normal distribution.

THEOREM 2. $\left(U, K, U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{m}\right) \stackrel{\mathrm{D}}{=} N_{n+m+2}(0, R)$ with this properties for correlation matrix (R).

$$
\begin{aligned}
& \rho\left(K, U_{i}\right)=\rho\left(U, U_{i}\right)=\rho_{1} \quad i=1,2, \ldots, n \\
& \rho\left(U_{i}, U_{j}\right)=\rho_{1}^{2} \quad i \neq j, \quad i, j=1,2, \ldots, n \\
& \rho\left(K, V_{i}\right)=\rho\left(U, V_{i}\right)=\rho_{2} \quad i=1,2, \ldots, m \\
& \rho\left(V_{i}, V_{j}\right)=\rho_{2}^{2} \quad i \neq j, \quad i, j=1,2, \ldots, m \\
& \rho\left(U_{i}, V_{j}\right)=\rho_{1,2} \quad i=1,2, \ldots, n, \quad j=1,2, \ldots, m
\end{aligned}
$$

then

$$
\begin{equation*}
\left((U, K) \mid\left\{U_{(1)}>0, V_{(1)}>0\right\}\right) \sim \operatorname{BGSN}_{n, m}\left(\lambda_{1}, \lambda_{2}\right) \tag{5}
\end{equation*}
$$

where $U_{(1)}=\min \left\{U_{1}, \ldots, U_{n}\right\}, V_{(1)}=\min \left\{V_{1}, \ldots, V_{m}\right\}, \lambda_{1}=\frac{\rho_{1}}{\sqrt{1-\rho_{1}^{2}}}$ and $\lambda_{2}=\frac{\rho_{2}}{\sqrt{1-\rho_{2}^{2}}}$
PROOF. Let $X, Y, Z_{1}, \ldots, Z_{\mathrm{n}}$ and $W_{1}, \ldots, W_{\mathrm{m}}$ are i.i.d $N(0,1)$ distribution, and let

$$
\begin{array}{ll}
U_{1}^{*}=\rho_{1} X-\sqrt{1-\rho_{1}^{2}} Z_{1} & V_{1}^{*}=\rho_{2} Y-\sqrt{1-\rho_{2}^{2}} W_{1} \\
U_{2}^{*}=\rho_{1} X-\sqrt{1-\rho_{1}^{2}} Z_{2} & V_{2}^{*}=\rho_{2} Y-\sqrt{1-\rho_{2}^{2}} W_{2} \\
\\
U_{n}^{*}=\rho_{1} X-\sqrt{1-\rho_{1}^{2}} Z_{n} & V_{m}^{*}=\rho_{2} Y-\sqrt{1-\rho_{2}^{2}} W_{m}
\end{array}
$$

it is then easy to show that $\left(U, K, U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{m}\right) \stackrel{\mathrm{D}}{=}\left(X, Y, U_{1}^{*}, \ldots, U_{n}^{*}, V_{1}^{*}, \ldots, V_{m}^{*}\right)$ therefore,

$$
\begin{aligned}
(U, K) \mid \min \left(U_{(1)}>0, V_{(1)}>0\right) & \stackrel{\mathrm{D}}{=}(X, Y) \mid\left\{\min \left(U_{i}\right)>0, \min \left(V_{i}\right)>0\right\} \\
& \stackrel{\mathrm{D}}{=}(X, Y) \mid\left\{\min \left(U_{i}^{*}\right)>0, \min \left(V_{i}^{*}\right)>0\right\} \\
& \stackrel{\mathrm{D}}{=}(X, Y) \left\lvert\, Z_{1} \leq \frac{\rho_{1}}{\sqrt{1-\rho_{1}^{2}}} X\right., \ldots, Z_{n} \leq \frac{\rho_{1}}{\sqrt{1-\rho_{1}^{2}}} X, \\
& W_{1} \leq \frac{\rho_{2}}{\sqrt{1-\rho_{2}^{2}}} Y, \ldots, W_{m} \leq \frac{\rho_{1}}{\sqrt{1-\rho_{1}^{2}}} Y \\
& \stackrel{\mathrm{D}}{=}(X, Y) \mid\left\{Z_{(n)} \leq \lambda_{1} X, W_{(m)} \leq \lambda_{2} Y\right\}
\end{aligned}
$$

The result in (5) follows, using theorem (1).

THEOREM 3. If $(X, Y) \sim B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$, let $W_{1}=X / Y$ and $W_{2}=Y / X$ then $W_{1}^{2}, W_{2}^{2} \xrightarrow{\mathrm{~L}} x_{(1)}^{2}$, as $\lambda_{1} \rightarrow \infty$, where $x_{(1)}^{2}$ shows chi-square random variable with one degree of freedom.

