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Abstract

This paper studies the global asymptotic stability and dissipativity problem for a class
of neutral type stochastic Markovian Jump Static Neural Networks (NTSMJSNNs) with
time-varying delays. By constructing an appropriate Lyapunov-Krasovskii Functional
(LKF) with some augmented delay-dependent terms and by using integral inequalities
to bound the derivative of the integral terms, some new sufficient conditions have been
obtained, which ensure that the global asymptotic stability in the mean square. The re-
sults obtained in this paper are expressed in terms of Strict Linear Matrix Inequalities
(LMIs), whose feasible solutions can be verified by effective MATLAB LMI control tool-
box. Finally, examples and simulations are given to show the validity and advantages of
the proposed results.

Keywords: Static neural networks, Dissipativity analysis, Markovian jump, Time-varying
delays.

1 Introduction

Over the past twenty years, stability analysis
of Neural Networks (NNs) have been extensively
investigated for their widespread applications in
many areas such as imaging processing, engineer-
ing optimization, pattern recognition, associative
memories, computer version and so on [1-4]. Such
an application has strongly dependent on the stabil-
ity of the stable equilibrium point of NNs, and such
an equilibrium point may affect by the existence
of time delays and noise disturbance [5-8]. Con-
sequently, the investigation of the stability of NNs
with these two aspects is very imperative. There-

fore, a great deal of research consideration is ded-
icated to studying the stability of NNs with time
delays, numerous noteworthy results related to this
problem have been obtained recently, see [1-5, 8-
13, 16-34].

As we know, Markovian jumping systems
(MJSs) are viewed as a special class of hybrid
systems, which provide an efficient way to repre-
sent a class of dynamic systems subject to random
changes in their structures and found their appli-
cations in fault-tolerant systems, manufactory pro-
cesses [14, 15]. Therefore, the stability of NNs with
Markovian jump parameters have received much re-
search consideration, many significant results re-
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lated to this problem have been well documented,
see [5, 8-10, 12-13, 16, 23, 40]. For example, in
[5], LMI-based sufficient conditions have been ob-
tained for Markovian jump NNs including the rel-
ative information on the mode-dependent additive
time-varying delays. In [10], the exponential stabil-
ity criteria for a class of stochastic NNs with both
mixed time delays and Markovian jump parameters
has been investigated, novel Lyapunov functional
has been considered into the framework. By em-
ploying stochastic analysis, the problem of stability
of stochastic Markovian switching static NNs with
asynchronous mode-dependent delays has been in-
vestigated in the work [12]. On the other hand, as
pointed out in [17] that the NN could be stabilized
or destabilized by certain stochastic inputs, so for,
it is of essential significance to consider stochastic
disturbance on the stability analysis of NNs. Re-
cently, there are several results regarding the stabil-
ity of NNs with stochastic effects have been pub-
lished, see [18-26]. For example, in [19], a novel
LKF is constructed, which includes the relative in-
formation of the derivative of the past state, some
LMI-based stability criteria are derived for the un-
certain stochastic nonlinear systems. By construct-
ing an augmented LKF, a class of uncertain stochas-
tic NNs with both neutral type and interval time-
varying delays has been investigated in the refer-
ence [20]. Meanwhile, many application systems
can be structured as a differential form of neutral
type, which will contain the information about the
derivative of the past state. Such phenomenon con-
stantly encountered in the field of heat exchang-
ers, chemical reactors, population dynamics sys-
tems [28]. Due to the fact that the neutral type NNs
have received much research attention, many inter-
esting results on this topic have been reported re-
cently [29-34].

Nowadays, there has been a rapidly growing re-
search attention has been paid to the issue of dissi-
pativity of NNs, which has strong application back-
ground in engineering fields such as networks, cir-
cuit systems, and control theory [35, 36]. In [35],
dissipative systems were initially developed, after
that the concept further extended in [36]. Besides,
the dissipativity theory deals with a new computa-
tional approach through the appropriate parameters
(Q ,S ,R ) compared with other methods. Thus, the
study of dissipativity analysis has received much
research consideration from the researchers, many

significant results have been published, see [4], [37-
41]. To the best of authors knowledge, the problem
of stability and dissipativity analysis and the design
of stochastic disturbance for neutral-type Marko-
vian jump static NNs have not been completely
investigated, it remains essential and challenging.
This circumstance motivates our present study.

Inspired by the above discussions, in this paper,
our research efforts are mainly focused to investi-
gate the global asymptotic stability and dissipativ-
ity analysis for a class of NTSMJSNNs with time-
varying delays. The contributions of this paper are
listed as follows: (i) By constructing an appropriate
LKF with some augmented delay-dependent terms,
by employing integral inequalities, some new LMI-
based sufficient conditions have been established,
which ensure that the global asymptotically stabil-
ity in the mean square. (ii) The results obtained in
this paper are further extended to the dissipativity
analysis with nonlinear stochastic disturbance. (iii)
The calculated maximum allowable upper bounds
(MAUBs) η based on various methods are com-
pared in the illustrative section, which is guaranteed
less conservative than recently existing works. (iv)
Finally, three illustrative examples and simulations
are presented to show the effectiveness of the pro-
posed results.

The problem is formally defined in the next Sec-
tion. The stability and dissipativity criteria are pre-
sented in Section 3 and 4, respectively. In Section
5, numerical examples are given. At last, the con-
clusion is drawn in Section 6.

