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Abstract

The present article describes a novel phrasing model which can be used for segmenting
sentences of unconstrained text into syntactically-defined phrases. This model is based
on the notion of attraction and repulsion forces between adjacent words. Each of these
forces is weighed appropriately by system parameters, the values of which are optimised
via particle swarm optimisation. This approach is designed to be language-independent
and is tested here for different languages.

The phrasing model’s performance is assessed per se, by calculating the segmentation
accuracy against a golden segmentation. Operational testing also involves integrating the
model to a phrase-based Machine Translation (MT) system and measuring the translation
quality when the phrasing model is used to segment input text into phrases. Experiments
show that the performance of this approach is comparable to other leading segmentation
methods and that it exceeds that of baseline systems.

Keywords: particle swarm optimisation, natural language processing, text phrasing, ma-

chine translation

1 Introduction

The work presented here concerns the devel-
opment of a phrasing model, which can be used
for segmenting sentences of unconstrained text into
syntactically-defined phrases (i.e. noun, verb, ad-
jective phrases etc.), based on a limited amount
of training data. The ultimate aim of creating
this phrasing model has been its integration into a
corpus-based MT system that by design can oper-
ate with only limited-scale bilingual resources.

Unsupervised parsing, which involves defining
syntactic phrases, has been under study since the
early 2000s in Natural Language Processing (NLP).
Klein and Manning [1, 2] have proposed methods
for inducing, in an unsupervised manner, hierar-
chical syntactic structure in arbitrary sentences us-

ing Expectation Maximisation (EM), these methods
achieving class-leading accuracies. Raw text unsu-
pervised parsing has also been studied by Seginer
[3], using local predictions, and by Ponvert et al.
[4], who employ Cascaded Finite State models.

Yarowsky and Ngai [5] and more recently Zhu
et al. [6] have studied the porting of a phrasing
model between two languages under the assump-
tion that one of the languages has fewer resources.
Thus its model can be created by modifying as ap-
propriate a phrasing model established in the more
amply-resourced language.

A distinct yet conceptually related research ac-
tivity has involved segmenting continuous text into
words for a number of Asian languages including
Japanese and Chinese, as discussed in [7, 8, 9]. For
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these languages, there exists the additional problem
of splitting a sentence into words, since no spaces
separate character sequences. As a result, the meth-
ods developed in these works require a substantial
amount of training data, as the phrasing task in-
cludes the identification of lexical units. However,
these methods are not particularly relevant to the
task studied in the present article, which focuses
on European languages where the boundaries be-
tween words are explicitly defined. Hence, here the
phrasing algorithm only needs to determine phrase
boundaries and not word boundaries as well.

2 Phrasing model outline

In the present article the Attraction-Repulsion
phrase Generator model (henceforth also referred
to as ARQ) is evaluated in detail. ARG detects the
attraction and repulsion forces that are established
between adjacent words, in order to identify phrase
boundaries.

The setup used is broadly similar to that of [6].
Our work uses a parallel bilingual corpus to extract
a phrasing model, which is subsequently applied
to the PRESEMT MT system (see [10] for a com-
prehensive description of PRESEMT). However, in
contrast to Zhu et al. [6], who employ a parallel
corpus of 10,000 sentence pairs in English and Chi-
nese, the corpus used in the present work consists
of only a few hundred sentences in the source and
target languages. Such a small corpus suffices in
our case, where the aim is not to generate syntactic
graphs or to extract object/subject relations, but to
perform a shallow parsing by defining (i) the phrase
boundaries and (ii) the type of each phrase.

To represent the phrase segmentation, we adopt
the IBO2 annotation scheme [11], which establishes
phrase boundaries by assigning to the current word
the symbol “B”, if it corresponds to the start of a
phrase, or the symbol “I”, if it corresponds to the
continuation of the phrase.

ARG is applied here to two European languages
from different families, namely Greek and English,
in order to gauge the wider applicability of the
methodology across languages.

2.1 Relevant phrasing approaches

PRESEMT is a corpus-based MT system which
extracts the language model from large monolin-
gual corpora. It employs a phrase-based principle,
where sentences are split into sub-sentential units
which coincide with syntactic phrases.

When developing the PRESEMT methodology,
multiple phrasing approaches have been tested, in-
cluding approaches based on Conditional Random
Fields (CRF) and Template Matching (TEM). CRF
[12] is a structured learning algorithm, very fre-
quently chosen for modelling tasks (cf. for instance
[13, 14]). CRF intrinsically takes into account con-
text to create a more accurate model. In the case of
phrasing word sequences from texts, context takes
the form of the adjacent phrase types and bound-
aries. When tested within PRESEMT, CRF pro-
vided a more accurate phrasing than other stochas-
tic models such as Hidden Markov Models, yet it
yielded suboptimal results. These results are most
likely due to limited training data (circa 200 sen-
tences, or roughly 2,000 phrases) that does not suf-
fice to determine precisely the parameter values of
the complex underlying model.

The TEM method [15] employs a greedy search
to identify phrases that match patterns encoun-
tered during training. This search tries to match
word sequences of the input sentence with a list
of valid phrases extracted from the training dataset
and sorted in descending order of expected accu-
racy. Experimental results [16] have shown that,
for a limited-size training set, TEM is more effec-
tive than CRF in building a phrasing model. How-
ever, a key drawback of TEM is that if a subopti-
mal phrase is determined at some point, this deci-
sion cannot be reversed and so frequently leads to
a build-up of errors. Furthermore, the use of an or-
dered list of phrases assumes that a human expert
specifies appropriate ordering rules. These rules po-
tentially vary not only for different languages but
also amongst different domains of the same lan-

guage.