PROOF. Let $Z=W_{1}^{2}$. The density of Z is

$$
\begin{aligned}
f_{Z}\left(z ; \lambda_{1}\right) & =\frac{1}{2 \sqrt{z}}\left(f_{W_{1}}(\sqrt{z})+f_{W_{1}}(-\sqrt{z})\right) \\
& =\frac{1}{\sqrt{z}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z}{2}} c_{n}\left(\lambda_{1}\right)\left[\frac{\Phi^{n}\left(\lambda_{1} \sqrt{z}\right)+\Phi^{n}\left(-\lambda_{1} \sqrt{z}\right)}{2}\right] \\
& =f_{x_{(1)}^{2}}(z)\left[a_{n}\left(z, \lambda_{1}\right)\right] ; z>0
\end{aligned}
$$

with $a_{n}\left(z, \lambda_{1}\right)=c_{n}\left(\lambda_{1}\right)\left[\frac{\Phi^{n}\left(\lambda_{1} \sqrt{z}\right)+\Phi^{n}\left(-\lambda_{1} \sqrt{z}\right)}{2}\right]$.
Since $c_{n}\left(\lambda_{1}\right) \rightarrow 2$ as $\lambda_{1} \rightarrow \infty$ we conclude that $a_{n}\left(\mathrm{z}, \lambda_{1}\right) \rightarrow 1$ as $\lambda_{1} \rightarrow \infty$.
Therefore, the density $f_{\mathrm{Z}}\left(z ; \lambda_{1}\right)$ converges to the distribution of $x_{(1)}^{2}$, i.e. $Z \xrightarrow{\mathrm{~L}} x_{(1)}^{2}$.
PROPOSITION. If $(X, Y) \sim \operatorname{BGSN}_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$ and $Z \sim N(0,1)$, then $\lim _{\lambda_{1} \rightarrow \infty}|X / Y|$ or $\quad \lim _{\lambda_{1} \rightarrow \infty}|Y / X|$ and $|Z|$ are identically distributed, i.e. $\lim _{\lambda_{1} \rightarrow \infty}|X / Y| \stackrel{\text { D }}{=}|Z| \sim H N(0,1)$ where $H N(0,1)$ denotes the standard half-normal distribution.

PROOF. We know that $|\mathrm{Z}|$ has density $2 \phi(z) I_{\{z>0\}}$. On the other hand, by property (3) of $B G S N_{n, m}\left(\lambda_{1}, \lambda_{2}\right)$ the density $W=|X / Y|$ is

$$
f_{W}(w)=f_{X / Y}(w)+f_{X / Y}(-w)
$$

$$
\begin{aligned}
& =c_{n}\left(\lambda_{1}\right) \phi(w) \Phi^{n}\left(\lambda_{1} w\right)+c_{n}\left(\lambda_{1}\right) \phi(-w) \Phi^{n}\left(-\lambda_{1} w\right) \\
& =c_{n}\left(\lambda_{1}\right) \phi(w) \Phi^{n}\left(\lambda_{1} w\right)+\Phi^{n}\left(-\lambda_{1} w\right) \\
& =c_{n}\left(\lambda_{1}\right) \phi(w)
\end{aligned}
$$

Now, we can show that $c_{n}\left(\lambda_{1}\right) \rightarrow 2$ as $\lambda_{1} \rightarrow \infty$, then $\lim _{\lambda_{1} \rightarrow \infty}|W|=2 \phi(w)$ for $w>0$ and we have $\lim _{\lambda_{1} \rightarrow \infty}|W| \stackrel{\text { D }}{=}|Z|$.

THEOREM 4. The moment generating function of $(X, Y) \sim B G S N_{n, m}\left(\lambda 1, \lambda_{2}\right)$ is

$$
M_{X, Y}\left(t_{1}, t_{2}\right)=c_{n, m}\left(\lambda_{1}, \lambda_{2}\right) e^{\frac{t_{1}^{2}+t_{2}^{2}}{2}} E\left\{\Phi^{n}\left\{\lambda_{1}\left(U+t_{1}\right)\right\}\right\} E\left\{\Phi^{m}\left\{\lambda_{2}\left(W+t_{2}\right)\right\}\right\}
$$

$U, W \sim N(0,1)$ distribution.
PROOF.

$$
\begin{aligned}
M_{X, Y}\left(t_{1}, t_{2}\right) & =E\left(e^{t_{1} X+t_{2} Y}\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c_{n, m}\left(\lambda_{1}, \lambda_{2}\right) e^{t_{1} x+t_{2} y} \phi(x) \phi(y) \Phi^{n}\left(\lambda_{1} x\right) \Phi^{m}\left(\lambda_{2} y\right) d x d y \\
& =c_{n, m}\left(\lambda_{1}, \lambda_{2}\right) e^{\frac{t_{1}^{2}+t_{2}^{2}}{2}} E\left\{\Phi^{n}\left\{\lambda_{1}\left(U+t_{1}\right)\right\}\right\} E\left\{\Phi^{m}\left\{\lambda_{2}\left(W+t_{2}\right)\right\}\right\}
\end{aligned}
$$

REFERENCES

[1] Arellano-Valle R. B, Gomez H. W, Quintana F. A (2004). A new class of skew- normal distribution. Commun. Stat Theory Methods .33(7):1465-1480.
[2] Azzalini A (1985). A class of distributions which includes the normal ones. Scand J Stat. 12:171178.
[3] Hasanalipour P, Sharafi M (2010). A new generalized Balakrishnan skew-normal distribution. Statistical Papers,
[4] Jamalizadeh A, Behboodian J, Balakrishnan N (2008). A two-parameter gen- eralized skew-normal distribution. Statistics and Probability Letters 78: 1722-1726.
[5] Sharafi M, Behboodian J (2008). The Balakrishnan skew-normal density. Statistical Papers, 49: 769778.

B. Fathi
 Department of Statistics, University of Guilan, Iran
 P. Hasanalipour
 Department of Statistics, University of Guilan, Iran