Notations: Throughout this paper, Rn and Rm×n de-
notes the n-dimensional Euclidean space and the
set of m × n real matrices, respectively. The su-
perscript XT represents the transpose of X. P >
0 means that P is the symmetric positive definite
matrix. � denotes the elements below the main
diagonal of a symmetric block matrix. (Ω,F ,P)
is complete probability space with a natural filtra-
tion {Ft}t≥0 satisfying the usual conditions. In rep-
resents the identity matrix with appropriate dimen-
sions. diag{.} denote the block diagonal matrix.
L2[0,∞) is the space of an n-dimensional square in-
tegral vector function on [0,∞). E{·} denotes the
mathematical expectation operator with respect to
P .
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2 Problem formulation and prelim-
inaries

Let {ρ(t), t ≥ 0} is a right-continuous Markov
chain defined on (Ω,F ,P) and take discrete val-
ues in a finite state space S = {1,2, ...,N} with tran-
sition probability matrix Π = [πi j]N×N given by

Pr{ρ(t +△t = j|ρ(t) = i} (1)

=

{
πi j△t +o(△t), if i ̸= j,
1+πii△t +o(△t), if i = j,

(2)

where △t > 0 and lim
△t→0+

o(△t)
△t = 0, πi j ≥ 0 is the

transition rate from i to j, If i ̸= j while πii =

−
N
∑
j=1

πi j.

Now, we consider the following neutral type
Markovian jump static NNs with time varying de-
lays



q̇(t) = −D(ρ(t))q(t)+ f (W(ρ(t))q(t
−η(t)))+A(ρ(t))q̇(t −h(t)),

q(t) = ψ(t), t ∈ [−ρ,0],
(3)

For the purpose of simplicity, let ρ(t) = i. Then
D(ρ(t)) = Di, W(ρ(t)) = Wi and A(ρ(t)) = Ai.
Now the system (3) can be written as



q̇(t) = −Diq(t)
+ f (Wiq(t −η(t)))+Aiq̇(t −h(t)),

q(t) = ψ(t), t ∈ [−ρ,0],
(4)

where q(t) = [q1(t),q2(t), ....,qn(t)]T ∈ Rn is the
state vector. The diagonal matrix Di = D(ρ(t)) =
diag{d1(ρ(t)),d2(ρ(t)), ...,dn(ρ(t))} has positive
entries di(ρ(t)) > 0 (i = 1,2, ...,n). The matri-
ces Wi = W(ρ(t)) and Ai = A(ρ(t)) represent
the connection weight matrices. ψ(t) is a vector-
valued initial function defined on [−ρ,0], where
ρ = max{η,h}.
A1: The delays η(t) and h(t) are time-varying con-
tinuous functions that satisfy

{
0 ≤ η(t)≤ η, η̇(t)≤ µ,
0 ≤ h(t)≤ h, ḣ(t)≤ hd ,

(5)

where η,h,µ and hd are some constants.
A2: The neuron activation function f j(·) j =
1,2, ...,n in (4) is continuous, bounded and satisfies,

γ−j ≤
f j(u)− f j(v)

(u− v)
≤ γ+j , (6)

f j(0) = 0,u,v ∈ R,u ̸= v and γ−j and γ+j are known
real constants.
which is equivalent to

[ f j(u)− f j(v)− γ−j (u− v)][ f j(u)− f j(v)

− γ+j (u− v)]≤ 0, j = 1,2, ...,n.

If v = 0 in (6), we have

γ−j ≤
f j(u)

u
≤ γ+j , j = 1,2, ...,n,

which is equivalent to [ f j(u)− γ−j u][ f j(u)− γ+j u]≤
0, j = 1,2, ...,n.
Now, we consider the following NTSMJSNNs with
time-varying delays




dq(t) = [−Diq(t)+ f (Wiq(t −η(t)))
+Aiq̇(t −h(t))+u(t)]dt
+σ(t,q(t),q(t −η(t)), i)dω(t),

p(t) = f (Wiq(t)),
q(t) = ψ(t), t ∈ [−ρ,0],

(7)

where p(t) is the output of the NNs (7), u(t)
is the external disturbance input which belongs
to L2[0,∞). σ(t,q(t),q(t − η(t)), i) is the lin-
ear or nonlinear stochastic perturbation. ω(t) =
[ω1(t), ...,ωn(t)]T ∈Rm is an m-dimensional Brow-
nian motion defined on (Ω,F ,P) that satisfies
usual conditions.
A3: The stochastic perturbation σ(t,q(t),q(t −
η(t)), i) is locally Lispchitz continuous and satisfies
the linear growth condition

tr{σT (t,q(t),q(t −η(t)), i)σ(t,q(t),q(t− (8)

η(t)), i)} ≤ ∥F1iq(t)∥2 +∥F2iq(t −η(t))∥2, (9)

where tr(·) stands for tr, F1i and F1i (i ∈ S) are
real matrices with suitable dimensions. Supposed
the term qT (t)Piq(t) is taken into the account of
LKF V(t,q(t), i), by Ito’s differential rule, there ex-
ists a nonlinear stochastic term tr{σT (t,q(t),q(t −
η(t)), i)Piσ(t,q(t),q(t −η(t)), i)}. In order to ob-
tain the less conservative stability criteria for NN
(7), the following restrictive condition is required

Pi ≤ λiI. (10)

From (9) and (10), we have

tr{σT (t,q(t),q(t −η(t)), i)Piσ(t,q(t),q(t (11)

−η(t)), i)} ≤ λi∥F1iq(t)∥2 (12)

+λi∥F2iq(t −η(t))∥2, (13)
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similar to [11, 12], to reduce the conservatism fur-
ther, the following restrictive condition (10) can be
relaxed according to the next two assumptions made
on the form of the (σ(t,q(t),q(t −η(t)), i).
A4: σ(t,q(t),q(t −η(t)), i) is nonlinear and can be
written as

σ(t,q(t),q(t −η(t)), i) = H1i(t)q(t) (14)

+H2i(t)q(t −η(t)), (15)

where H1i(t) and H1i(t) are nonlinear diagonal ma-
trix functions.
A5: The matrices F1i and F1i in (9) are diagonal
matrices

F1i = diag{ui1,ui2, ...,uin}, (16)

F1i = diag{vi1,vi2, ...,vin}, (17)

where ui j > 0, vi j > 0, i, j = 1,2, ...,n are some
scalars.
From A4 and A5, the condition (10) can be relaxed
as