2.2 The ARG model

The Attraction-Repulsion phrase Generator
model is trained on a set of sentences, which
are annotated with Part-of-Speech (PoS) tags and
segmented into labelled phrases. When examin-
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ing the tags of consecutive words in unseen sen-
tences, ARG makes use of the training set to decide
whether the given words belong to the same phrase,
having stronger attraction forces, or whether they
are separated by a phrase boundary (i.e. they are
parts of different phrases) thus obeying the repul-
sion forces. For instance, a noun-verb sequence is
split into two parts by a boundary between these two
words, the first word belonging to a noun phrase
whilst the second forming part of a verb phrase.
By accumulating such information over the entire
training set, ARG learns to identify phrase bound-
aries and segment unconstrained text into phrases,
by tuning specific parameters termed weights.

Three variants of the Attraction-Repulsion
model have been used to determine the most effec-
tive one (as detailed in Section 3.3). This is moti-
vated by the fact that the amount of training data is
limited; hence data may not be sufficient to train a
model with a relatively large number of parameters.
Besides, it is preferable to have a more constrained
set of parameters that take independent values. This
is also the idea underlying idea of Booker et al.
[17], who proposed the use of surrogate objective
functions with a reduced number of parameters to
guide an optimisation process, in order to achieve
a better optimisation point. The use of surrogate
functions to improve the effectiveness of swarm op-
timisation methods has been reviewed by Jin [18].

2.3 Identification of phrases

Segmenting a sentence with n words into
phrases means determining whether at the point just
after the i word a boundary is needed or not. This
is decided based on the identities of the words at the
vicinity of this point. The phrasing task is schemat-
ically depicted in Figure 1.

One could envisage this as a situation where
neighbouring words are attracted to or repelled
from each other. Attractive forces indicate that the
corresponding words are closely related and be-
long to the same group, i.e. the same phrase, in
the given context. Strong repulsive forces indicate
these words are at a large distance from one another
and should be assigned to different phrases. This
modelling mimics that of natural systems, where
multiple forces come into play between elements to
reach an equilibrium. For each candidate segmen-
tation point, a set of attraction and repulsion forces

are identified over different distances, taking into
account varying contexts to determine a constituent
force.

The concept of attraction-repulsion paired
forces has been adopted in several machine learn-
ing problems. In the context of this article, the clos-
est attraction-repulsion application is that of Stoe-
ber et al. [19] for phrasing purposes with a Text-to-
Speech synthesis system. However, our set-up dif-
fers as the amount of training data is much smaller.
Furthermore, the phrasing scheme is designed with
a view to being integrated to an MT system which
employs only limited training data.

3 Defining the attraction and re-
pulsion forces

An attractive or a repulsive force (represented as
Fatt(X) and Frep(X) respectively, where X denotes
the candidate segmentation point) is always defined
over a specific range of observations (in this case
words). A number of ranges are used in the system
to combine both information that is localised (for
instance only one or two words directly adjacent to
the candidate segmentation points) as well as more
global, involving more distant words. This range is
defined as a set of k datapoints

range; = Wi, Wi, .., Wl (D

To determine the value of the /" force (either at-
tractive or repulsive), a ranking function ? is de-
fined which reflects the importance of a consecutive
set of words (this could be the frequency of occur-
rence of the word sequence). For instance, the defi-
nition of attractive force Fatt j(X)takes into account
word sequences from the training set where there is
no segmentation boundary. On the other hand, the
repulsive force Frep ;(X) takes into account training
patterns where there is a phrase boundary at posi-
tion X. For example, an attractive force between two
consecutive words is expressed as follows

Fattj(X) = (W, = word,;W; x41 = word,1,
with no phrase boundary between words x & x+1,
2

where @() is calculated over the entire set of posi-
tive training patterns (as discussed in Section 3.2).
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Input sentence:
Sentence segmented into phrases:

Sentence expressed in part-of-speech tags:

“The child runs to school.”
“(The child) (runs) (to school)”

“(At No) (Vb) (Prp No)”

- Actual phrase boundaries

The child runs & to ,,.-f'"'xsrcuhool

Boundary(i-2) Boundary(i-1)

“ Candidate phrase boundaries

Figure 1. Example of the phrasing task

An analogous expression is used to define repulsive
forces. This likelihood of a segmentation point is
determined by combining the evidence within the
training set of the attractive and repulsive forces at
the specific point. These forces combine to a single
potential value, denoted as Pot, which is defined as

k k
Pot (X) = Ha,-~Fatt (X)— Hb,wFrep (X)—thres.
i=1 i i=1 i

3)
In the present work, a total of eight constituent
forces have been defined, sampling from 1 to 4
words. These are organised into four pairs of attrac-
tive and repulsive forces (and thus k=4), as shown
in Figure 2. In each pair, the attractive and repul-
sive forces sample the same range (set of words),
but split over two different training sub-sets. Attrac-
tive forces take into account training patterns where
there is no phrase boundary for the given point. On
the contrary repulsive forces only use training pat-
terns for which a phrase boundary exists.

As expressed in (eq.3), the attractive and re-
pulsive forces are multiplied by weights a;and b;,
respectively. The magnitudes of these weights
indicate their relative importance in establishing
whether a boundary should be placed between two
words or not. For instance, the frequency of a pat-

tern with a range of 2 (i.e. comprising two words
only) is expected to be much more frequent in the
training set than a pattern with a range of 4 words.
Yet, the information provided by the range-4 pattern
is probably much higher and thus a larger weight
must be used. Finally thres is a bias that estab-
lishes the minimum level of the potential (Pot), be-
low which a decision is made to introduce a phrase
boundary.