Pi ≤ Λi = diag{λi1,λi2, ....,λin}, (18)

where Λi j > 0, j = 1,2, ...,n. As a result of (18)
is less restrictive and conservative than (10). The
detailed proof can be found in [11, 12.
Suppose a 2D stochastic perturbation
σ(t,q(t),q(t −η(t)), i) can be given by

σ(t,q(t),q(t −η(t)), i) = (19)
√

0.080
[

sin t q1(t)+ cos2 t q1(t −η(t))
cos t q2(t)+ sin2 t q2(t −η(t))

]
(20)

which can be described by (15) with

H1i =
√

0.080
[

sin t 0
0 cos t

]
, (21)

H2i =
√

0.080
[

cos2 t 0
0 sin2 t

]
(22)

Hence, we have

tr{σT (t,q(t),q(t −η(t)), i)σ(t,q(t),q(t
−η(t)), i)}= σT (t,q(t),q(t −η(t)), i)σ(t,
q(t),q(t −η(t)), i)

≤ 2
∥∥∥∥
√

0.080
[

sin t 0
0 cos t

]
q(t)

∥∥∥∥
2

+2
∥∥∥∥
√

0.080
[

cos2 t 0
0 sin2 t

]
q(t −η(t))

∥∥∥∥
2

≤
∥∥∥∥
[√

0.16 0
0

√
0.16

]
q(t)

∥∥∥∥
2

+

∥∥∥∥
[√

0.16 0
0

√
0.16

]
q(t −η(t))

∥∥∥∥
2

.

which implies that F1i and F2i in (13) are satisfied
with

F1i = F2i =
√

0.16 = 0.4I. (23)

The following definition and lemmas, are needed to
obtain the main results.

Definition 2.1. The NTSMJSNNs (7) is said to be
mean-square stable, if for any ε > 0 there exists a
scalar ϑ(ε) > 0 such that E{∥q(t)∥2} ≤ ε, t > 0,
whenever sup

−ρ≤t≤0
E{∥ψ(t)∥2} ≤ ϑ(ε). In addition,

if lim
t→∞

E{∥q(t)∥2} = 0 for any initial conditions,
then the NTSMJSNNs (7) is said to be mean-square
asymptotically stable.

Definition 2.2. The NTSMJSNNs (7) is strictly
(Q ,S ,R )− γ− dissipative for any tr ≥ 0 and scalar
γ > 0, if under zero initial state, the following con-
dition is fulfilled:

E{G(u, p, tr)} ≥ E{γ⟨u,u⟩tr}. (24)

Remark 2.3. As per the definition (2.2), the energy
supply function G related to the system (7) defined
by

G(u, p, tr) = ⟨p,Q p⟩tr +2⟨p,Su⟩tr (25)

+ ⟨u,R u⟩tr , ∀tr ≥ 0, (26)

where Q ,S ,R ∈ Rm×n with Q ,R are symmetric.
The notations ⟨p,Q p⟩tr , ⟨p,Su⟩tr and ⟨u,R u⟩tr are
represents

∫ tr
0 pT (s)Q p(s)ds,

∫ tr
0 pT (s)Su(s)ds and∫ tr

0 uT (s)R u(s)ds, respectively.
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The connection (26) can be defined by the follow-
ing dissipativity performance

Jγ,tr = (27)
∫ tr

0
E
{[(

p(s)
u(s)

)T (Q S
� R − γI

)(
p(s)
u(s)

)}
ds.

(28)

Lemma 2.3. For a positive-definite matrix O > 0
and a differentiable function {q(s)|s∈ [ϑ1,ϑ2]}, the
following integral inequality holds

∫ ϑ2

ϑ1

q̇T (s)Oq̇(s)ds ≥ 1
ϑ2 −ϑ1

OT
1 OO1+

3
ϑ2 −ϑ1

OT
2 OO2 +

5
ϑ2 −ϑ1

OT
3 OO3,

where O1 = q(ϑ2) − q(ϑ1), O2 = q(ϑ2) +
q(ϑ1)− 2

ϑ2−ϑ1

∫ ϑ2
ϑ1

q(s)ds, O3 = q(ϑ2)− q(ϑ1) +
6

ϑ2−ϑ1

∫ ϑ2
ϑ1

q(s)ds− 12
(ϑ2−ϑ1)2

∫ ϑ2
ϑ1

∫ ϑ2
u q(s)dsdu.

Lemma 2.4. For given positive integers m and n, a
scalar α ∈ (0,1), a n×n- matrix O > 0, two matri-
ces Z1,Z2 ∈ Rn×m, and any vector ξ ∈ Rm, define
the function Θ(α,O) described by

Θ(α,O) =
1
α

ξT ZT
1 OZ1ξ+

1
1−α

ξT ZT
2 OZ2ξ.

If there exists a matrix G ∈ Rn×n satisfying(
O G
� O

)
> 0, then

min
α∈(0,1)

Θ(α,O)≥
(

Z1ξ
Z2ξ

)T (O G
� O

)(
Z1ξ
Z2ξ

)
.

3 Main results

In this Section, the main result is given in
the following Theorem (3.1), which shows that
NTSMJSNNs (7) with u(t) = 0 is globally asymp-
totically stable in the mean square. Firstly, if the
condition (10) does not be relaxed as (18). Before
giving the main results, we present the following

notations for the simplicity of presentation, such as

Γ1 = diag(γ−1 ,γ
−
2 , ...,γ

−
n ),

Γ2 = diag(γ+1 ,γ
+
2 , ...,γ

+
n ),

Γ3 = diag
(
γ−1 γ+1 ,γ

−
2 γ+2 , ...,γ

−
n γ+n

)
,

Γ4 = diag
(

γ−1 + γ+1
2

,
γ−2 + γ+2

2
, ...,

γ−n + γ+n
2

)
,

ξ(t) =
[

qT (t), q̇T (t −h(t)),qT (t −η(t)),

qT (t −η), f T (Wiq(t)), f T (Wiq(t −η(t))),

f T (Wiq(t −η)),
1

η−η(t)

∫ t−η(t)

t−η
qT (s)ds,

1
η(t)

∫ t

t−η(t)
qT (s)ds,

1
(η−η(t))2

∫ t−η(t)

t−η

∫ t

u
qT (s)dsdu

1
(η(t))2

∫ t

t−η(t)

∫ t

u
qT (s)dsdu

]T

,

ei =
[
0n×(i−1)n,In×n,0n×(11−i)n

]
, i = 1,2,3, ...,11.

Theorem 3.1. Consider the NN (7) with nonlin-
ear stochastic noise σ(t,q(t),q(t −η(t)), i) satisfy-
ing the condition (9). For given scalars η,h and µ,
the NN (7) with u(t) = 0 is globally asymptotically
stable in the mean square, if there exists matrices

Pi(i ∈ S) > 0,
(

Q11 Q12
� Q22

)
> 0,

(
R11 R12
� R22

)
>

0,S > 0,U > 0, positive diagonal matrices M j ( j =
1,2, ...,5), any matrices G j ( j = 1,2, ...,9) and pos-
itive scalar λi(i ∈ S) such that the following LMIs
holds for all (i ∈ S)

Pi ≤ λiI, (29)

Θ1 =




Ξ−G TUG ∆T
1 ∆T

2
� −S 0
� � −U


< 0, (30)

U=




S 0 0 G1 G2 G3
� 3S 0 G4 G5 G6
� � 5S G7 G8 G9
� � � S 0 0
� � � � 3S 0
� � � � � 5S




> 0, (31)

where Ξ = ΞT = Ξ11×11 with Ξ1,1 = −PiDi −

(PiDi)
T +

N
∑
j=1

πi jP j + Q11 + R11 + λiFT
1iF1i −

WT
i Γ3M1Wi −WT

i Γ3M4Wi, Ξ1,2 = PiAi, Ξ1,3 =
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WT
i Γ3M4Wi, Ξ1,5 = Q12 + R12 + WT

i Γ4M1 +
WT

i Γ4M4, Ξ1,6 = Pi − WT
i Γ4M4, Ξ2,2 =

−(1 − hd)S, Ξ3,3 = −(1 − µ)Q11 + λiFT
2iF2i −

WT
i Γ3M2Wi−WT

i Γ3M4Wi−WT
i Γ3M5Wi, Ξ3,4 =

WT
i Γ3M5Wi, Ξ3,5 = −(Γ4M4Wi)

T , Ξ3,6 = −(1−
µ)Q12 +WT

i Γ4M2 +WT
i Γ4M4 +WT

i Γ4M5, Ξ3,7 =
−WT

i Γ4M5, Ξ4,4 = −R11 − WT
i Γ3M3Wi −

WT
i Γ3M5Wi, Ξ4,6 = −(Γ4M5Wi)

T , Ξ4,7 =
−R12+WT

i Γ4M3+WT
i Γ4M5, Ξ5,5 = Q22+R22−

M1 −M4, Ξ5,6 = M4, Ξ6,6 =−(1−µ)Q22 −M2 −
M4 −M5, Ξ6,7 = M5, Ξ7,7 =−R22 −M3 −M5,
∆1 = [−DiS AiS 0 0 0 S 0 0 0 0 0], ∆2 =
[−ηDiU ηAiU 0 0 0 ηU 0 0 0 0 0],
G = [(e3 − e4) (e3 + e4 − 2e8) (e3 − e4 + 6e8 −
12e10) (e1 − e3) (e1 + e3 − 2e9) (e1 − e3 + 6e9 −
12e11)].

Proof: Choose the Lyapunov function candi-
date for the considered system model (7) as follows

V(t,q(t), i) = V1(t,q(t), i)+V2(t,q(t), i) (32)

+V3(t,q(t), i)+V4(t,q(t), i)+V5(t,q(t), i),
(33)

where

V1(t,q(t), i) = qT (t)Piq(t),

V2(t,q(t), i) =
∫ t

t−η(t)

(
q(s)

f (Wiq(s))

)T

(
Q11 Q12
� Q22

)(
q(s)

f (Wiq(s))

)
ds,

V3(t,q(t), i) =
∫ t

t−η

(
q(s)

f (Wiq(s))

)T

(
R11 R12
� R22

)(
q(s)

f (Wisq(s))

)
ds,

V4(t,q(t), i) =
∫ t

t−h(t)
q̇T (s)Sq̇(s)ds,

V5(t,q(t), i) = η
∫ t

t−η

∫ t

u
q̇T (s)Uq̇(s)dsdu.

LV(t,q(t), i) =Vt(t,q(t), i)+Vq(t,q(t), i)

[−Diq(t)+ f (Wiq(t −η(t)))

+Aiq̇(t −h(t))]+
1
2

tr[σT (t,

q(t),q(t −η(t)), i)Vqq(t,q(t),

i)σ(t,q(t),q(t −η(t)), i)]

+
N

∑
j=1

πi jV(t,q(t), j),

where

Vt(t,q(t), i) =
∂V(t,q(t), i)

∂t
,

Vq(t,q(t), i) =
(

∂V(t,q(t), i)
∂q1

, ...,

∂V(t,q(t), i)
∂qn

)
,

Vqq(t,q(t), i) =
(

∂2V(t,q(t), i)
∂qi∂q j

)

n×n
.

It follows from Ito’s differential rule, we have

dVt(t,q(t), i) = LV(t,q(t), i)dt+ (34)

Vq[σ(t,q(t),q(t −η(t)), i)]dω(t), (35)

where

LV(t,q(t), i) = LV1(t,q(t), i)+LV2(t,q(t), i)

+LV3(t,q(t), i)+LV4(t,q(t), i)+LV5(t,q(t), i).