A positive value of the potential indicates that
at point i there is no phrase boundary as the attrac-
tive forces exceed repulsive ones, while a negative
value indicates the need for a phrase boundary. The
magnitude of the potential indicates the confidence
of the decision of placing or not a boundary. In or-
der to segment a set of sentences, (eq.3) is applied
independently to every possible segmentation point
between consecutive words, to establish the actual
phrase boundaries.

3.1 Determining function ¢

To calculate the attraction and repulsion forces via
(eq.2) and (eq.3) there is a need to define rank-
ing function ¢. The ranking function expresses
the relative importance of sub-sentential segments
in the training corpus, allowing them to be ordered
based on their importance. In general, function ¢
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Figure 2. Ranges over which attractive & repulsive forces are calculated for the phrasing task

should emphasise the most frequent patterns, re-
flecting their higher frequency of occurrence. In the
present article, two functions are used, @; which is
based on frequencies solely and ¢, which combines
frequency information with the length of the phrase
in tokens. Function @, compensates for the expect-
edly lower frequencies when a sub-sentential phrase
consists of more tokens. The two functions are de-
fined as follows

@1 (phr) = freq(phr), “4)

@2 (phr) = freq(phr) +r-len(phr), — (5)

where freq(phr) represents the frequency of oc-
currence of a phrase pattern in the training set and
len (phr) is the length in tokens of the phrase pat-
tern phr. In (eq.5), r is a weighing factor which in
the experiments reported hereafter is set to 100.

3.2 Extracting information from the train-
ing set

In the ARG implementation, PoS tags are em-
ployed instead of words to address the data sparsity
issue, since frequencies are counted over a more
limited vocabulary of features. The use of PoS

tags enhances the ability of the system to learn over
limited-size training sets, in comparison to the use
of words.

ARG phrasing distinguishes two tasks, (1) def-
inition of phrase boundaries and (2) labelling, i.e.
identification of phrase types. To implement the
first task, a list of all boundary phrase templates
(BNDC), i.e. all sequences of tags from the train-
ing set with a phrase boundary at the specific point,
is established. Similarly, a list is established of all
in-phrase templates (INPC), where there is no such
boundary. Templates of type BNDC and INPC pro-
vide the training data for repulsive and attractive
forces (Frep(i) and Fatt(i)) respectively. In concep-
tual terms, BNDCs form the negative training set as
they strengthen repulsive forces, while INPCs form
the positive training set as they support attractive
forces.

The second task involves identifying the phrase
type. This is achieved by incorporating all phrase
templates from the training set in a labelled list,
and ordering them on their frequency. Then a
new phrase (determined as the sequence of tags be-
tween two consecutive phrase boundary points) is
assigned the type of the most frequent entry from
the labelled list that comprises the exact same se-
quence of tags.
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Table 1. Templates extracted for the sentence of
Figure 1, expressed in terms of words and PoS tags

id. | tokens PoS tags type Freq.

1 (the, child) | (At, No) INPC |1

2 (child, (No, Vb) BNDC | 1
runs)

3 (runs, to) (Vb, Prp) BNDC | 1

4 (to, school) | (Prp, No) INPC |1

The steps of establishing an ARG phrasing
model are listed in Figure 3. As an example, Table 1
contains templates extracted from the short sample
sentence of Figure 1. For clarity, only the in-phrase
and boundary templates that can be extracted for
two consecutive words (one to the left and one to
the right of the candidate segmentation point) are
shown in Table 1. For the sample sentence, there
are four possible segmentation points, and thus four
templates are extracted. The first and fourth are IN-
PCs (as there is no segmentation boundary between
the words), whilst the second and third are BNDC
templates. Obviously, as more sentences are added
to the training set, the coverage of the training set
increases substantially and BNDC and INPC pat-
terns get a differing frequency counts.

For a typical dataset as used in the present work,
these templates are extracted by processing a train-
ing set of 200 sentences. Using the process of Fig-
ure 3 for the experimental corpus the total number
of distinct boundary templates and in-phrase tem-
plates is 1,322 and 1,036 respectively (more infor-
mation on the datasets is provided in Section 4).

A. Training

Step 1: For the sentences of the training corpus, replace tokens with PoS tags.
Step 2: Compile set of phrase templates from training corpus.

Step 3: Compile set of boundary templates from training corpus.

Step 4: Compile set of in-phrase templates from training corpus.

Step 5: For each template range record attraction and repulsion templates and
count frequencies over the training corpus

Step 6: Based on the frequencies of step 5 calculate frequency-related metric of
performance by applying definition of ¢

Step 7: Determine attraction/repulsion weights algorithmically to optimize
performance.

B. Application

Step 8: Calculate potential for each possible boundary position of sentence.
Step 9: Establish boundary points by comparing with threshold value

Step 10: Determine phrase label for each sequence within boundaries by
comparing to phrase templates

Figure 3. Steps for training and applying the
attraction-repulsion phrasing model

3.3 Establishing the optimal ARG param-
eter values

From the training patterns, ARG needs to de-
termine the optimal weights for appropriately com-
bining the constituent forces, to decide if a phrase
boundary is needed or not at a specific point. For the
implementation studied here, there are nine weights
in total (cf. eq.3), whose values must be deter-
mined. To that end, we utilise the Particle Swarm
Optimisation (PSO) method from the field of com-
putational intelligence. PSO [20] implements a
search for the optimal solution by replicating the
collective behaviour of a swarm of living organ-
isms, when for instance these organisms search for
food. The PSO principle is to use a set of simple
agents (also called particles) whose searches are ap-
propriately combined, via exchange of information
over a series of training epochs.