Now we calculate LV(t,q(t), i) along the trajecto-
ries of the system (7), one has

LV1(t,q(t), i) = 2qT (t)Pi[−Diq(t)+ f (Wi

q(t −η(t)))+Aiq̇(t −h(t))]+qT (t)
( N

∑
j=1

πi jP j

)
q(t)+ tr(σT (t,q(t),

q(t −η(t)), i)Pi(σ(t,q(t),q(t −η(t)), i),

LV2(t,q(t), i)≤
(

q(t)
f (Wiq(t))

)T

(
Q11 Q12
� Q22

)(
q(t)

f (Wiq(t))

)

− (1− η̇(t))
(

q(t −η(t))
f (Wiq(t −η(t)))

)T

(
Q11 Q12
� Q22

)(
q(t −η(t))

f (Wiq(t −η(t)))

)
,

LV3(t,q(t), i) =
(

q(t)
f (Wiq(t))

)T

(
R11 R12
� R22

)(
q(t)

f (Wiq(t))

)

−
(

q(t −η)
f (Wiq(t −η))

)T

(
R11 R12
� R22

)(
q(t −η)

f (Wiq(t −η))

)
,

LV4(t,q(t), i)≤ q̇T (t)Sq̇(t)− (1− ḣ(t))

q̇T (t −h(t))Sq̇(t −h(t)),
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WT
i Γ3M4Wi, Ξ1,5 = Q12 + R12 + WT

i Γ4M1 +
WT

i Γ4M4, Ξ1,6 = Pi − WT
i Γ4M4, Ξ2,2 =

−(1 − hd)S, Ξ3,3 = −(1 − µ)Q11 + λiFT
2iF2i −

WT
i Γ3M2Wi−WT

i Γ3M4Wi−WT
i Γ3M5Wi, Ξ3,4 =

WT
i Γ3M5Wi, Ξ3,5 = −(Γ4M4Wi)

T , Ξ3,6 = −(1−
µ)Q12 +WT

i Γ4M2 +WT
i Γ4M4 +WT

i Γ4M5, Ξ3,7 =
−WT

i Γ4M5, Ξ4,4 = −R11 − WT
i Γ3M3Wi −

WT
i Γ3M5Wi, Ξ4,6 = −(Γ4M5Wi)

T , Ξ4,7 =
−R12+WT

i Γ4M3+WT
i Γ4M5, Ξ5,5 = Q22+R22−

M1 −M4, Ξ5,6 = M4, Ξ6,6 =−(1−µ)Q22 −M2 −
M4 −M5, Ξ6,7 = M5, Ξ7,7 =−R22 −M3 −M5,
∆1 = [−DiS AiS 0 0 0 S 0 0 0 0 0], ∆2 =
[−ηDiU ηAiU 0 0 0 ηU 0 0 0 0 0],
G = [(e3 − e4) (e3 + e4 − 2e8) (e3 − e4 + 6e8 −
12e10) (e1 − e3) (e1 + e3 − 2e9) (e1 − e3 + 6e9 −
12e11)].

Proof: Choose the Lyapunov function candi-
date for the considered system model (7) as follows

V(t,q(t), i) = V1(t,q(t), i)+V2(t,q(t), i) (32)

+V3(t,q(t), i)+V4(t,q(t), i)+V5(t,q(t), i),
(33)

where

V1(t,q(t), i) = qT (t)Piq(t),

V2(t,q(t), i) =
∫ t

t−η(t)

(
q(s)

f (Wiq(s))

)T

(
Q11 Q12
� Q22

)(
q(s)

f (Wiq(s))

)
ds,

V3(t,q(t), i) =
∫ t

t−η

(
q(s)

f (Wiq(s))

)T

(
R11 R12
� R22

)(
q(s)

f (Wisq(s))

)
ds,

V4(t,q(t), i) =
∫ t

t−h(t)
q̇T (s)Sq̇(s)ds,

V5(t,q(t), i) = η
∫ t

t−η

∫ t

u
q̇T (s)Uq̇(s)dsdu.

LV(t,q(t), i) =Vt(t,q(t), i)+Vq(t,q(t), i)

[−Diq(t)+ f (Wiq(t −η(t)))

+Aiq̇(t −h(t))]+
1
2

tr[σT (t,

q(t),q(t −η(t)), i)Vqq(t,q(t),

i)σ(t,q(t),q(t −η(t)), i)]

+
N

∑
j=1

πi jV(t,q(t), j),

where

Vt(t,q(t), i) =
∂V(t,q(t), i)

∂t
,

Vq(t,q(t), i) =
(

∂V(t,q(t), i)
∂q1

, ...,

∂V(t,q(t), i)
∂qn

)
,

Vqq(t,q(t), i) =
(

∂2V(t,q(t), i)
∂qi∂q j

)

n×n
.

It follows from Ito’s differential rule, we have

dVt(t,q(t), i) = LV(t,q(t), i)dt+ (34)

Vq[σ(t,q(t),q(t −η(t)), i)]dω(t), (35)

where

LV(t,q(t), i) = LV1(t,q(t), i)+LV2(t,q(t), i)

+LV3(t,q(t), i)+LV4(t,q(t), i)+LV5(t,q(t), i).

Now we calculate LV(t,q(t), i) along the trajecto-
ries of the system (7), one has

LV1(t,q(t), i) = 2qT (t)Pi[−Diq(t)+ f (Wi

q(t −η(t)))+Aiq̇(t −h(t))]+qT (t)
( N

∑
j=1

πi jP j

)
q(t)+ tr(σT (t,q(t),

q(t −η(t)), i)Pi(σ(t,q(t),q(t −η(t)), i),

LV2(t,q(t), i)≤
(

q(t)
f (Wiq(t))

)T

(
Q11 Q12
� Q22

)(
q(t)

f (Wiq(t))

)

− (1− η̇(t))
(

q(t −η(t))
f (Wiq(t −η(t)))

)T

(
Q11 Q12
� Q22

)(
q(t −η(t))

f (Wiq(t −η(t)))

)
,

LV3(t,q(t), i) =
(

q(t)
f (Wiq(t))

)T

(
R11 R12
� R22

)(
q(t)

f (Wiq(t))

)

−
(

q(t −η)
f (Wiq(t −η))

)T

(
R11 R12
� R22

)(
q(t −η)

f (Wiq(t −η))

)
,

LV4(t,q(t), i)≤ q̇T (t)Sq̇(t)− (1− ḣ(t))

q̇T (t −h(t))Sq̇(t −h(t)),

STABILITY AND DISSIPATIVITY ANALYSIS FOR. . .

LV5(t,q(t), i) = η2q̇T (t)Uq̇(t)

−η
∫ t

t−η
q̇T (s)Uq̇(s)ds

= η2q̇T (t)Uq̇(t)−η
∫ t−η(t)

t−η
q̇T (s)Uq̇(s)ds

−η
∫ t

t−η(t)
q̇T (s)Uq̇(s)ds

≤ η2q̇T (t)Uq̇(t)− η
η−η(t)

[C T
1 (t)UC1(t)+

C T
2 (t)3UC2(t)+C T

3 (t)5UC3(t)]−
η

η(t)
[C T

4 (t)

UC4(t)+C T
5 (t)3UC5(t)+C T

6 (t)5UC6(t)]

= η2q̇T (t)Uq̇(t)− η
η−η(t)




C1(t)
C2(t)
C3(t)




T

Û




C1(t)
C2(t)
C3(t)


− η

η(t)




C4(t)
C5(t)
C6(t)




T

Û




C4(t)
C5(t)
C6(t)




= η2q̇T (t)Uq̇(t)−




C1(t)
C2(t)
C3(t)




T

Û




C1(t)
C2(t)
C3(t)


−

η(t)
η−η(t)




C1(t)
C2(t)
C3(t)




T

Û




C1(t)
C2(t)
C3(t)




−




C4(t)
C5(t)
C6(t)




T

Û




C4(t)
C5(t)
C6(t)




− η−η(t)
η(t)




C4(t)
C5(t)
C6(t)




T

Û




C4(t)
C5(t)
C6(t)


 .

If

(
Û Ĝ
� Û

)
> 0 the following inequality is satisfied

by Lemma (2.4)




√
η(t)

η−η(t)




C1(t)
C2(t)
C3(t)




−
√

η−η(t)
η(t)




C4(t)
C5(t)
C6(t)







T

(
Û Ĝ
� Û

)
(36)




√
η(t)

η−η(t)




C1(t)
C2(t)
C3(t)




−
√

η−η(t)
η(t)




C4(t)
C5(t)
C6(t)







≥ 0, (37)

which implies

− η(t)
η−η(t)




C1(t)
C2(t)
C3(t)




T

Û




C1(t)
C2(t)
C3(t)


 (38)

− η−η(t)
η(t)




C4(t)
C5(t)
C6(t)




T

Û




C4(t)
C5(t)
C6(t)




≤−




C1(t)
C2(t)
C3(t)




T

Ĝ




C4(t)
C5(t)
C6(t)


− (39)




C4(t)
C5(t)
C6(t)




T

ĜT




C1(t)
C2(t)
C3(t)


 . (40)

Then, we can get from (37) and (40) that

LV5(t,q(t), i)≤ η2q̇T (t)Uq̇(t)− (41)



C1(t)
C2(t)
C3(t)




T

Û




C1(t)
C2(t)
C3(t)


− (42)




C4(t)
C5(t)
C6(t)




T

Û




C4(t)
C5(t)
C6(t)


−




C1(t)
C2(t)
C3(t)




T

Ĝ




C4(t)
C5(t)
C6(t)


− (43)




C4(t)
C5(t)
C6(t)




T

ĜT




C1(t)
C2(t)
C3(t)




= η2q̇T (t)Uq̇(t)−C T (t)

(
Û Ĝ
� Û

)
C (t), (44)

where
C (t)= [C T

1 (t),C T
2 (t),C T

3 (t),C T
4 (t),C5(t),C T

6 (t)]T ,
C1(t) = [q(t − η(t)) − q(t − η)], C2(t) = [q(t −
η(t)) + q(t − η)− 2

(η−η(t))
∫ t−η(t)

t−η q(s)ds], C3(t) =

[q(t − η(t)) − q(t − η) + 6
(η−η(t))

∫ t−η(t)
t−η q(s)ds −

12
(η−η(t))2

∫ t−η(t)
t−η

∫ t
u q(s)dsdu], C4(t) = [q(t) −

q(t − η(t))], C5(t) = [q(t) + q(t − η(t)) −
2

η(t)
∫ t

t−η(t) q(s)ds], C6(t) = [q(t) − q(t − η(t)) +
6

η(t)
∫ t

t−η(t) q(s)ds − 12
η(t)2

∫ t
t−η(t)

∫ t
u q(s)dsdu], Û =


U 0 0
0 3U 0
0 0 5U


, Ĝ=

(
G1 G2 G3
G4 G5 G6 G7 G8 G9

)
.
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From the assumption A3 and (29), we can get

tr(σT (t,q(t),q(t −η(t)), i)Pi(σ(t,q(t), (45)

q(t −η(t)), i)
≤ λitr(σT (t,q(t),q(t −η(t)), i)(σ(t,q(t), (46)

q(t −η(t)), i)
≤ λi[qT (t)FT

1iF1iq(t)+qT (t −η(t))FT
2i (47)

F2iq(t −η(t))]. (48)

Moreover, it follows from A2, we have

[ f j(Wi ju)− f j(Wi jv)− γ−j (Wi ju−Wi jv)]

[ f j(Wi ju)− f j(Wi jv)− γ+j (Wi ju−Wi jv)]≤ 0,

for all i ∈ S, j = 1,2, ...,n. Then, the following in-
equality holds

(
Wi jq j(t)

f j(Wi jq j(t))