Each particle is determined by its current loca-
tion in the pattern space, x;(t) (corresponding to a
candidate solution), and its current velocity vector
vi(t) (the speed as well as direction with which the
agent searches through the pattern space for new so-
lutions). As the swarm evolves, the location and ve-
locity of the i*" particle are updated in accordance to
the best solution P;(¢) found by this particle and the
global-best solution P, () found by all particles

V,'(f"f‘l):W'Vi(l)+C'U[O,1]'(Pi(l‘)—Xi(l))
d- U[0,1]- (P (1) — X; (1))

i

(6)

xi(t+1)=x;i(t+1)+vi(t+1). (7

Parameter w is termed the inertia weight of the
swarm. Parameters ¢ and d are known as the cogni-
tive and social acceleration coefficients, and control
the amount of local and global search respectively.
UJ[0,1] represents a random number drawn from a
uniform distribution within the range from 0 to 1.

A basic PSO algorithm has been applied to the
task of ARG weight selection [21]. In the present
article, results on the latest experiments are pre-
sented, comparing two PSO variants. The first vari-
ant is sPSO (standard PSO). sPSO closely follows
the initial model of Kennedy and Eberhart [20],
augmenting it with mechanisms for (a) elitism (the
best solution in the swarm is carried unchanged to
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the next epoch), (b) velocity reinitialisation (which
reduces premature convergence by increasing the
magnitude of velocity if it falls below a threshold)
and (c) fine-tuning after each swarm epoch, to im-
plement local search. In sPSO, a fully informed
swarm is used, where all particles are aware of the
best solution found at each epoch [22].

The second variant considered is Adaptive PSO
(AdPSO), proposed by Zhan et al. [23]. In AdPSO,
a more elaborate search is employed, with parame-
ters ¢ and d of (eq.6) being algorithmically varied
without any human intervention during run-time.
This enables the swarm to switch between different
search strategies as it evolves, to optimise its perfor-
mance. AdPSO has been found to be more effective
than sPSO in a collection of standard test functions
[23].

For both AdPSO and sPSO, 1,000 epochs were
simulated per run, with each experiment repeated
for a total of 100 randomly initialised runs. Each
swarm comprises a total of 20 particles. Regarding
the potential defined in equation (3), three different
weight configurations are defined, depending on
whether the weight parameters are independently
optimised or not. These are:

1. exact, where g;and b;take independent values
throughout all epochs,

2. surrogate, where for all epochs a;= b;,

3. hybrid, where for a number of initial learning
epochs (typically 20% of the available epochs)
weights a; and b; share the same values for every
i, and for the remaining epochs they are decou-
pled to evolve independently.

Hence, the use of two swarm variants (sPSO
and AdPSO) and three weight configurations (ex-
act, surrogate and hybrid) gives a total of six dif-
ferent configurations to run and compare for each
experiment set.

4 Experimental set-up & results

The evaluation of the ARG-based model is
twofold; on the one hand, the phrasing accuracy is
assessed by comparison to a reference segmentation
drawn up manually. On the other hand, the effect
of the phrasing model on the translation output of

PRESEMT is assessed by comparing the translation
quality to the quality achieved by the use of other
phrasing models.

In our experiments, three text corpora are used,
each comprising 200 sentences. The first corpus is
used for training, and the second set is used for de-
velopment purposes. The first and second corpora
are similar, with differences limited to about 10%
of the word tags. The third corpus, which also com-
prises 200 sentences, is completely unrelated to the
training and development sets, and serves to test the
produced phrasing model with a fully independent
set of unseen sentences.

The experiments presented here represent a sub-
stantial expansion in comparison to the experiments
reported in [24]. More specifically, the swarm al-
gorithms have been re-run, after incorporating nu-
merous refinements and enhancements. These in-
clude the random initialisation of particle parame-
ters, now using values that are much closer to the
middle of the range, to have a less biased initial po-
sition and a more modest starting velocity of par-
ticles in the pattern space. In addition, the veloc-
ity update rule has been refined to perform a more
gradual convergence of particles to their final val-
ues. To this end the velocity vector is normalised to
a lower level throughout the experiments (0.125),
for a finer convergence process.

Finally, an extensive statistical analysis of the
solutions returned by the swarm algorithms is per-
formed. The aim is to identify the best choice of
swarm variant and weight configuration.

4.1 Phrasing accuracy of ARG

Experiments were carried out to optimise the
ARG weight values, using both sPSO and AdPSO.
To evaluate the quality of the phrasing solution gen-
erated by each swarm particle during evolution, a
metric is required. Experimentation has shown that
using metrics such as recall, the phrasing model is
led to add more segmentation points. With recall, an
optimal score would be achieved even in the trivial
case where all possible segmentation points become
phrase boundaries, since recall does not penalise the
introduction of erroneous phrase boundaries. As a
consequence the actual phrasing accuracy suffers.
Thus, it is preferable to use metrics that take into ac-
count both where boundaries should be placed and



226

George Tambouratzis*, Marina Vassiliou

where they should not, and penalise both types of
errors. For this reason, the F-measure is used, as
expressed in equation (8).

tp tp
tp+tn tp+fn

()

F — measure =

The results obtained by different ARG configu-
rations are depicted in Tables 2 and 3, in terms of
phrasing accuracy, by comparison to a golden seg-
mentation manually compiled. In both Tables 2 and
3, the best weight configuration per PSO variant and
ranking function combination is marked by an aster-
isk. The best result for sPSO and AdPSO is denoted
in bold, whilst the best result over all combinations
is denoted by a highlighted entry.