)T

(49)

 γ−j γ+j e jeT

j − γ−j +γ+j
2 e jeT

j

− γ−j +γ+j
2 e jeT

j e jeT
j


 (50)

(
Wi jq j(t)

f j(Wi jq j(t))

)
≤ 0. (51)

Let, for any positive diagonal matrices M1 =
diag{m1

1,m
1
2, ...,m

1
n}, it is easy to see that

0 ≤ −
n

∑
j=1

m1
j

(
Wi jq j(t)

f j(Wi jq j(t))

)T

(52)


 γ−j γ+j e jeT

j − γ−j +γ+j
2 e jeT

j

− γ−j +γ+j
2 e jeT

j e jeT
j


 (53)

(
Wi jq j(t)

f j(Wi jq j(t))

)
, (54)

where e j denote the unit column vector having 1 on
its jth row and zero elsewhere
For j = 1, ...,n, the condition is equivalent to

0 ≤ −
(

Wiq(t)
f (Wiq(t))

)T (Γ3M1 −Γ4M1

� M1

)
(55)

(
Wiq(t)

f (Wiq(t))

)
. (56)

Similar to the above, for any positive diagonal ma-
trices M j = diag{m j

1,m
j
2, ...,m

j
n} j = 2,3,4,5, we

can obtain the following inequalities:

0 ≤ −
(

Wiq(t −η)
f (Wiq(t −η))

)T (Γ3M3 −Γ4M3

� M3

)

(
Wiq(t −η)

f (Wiq(t −η))

)
,

0 ≤ −




Wiq(t)
f (Wiq(t))

Wiq(t −η(t))
f (Wiq(t −η(t)))




T




Γ3M4 −Γ4M4 −Γ3M4 Γ4M4

� M4 Γ4M4 −M4

� � Γ3M4 −Γ4M4

� � � M4







Wiq(t)
f (Wiq(t))

Wiq(t −η(t))
f (Wiq(t −η(t)))


 ,

0 ≤ −




Wiq(t −η(t))
f (Wiq(t −η(t)))

Wiq(t −η)
f (Wiq(t −η))




T




Γ3M5 −Γ4M5 −Γ3M5 Γ4M5

� M5 Γ4M5 −M5

� � Γ3M5 −Γ4M5

� � � M5







Wiq(t −η(t))
f (Wiq(t −η(t)))

Wiq(t −η)
f (Wiq(t −η))


 .

Hence, according to (3)-(3), one has

LV(t,q(t), i)≤ ξT (t)Θ1ξ(t). (57)

Then, we have

dVt(t,q(t), i)≤ ξT (t)Θ1ξ(t)+ (58)

Vq[σ(t,q(t),q(t −η(t)), i)]dω(t). (59)

From Θ1 < 0 in (30), there exist a scalar β > 0 such
that

Θ1 +diag{βI 0 0 0 0 0 0 0 0 0 0}< 0. (60)

Taking mathematical expectation we have

dEVt(t,q(t), i)
dt

≤ E[ξT (t)Θ1ξ(t)]≤−β∥q(t)∥2.

(61)

Hence, the NTSMJSNNs (7) with u(t) = 0 is glob-
ally asymptotically stable in the mean square. This
ends the proof.
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From the assumption A3 and (29), we can get

tr(σT (t,q(t),q(t −η(t)), i)Pi(σ(t,q(t), (45)

q(t −η(t)), i)
≤ λitr(σT (t,q(t),q(t −η(t)), i)(σ(t,q(t), (46)

q(t −η(t)), i)
≤ λi[qT (t)FT

1iF1iq(t)+qT (t −η(t))FT
2i (47)

F2iq(t −η(t))]. (48)

Moreover, it follows from A2, we have

[ f j(Wi ju)− f j(Wi jv)− γ−j (Wi ju−Wi jv)]

[ f j(Wi ju)− f j(Wi jv)− γ+j (Wi ju−Wi jv)]≤ 0,

for all i ∈ S, j = 1,2, ...,n. Then, the following in-
equality holds

(
Wi jq j(t)

f j(Wi jq j(t))

)T

(49)

 γ−j γ+j e jeT

j − γ−j +γ+j
2 e jeT

j

− γ−j +γ+j
2 e jeT

j e jeT
j


 (50)

(
Wi jq j(t)

f j(Wi jq j(t))

)
≤ 0. (51)

Let, for any positive diagonal matrices M1 =
diag{m1

1,m
1
2, ...,m

1
n}, it is easy to see that

0 ≤ −
n

∑
j=1

m1
j

(
Wi jq j(t)

f j(Wi jq j(t))

)T

(52)


 γ−j γ+j e jeT

j − γ−j +γ+j
2 e jeT

j

− γ−j +γ+j
2 e jeT

j e jeT
j


 (53)

(
Wi jq j(t)

f j(Wi jq j(t))

)
, (54)

where e j denote the unit column vector having 1 on
its jth row and zero elsewhere
For j = 1, ...,n, the condition is equivalent to

0 ≤ −
(

Wiq(t)
f (Wiq(t))

)T (Γ3M1 −Γ4M1

� M1

)
(55)

(
Wiq(t)

f (Wiq(t))

)
. (56)

Similar to the above, for any positive diagonal ma-
trices M j = diag{m j

1,m
j
2, ...,m

j
n} j = 2,3,4,5, we

can obtain the following inequalities:

0 ≤ −
(

Wiq(t −η)
f (Wiq(t −η))

)T (Γ3M3 −Γ4M3

� M3

)

(
Wiq(t −η)

f (Wiq(t −η))

)
,

0 ≤ −




Wiq(t)
f (Wiq(t))

Wiq(t −η(t))
f (Wiq(t −η(t)))




T




Γ3M4 −Γ4M4 −Γ3M4 Γ4M4

� M4 Γ4M4 −M4

� � Γ3M4 −Γ4M4

� � � M4







Wiq(t)
f (Wiq(t))

Wiq(t −η(t))
f (Wiq(t −η(t)))


 ,

0 ≤ −




Wiq(t −η(t))
f (Wiq(t −η(t)))

Wiq(t −η)
f (Wiq(t −η))




T




Γ3M5 −Γ4M5 −Γ3M5 Γ4M5

� M5 Γ4M5 −M5

� � Γ3M5 −Γ4M5

� � � M5







Wiq(t −η(t))
f (Wiq(t −η(t)))

Wiq(t −η)
f (Wiq(t −η))


 .