Since a relatively large number of experiments
have been run, the effect each factor has on the out-
come of the swarm optimisation is presented in a
separate sub-section hereafter.

Comparing swarm algorithms AdPSO and
sPSO: Concentrating initially on the results for the
English language (Table 2), the first observation is
that, in general, AdPSO is more effective than sSPSO
in minimising the phrasing error. This holds for
both @; and ¢,. Similar observations apply when
training a phrasing model for the Greek language
based on the results of Table 3.

Table 4. Comparison of swarm algorithms in terms
of the average phrasing error (over 100 runs) when
using function @,

Pot | sPSO | AdPSO ef(zg;;‘g?;ct
Funct error | error $PSO)
Exact | 0.0679 | 0.0565 -16.8%
EN | Surrogate | 0.0668 | 0.0538 -19.5%
Hybrid | 0.0660 | 0.0532 -19.4%
Exact | 0.0861 | 0.0308 -64.2%
GR | Surrogate | 0.0746 | 0.0299 -59.9%
Hybrid | 0.0760 | 0.0298 -60.8%

It is interesting to quantify how the two swarm
algorithms compare to each other in terms of the so-
lution achieved. The improvements of AAPSO over
sPSO are presented in Table 4 for the average error,
calculated over the 100 randomly-initialised runs.
A comparison of the lowest error over 100 runs is
summarised in Table 5, for the particular case of
function @, (similar observations apply to function
¢1). Both tables confirm that AAPSO consistently

achieves a substantially lower error than sPSO (and
thus a higher phrasing accuracy). The reduction in
error varies from 15% to more than 60%, reflecting
the superior performance of AdPSO throughout the
reported experiments.

Table 5. Comparison of swarm algorithms in terms
of the minimum phrasing error (over 100 runs)
when using function @,

Pot | sPSO | AdPSO | error reduct
Funct error error ( s }fgojver
Exact | 0.0617 | 0.0519 -15.9%
EN | Surrogate | 0.0589 | 0.0522 -11.4%
Hybrid | 0.0567 | 0.0510 -10.1%
Exact | 0.0599 | 0.0300 -49.9%
GR | Surrogate | 0.0573 | 0.0297 -48.2%
Hybrid | 0.0614 | 0.0283 -53.9%

This indicates that the phrasing model created
by AdPSO is consistently more accurate. In ad-
dition, according to Tables 2 (for the English lan-
guage) and 3 (for the Greek language), AdPSO uses
up a larger fraction of the available epochs before it
settles to its final solution (which is of a higher qual-
ity). This illustrates the higher exploration ability
of AdPSO in comparison to sPSO. Increased explo-
ration is attributable to the more elaborate AdPSO
algorithm, which allows it to alter the cognitive and
social acceleration coefficients (parameters ¢ and
d of (eq.6)) so as to switch quickly between ex-
ploration and exploitation strategies and cover the
search space to a greater extent.

Comparison of weight configurations: Another
observation is that a better optimisation (i.e. a lower
error rate) is achieved by a swarm algorithm em-
ploying a simplified objective function with fewer
parameters. More specifically, for the sPSO vari-
ant, the surrogate and the hybrid configurations are
more successful in determining a lower error than
the exact configuration. The same observation also
applies to AdPSO. A lower phrasing error is consis-
tently obtained when the search space is reduced,
by using a smaller set of independent parameters,
whose values are estimated from the training set.

Regarding the minimum error achieved for the
English language, according to the two right-most
columns of Table 2, sPSO using the exact configu-
ration settles more quickly than with the surrogate
configuration. The hybrid configuration requires
the largest number of epochs to settle.
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Table 2. Results for sPSO and AdPSO over 100 randomly-initialised runs, for (i) ranking function ¢; and
(i1) ranking function ¢,, when segmenting English text into phrases

. Error Settling step (for run with lowest error)
Funct. Crit T . . .
min max median st.dev. min max median st.dev
Exact 01 0.0851 0.1123 0.1007 | 0.0059* 14%* 999* 296 302.9
Surrog Q1 0.0850 | 0.1060* | 0.0901* 0.0060 2 999* 483 292.9
8 Hybrid Q1 0.0820%* 0.1158 0.0963 0.0085 8 999* 486* 265.4%*
R Exact @2 0.0617 0.0775 0.0674 0.0038 19* | 1000* 123 258.4
Surrog 02 0.0589 | 0.0719* 0.0683 | 0.0036* 11 999 125 307.2
Hybrid ®2 0.0567* 0.0749 | 0.0666* 0.0038 17 999 291.5*% 171.1%*
Exact Q1 0.0758 0.0982 0.0860 0.0071 31 991 639.5 247.6*
o Surrog 01 0.0749 0.0819 | 0.0750* 0.0032 24 996 161 2935
gj Hybrid Q1 0.0720* | 0.0788* 0.0773 | 0.0017* 188* 998:* 788%* 2374
2 Exact @2 0.0519 0.0613 0.0558 0.0027 147 998 679 251.5
Surrog @2 0.0522 0.0590 0.0542 0.0010 45 998 473 330.0
Hybrid ©2 0.0510*% | 0.0550* | 0.0534* | 0.0009* 292%* 989* 809* 214.1*
Table 3. Results for sPSO and AdPSO over 100 randomly-initialised runs, for (i) ranking function ¢; and
(i) function ¢,, when segmenting Greek text into phrases

. Error Settling step (for run with lowest error)

Funct. Crit min max Median | st.dev. min | max | median st.dev
Exact Q1 0.1022 | 0.1226* 0.1187 | 0.0033* 12* | 1000* 97 201.3*
Surrog Q1 0.0994 0.1227 | 0.1070* 0.0060 7 | 1000* 286.5 305.5
8 Hybrid Q1 0.0970* 0.1230 0.1192 0.0069 0 999 299* 239.2
A Exact 02 0.0573* | 0.0794* | 0.0761* | 0.0041%* 10 999%* 99 267.7
Surrog 02 0.0614 0.0807 0.0776 | 0.0041* 3 725 226.5 136.8*
Hybrid 2 0.0596 0.0794 0.0769 0.0047 23% 978 475.5% 269.6
Exact 01 0.0721 | 0.1033 | 0.0839 | 0.0065 84 | 998 679 267.2
°o Surrog 01 0.0639 0.0719 | 0.0639* | 0.0010* 187 994 872 279.4
f£ Hybrid Q1 0.0637* | 0.1018* 0.0673 0.0067 | 244* 999* 947* 179.3*
2 Exact ®2 0.0300 0.0349 0.0306 | 0.0006* 91 988 571%* 251.9
Surrog 02 0.0297 0.0352 | 0.0298* 0.0007 17 991 195 3443
Hybrid 02 0.0283* | 0.0342* 0.0300 0.0009 | 200%* 996* 743 197.7*
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The situation changes in the case of AdPSO,
where the exact configuration requires a larger
amount of epochs than the surrogate configuration
before settling to a final solution. This again reflects
the more elaborate algorithm of AdPSO which al-
lows switching from exploration to exploitation and
vice versa. In all cases reported in Table 2, when a
hybrid configuration is used, the number of epochs
is higher, though this is - at least partly - attributable
to the need to complete all epochs with the sur-
rogate function before optimisation with the exact
function is initiated. Thus the swarm requires a
minimum number of epochs before settling to a so-
lution.

These observations also apply without signifi-
cant differences when phrasing texts in the Greek
language (cf. Table 3). With sPSO, a faster conver-
gence is attainable using an exact function, whilst
the use of surrogate functions necessitates more
epochs. When using AdPSO with the exact con-
figuration, the number of epochs required for the
system to settle increases. In all cases, it is the hy-
brid configuration that requires the most epochs to
settle to a solution.

Comparing ordering functions ¢; and ¢,: Turn-
ing to the best choice of function ¢ for ordering the
in-phrase and boundary patterns it can be seen that
function @; is not as successful in minimising the
error as (. More specifically, for phrasing English
texts (cf. Table 2), for all three configurations of the
parameter set (exact, surrogate and hybrid), sPSO
achieves a lower error rate (i.e. fewer erroneous
phrase boundaries) when using @, rather than ;.
The same observations apply to AdPSO, as can be
seen in the second half (lower 6 rows) of Table 2 for
the English language. This is attributable to the use
of information concerning phrase length in addition
to frequency in function @,, creating a more accu-
rate grading. This leads to fewer phrasing errors for
@2, as compared to Q.

Once again, the same observations apply to the
phrasing of Greek texts, based on the contents of
Table 3.

4.2 Visualisation of Solutions

An intuitive visualisation of the aforementioned
error populations is provided in the form of box-
plots. Boxplots depict the distribution of final

phrasing errors for every set of 100 runs. One
boxplot is provided for each of the swarm variants
(sPSO or AdPSO) when one of the three weight
configurations is used (either exact, surrogate or
hybrid). Thus, in each figure, six boxplots are
included, the three leftmost configurations corre-
sponding to sPSO and the three rightmost ones to
AdPSO.

The boxplots for the English language using ¢
are shown in Figure 4. In this case, the errors gen-
erated by AdPSO (around 6.5%) are consistently
lower than those of sPSO (which range from 9 to
12%). In addition, the use of surrogate and hy-
brid configurations generally results in lower errors
in comparison to the exact configuration for both
sPSO and AdPSO. For sPSO, the lowest average
error occurs for the surrogate function, while in the
case of AdPSO the lowest average error is achieved
with the hybrid configuration. In addition, the aver-
age errors obtained with AdPSO for the exact, sur-
rogate and hybrid configurations are very close to
each other. This contrasts the behaviour of sPSO,
where differences in the average errors are more
substantial.

0.12

o] ﬂj

0.08
0.06+ é * %
0.044

0.024

T T T T T T
exact suirog hybrid exact surrog hybrid

sPSO AdPSO

Figure 4. Population of phrasing errors for English
(over 100 runs) for each combination of swarm
variant and weight configuration, using function @

Regarding the best solutions generated by each
configuration, (see Figure 4), the difference is more
marked. The exact configuration generates a higher
error than the surrogate one, which in turn generates
a higher error than the hybrid configuration. This
observation applies to both sPSO and AdPSO.
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Figure 5. Population of phrasing errors for English
(over 100 runs) for each combination of swarm
variant and weight configuration, using function

®2.

In Figure 5, the corresponding boxplots are
shown for English texts when ordering function @,
is used. Similarly to when using ¢@; (cf. Figure 4),
the solutions generated by AdPSO with ¢, are supe-
rior to those of sSPSO. The use of ordering function
(¢instead of @ results in less variability in the error
for all three weight configurations. Also the magni-
tude of the error is substantially reduced, from ap-
prox. 10% for sPSO with @ to 6.5% for @,. For
AdPSO, the results are respectively 6.5% with @;as
compared to 3.5% with@,.

When creating a phrasing model for Greek,
the corresponding error populations are shown
in Figures 6 and 7, for ordering functions
¢rand@,respectively. The results for Greek are in
agreement with the aforementioned results for En-
glish, indicating a consistent performance of ARG
across languages: AdPSO produces a better phras-
ing in comparison to sPSO, whilst @;generates a
higher error than @,.

When using @, the surrogate and hybrid con-
figurations achieve lower mean errors than the exact
configuration, both for AJPSO and sPSO. A minor
variation occurs for function @y, for Greek, where
the surrogate configuration leads to the lowest er-
ror, which is lower than the hybrid configuration.
The situation changes when ordering function @;is
used as the errors are substantially reduced for all
configurations and now the hybrid configuration re-
sults in a slightly lower error rate than the surrogate

one.

As a conclusion, the experimental results are
found to be consistent across languages. Apart from
involving fewer computations and thus being more
efficient to simulate (as the number of weights is
substantially smaller), surrogate and hybrid config-
urations have the benefit of reaching a lower error
than the exact configuration. Thus, the strategy of
defining groups of weights that take the same values
appears to be effective, yielding a phrasing model
which more accurately replicates the desired phras-
ing.
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Figure 6. Population of phrasing errors for Greek
(over 100 runs) for each combination of swarm
variant and weight configuration, when using
function @;
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Figure 7. Population of phrasing errors for Greek
(over 100 runs) for each combination of swarm
variant and weight configuration, when using
function @;.
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4.3 Translation quality using ARG

As noted before, the effectiveness of the ARG
phrasing model is additionally assessed in the ma-
chine translation task. In the experiments reported
here, the PRESEMT phrase-based MT system is
used to translate text segmented into phrases by the
ARG model.

The quality of the translation is measured via
two widely-used objective metrics, BLEU [25] and
NIST [26], which produce a score by comparing the
system translation to a set of reference translations.
For both metrics, a higher score indicates a better
translation. The values of BLEU range from 0 up to
1, with 1 indicating a perfect translation, whilst the
values of NIST range from O to infinity.

For this evaluation the language pairs used were
from Greek to English and vice versa. The Greek
phrasing model was used to segment Greek text
being translated to English, and feed this to the
PRESEMT phrase-based system, whilst the English
phrasing model was used in the opposite translation
direction. The results obtained are depicted in Ta-
bles 6 and 7, for the Greek and English ARG phras-
ing models respectively.

Comparison of swarm variants: According to Ta-
ble 6, the BLEU scores do not reflect clearly the
lower phrasing error of AdPSO, as the best BLEU
scores are achieved for sPSO rather than AdPSO.
An analysis of the translation results has shown that
this is mainly due to the fact that AdPSO-derived
modelling forms longer phrases (including more
words between consecutive phrase boundaries) in
comparison to sPSO. However, the target language
model used in PRESEMT provides a better match to
the shorter phrases generated by sPSO rather than
the longer phrases of AdPSO (though these latter
phrases are still grammatically correct).

Table 6. Best results over 100 randomly-initialised
runs when optimising phrasing with @; for Greek
(used to translate from Greek to English)

When using the ARG model to segment En-
glish text into phrases (see Table 7), the best NIST
score, indicating a better translation performance, is
achieved for AdPSO. What is also notable is that for
English, all configurations give very similar phras-
ing error rates.

Table 7. Best results over 100 randomly-initialised
runs when optimising phrasing with ¢, for English
(used to translate from English to Greek)

Pot 1 error | Seng | gy py | NIST
Funct epoch

o Exact 0.0851 908 0.126 | 4.011*
E Surrog 0.0850 499 0.124 3.978
“ | Hybrid | 0.0820* 794 0.130%* 4.005
8 Exact 0.0758 872 0.126* | 3.993*
& Surrog | 0.0749 720 0.125 | 3.972
< | Hybrid | 0.0720%* 240 0.125 3.972

Pot | orvor | Seting | gy by | NIST
Funct epoch

o | Exact | 01022 570 | 0.382% | 7.300%
Z | Sumog | 0.0994 | 881* | 0.360 | 7.09
2 [THybrid | 0.0970% | 397 | 0.375 | 7.201
S [ Exact | 00721 695 | 0368 | 7.165*
£ [Sumog | 00639 | 751 | 0368 | 7.136
2 [Hybrid | 0.0637% | 868* | 0.373* | 7.159

Swarm optimisation with full parameter sets vs.
reduced parameter sets: Regarding the configura-
tion used (the number of independent weights), for
English the exact configuration and the hybrid con-
figuration result in higher BLEU scores (cf. Table
7), whilst the surrogate configuration results in an
inferior translation result.

By referring to Table 6, it can be confirmed
that these general observations for English also ap-
ply when phrasing texts in the Greek language.
This indicates the consistently successful applica-
tion of PSO in optimising the parameters of the
ARG phrasing model, irrespective of the language
being used.

It is also of particular interest to determine how
ARG compares to other phrase-generating methods
when integrated to the PRESEMT translation sys-
tem. This is discussed in the next sub-section.

4.4 Comparing the ARG phrasing to other
models

Within the second evaluation method, the ARG
model is compared to other phrasing models in
terms of the final translation accuracy. For compar-
ison, we have chosen the phrasing models of CRF
and TEM, both of which have been integrated into
the PRESEMT translation system in the past. The
evaluation results obtained are presented in Table 8.
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Table 8. Metric scores obtained for the three
phrasing methods, the best score per metric
denoted by an asterisk

Greek English
phrasing model | phrasing model
BLEU | NIST | BLEU | NIST
CRF 0.342 | 7.067 | 0.120 | 3.770
TEM 0.393* | 7.345*% | 0.118 | 3.862
ARG/sPSO 0.382 | 7.300 | 0.130* | 4.005%
ARG/AdPSO | 0373 | 7.160 | 0.126 | 3.993

The highest performing CRF variant is trained
by using 1-grams and 2-grams which involve the
current and previous words within a sentence envi-
ronment (each word is represented by its PoS tag).
This model has given the optimal results for the
PRESEMT training sets.

Even though CRF is widely accepted in lit-
erature as the default choice for phrasing, the
ARG results for both English and Greek and both
swarm variants, as shown in Table 8, are measur-
ably better than those of CRF. This indicates that
the attraction-repulsion concept yields an accurate
phrasing model. In addition, ARG clearly provides
the rationale of a phrasing decision as both the train-
ing data and the weights are easy to inspect. This
is in contrast to the mathematically complex CRF
model, where the final values of parameters are not
transparent.

Based on the experimental results, ARG is su-
perior to TEM when creating a phrasing model for
English, whilst TEM is in turn superior when seg-
menting Greek text into phrases. The comparatively
lower ARG phrasing quality for the Greek language
is mainly due to frequently-occurring issues, which
are traceable to the existing PRESEMT language
models:

1. The inability to correctly segment complex noun
phrases, which are relatively infrequent in the
training data but occur more frequently in the
test data.

2. In contrast to English, Greek is a highly-
inflectional language with four different gram-
matical cases. Since case information is in-
cluded in the PoS tag of nominal elements (e.g.
nouns, adjectives, participles etc.), the phrasing
task is compounded by a larger number of pos-
sible tags, the amount of training patterns per
tag being substantially reduced for less frequent

case patterns. Thus, the system is less accurate
in generalising from known patterns to other un-
seen (within the training corpus) patterns (such
as different cases).

3. A third issue emerges as a tendency to posi-
tion verbs and article-less direct objects into
the same phrase (e.g. KOvV® dloKpoeLg = [if.
make discriminations, discriminate). This is
due to language-specific structures, frequently-
appearing in the training data, involving a verb
plus a direct object pattern in the source lan-
guage corresponding to a single verb in the tar-
get language.

5 Conclusions & future directions

In the present article, a method based on attrac-
tion and repulsion forces has been proposed to iden-
tify syntactic phrases for arbitrary text. This method
is designed specifically for extracting knowledge
from a relatively small number of sentences. This
allows the method to be easily trainable for a vari-
ety of languages, even when language resources are
scarce. In this article, results have been reported for
both Greek and English, to comprehensively exam-
ine the suitability of the proposed method to texts
written in different languages.

Concerning variants of swarm optimisation, the
error rates achieved by AdPSO are consistently
lower than those achieved by sPSO. This illustrates
a superior performance by the more sophisticated
AdPSO algorithm in optimisation tasks, which al-
lows it to switch more effectively between explo-
ration and exploitation.

A series of experiments have focused on defin-
ing a subset of weights that are grouped together,
so that optimisation is done in two phases. In the
first phase only a smaller set of parameters are in-
dependently optimised, whilst in the second phase
all parameters of the attraction-repulsion model are
independently optimised (this being the hybrid con-
figuration).

For both languages tested, it was found that the
hybrid approach resulted in a lower error for the
final solution (and thus a superior solution). This
result is potentially of interest concerning the ap-
plication of computational intelligence techniques
to natural language processing tasks. The coupling
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of specific parameters to share the same value al-
lows the complexity of the optimisation task to be
reduced via a divide-and-conquer approach, whilst
after a good solution has been found all parameter
values can be independently optimised.

Experiments show that the attraction-repulsion
method, with weights optimised via PSO, gener-
ates a phrasing model superior to the CRF model
(the long-established standard method for phrasing
models) in terms of both the phrasing accuracy as
well as the translation accuracy when the phrasing
model drives a phrase-based MT system. Notably,
the performance of ARG in the phrasing task is also
very close to that of the TEM method which has
been manually fine-tuned. This observation illus-
trates the effectiveness of the swarm optimisation
in determining optimal weights.

An added benefit of using the attraction-
repulsion concept is that parameters are set by an
automated optimisation process, and can be directly
interpreted and even modified. Other metaheuris-
tics besides PSO are of course valid alternatives for
optimising the attraction/repulsion weights but are
the topic of future work.

An additional aspect for future study is that of
using more detailed tag information in order to im-
prove the phrasing accuracy. For instance, by differ-
entiating between auxiliary verbs and main verbs in
the English language, an improved phrasing perfor-
mance is achieved, which also translates to a higher
translation quality. This opens the field for further
improvements in Machine Translation quality.

However, the main projected improvements fo-
cus on the swarm algorithm details. One key ob-
servation is that in terms of phrasing error sPSO
has been consistently outperformed by AdPSO, due
to the latter model’s ability to switch between ex-
ploitation of already determined solutions and ex-
ploration to determine new solutions. The aim is
to utilise recent research findings to investigate if
sPSO performance may be improved. In this as-
pect the work of Harrison et al. [27] on systemat-
ically establishing the most relevant values for key
parameters such as the inertia, cognitive and social
coefficients is particularly relevant. This work will
show if sPSO can become competitive to AdPSO in
terms of phrasing accuracy.

Another finding of the present article is that
AdPSO frequently separates sentences into fewer
phrases than sPSO in certain configurations. This
is due to the fact that the F-measure metric is not
symmetric in terms of the establishment of phrases
but favours avoiding to establish incorrect phrases.
Because of this, it is planned to evaluate other met-
rics such as Youden’s metric and Cohen’s K in the
near future which are more balanced in consider-
ing the accuracy of both the positive and negative
instances (in the present context, the existence and
the absence of phrase boundaries). Also it is in-
tended to analyse in detail the swarm optimisation
process to determine if certain aspects can be fur-
ther improved.
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