Hence, according to (3)-(3), one has

LV(t,q(t), i)≤ ξT (t)Θ1ξ(t). (57)

Then, we have

dVt(t,q(t), i)≤ ξT (t)Θ1ξ(t)+ (58)

Vq[σ(t,q(t),q(t −η(t)), i)]dω(t). (59)

From Θ1 < 0 in (30), there exist a scalar β > 0 such
that

Θ1 +diag{βI 0 0 0 0 0 0 0 0 0 0}< 0. (60)

Taking mathematical expectation we have

dEVt(t,q(t), i)
dt

≤ E[ξT (t)Θ1ξ(t)]≤−β∥q(t)∥2.

(61)

Hence, the NTSMJSNNs (7) with u(t) = 0 is glob-
ally asymptotically stable in the mean square. This
ends the proof.

STABILITY AND DISSIPATIVITY ANALYSIS FOR. . .

Secondly, if the condition (10) can be relaxed as
(18), then the following Theorem (3.2) can be ob-
tained.

Theorem 3.2. Consider the NN (7) with nonlin-
ear stochastic noise σ(t,q(t),q(t −η(t)), i) satisfy-
ing the condition (9). Assume that σ(t,q(t),q(t −
η(t)), i), the matrices F1i and F2i satisfy (15) and
(17), respectively. For given scalars η,h and µ,
the NN (7) with u(t) = 0 is globally asymptotically
stable in the mean square, if there exists matrices

Pi(i ∈ S) > 0,
(

Q11 Q12
� Q22

)
> 0,

(
R11 R12
� R22

)
>

0,S > 0,U > 0, positive diagonal matrices Λi(i ∈
S), M j ( j = 1,2, ...,5), any matrices G j ( j =
1,2, ...,9), such that the following LMIs holds for
all (i ∈ S)

Pi ≤ Λi, (62)

Θ2 =




Ξ−G TUG ∆T
1 ∆T

2
� −S 0
� � −U


< 0, (63)

U=




S 0 0 G1 G2 G3
� 3S 0 G4 G5 G6
� � 5S G7 G8 G9
� � � S 0 0
� � � � 3S 0
� � � � � 5S




> 0, (64)

where Ξ = ΞT = Ξ11×11 with Ξ1,1 = −PiDi −

(PiDi)
T +

N
∑
j=1

πi jP j + Q11 + R11 + ΛiFT
1iF1i −

WT
i Γ3M1Wi −WT

i Γ3M4Wi, Ξ1,2 = PiAi, Ξ1,3 =
WT

i Γ3M4Wi, Ξ1,5 = Q12 + R12 + WT
i Γ4M1 +

WT
i Γ4M4, Ξ1,6 = Pi − WT

i Γ4M4, Ξ2,2 =
−(1 − hd)S, Ξ3,3 = −(1 − µ)Q11 + ΛiFT

2iF2i −
WT

i Γ3M2Wi−WT
i Γ3M4Wi−WT

i Γ3M5Wi, Ξ3,4 =
WT

i Γ3M5Wi, Ξ3,5 = −(Γ4M4Wi)
T , Ξ3,6 = −(1−

µ)Q12 +WT
i Γ4M2 +WT

i Γ4M4 +WT
i Γ4M5, Ξ3,7 =

−WT
i Γ4M5, Ξ4,4 = −R11 − WT

i Γ3M3Wi −
WT

i Γ3M5Wi, Ξ4,6 = −(Γ4M5Wi)
T , Ξ4,7 =

−R12+WT
i Γ4M3+WT

i Γ4M5, Ξ5,5 = Q22+R22−
M1 −M4, Ξ5,6 = M4, Ξ6,6 =−(1−µ)Q22 −M2 −
M4 −M5, Ξ6,7 = M5, Ξ7,7 =−R22 −M3 −M5,
∆1 = [−DiS AiS 0 0 0 S 0 0 0 0 0], ∆2 =
[−ηDiU ηAiU 0 0 0 ηU 0 0 0 0 0],
G = [(e3 − e4) (e3 + e4 − 2e8) (e3 − e4 + 6e8 −
12e10) (e1 − e3) (e1 + e3 − 2e9) (e1 − e3 + 6e9 −
12e11)].

Remark 3.3. If there is no stochastic effects and
external disturbance, the system (7) can be reduced

to

dq(t)
dt

=−Diq(t)+ f (Wiq(t −η(t))) (65)

+Aiq̇(t −h(t)). (66)

Based on the Theorem (3.1), the following Corol-
lary (3.3) can be obtained.

Corollary 3.4. For given scalars η,h and µ, the
NN (66) is globally asymptotically stable in the
mean square, if there exists matrices Pi(i ∈ S) >

0,
(

Q11 Q12
� Q22

)
> 0,

(
R11 R12
� R22

)
> 0,S > 0,U >

0, positive diagonal matrices M j ( j = 1,2, ...,5),
any matrices G j ( j = 1,2, ...,9), such that the fol-
lowing LMIs holds for all (i ∈ S);

Θ3 =




Ξ−G TUG ∆T
1 ∆T

2
� −S 0
� � −U


< 0, (67)

U=




U 0 0 G1 G2 G3
� 3U 0 G4 G5 G6
� � 5U G7 G8 G9
� � � U 0 0
� � � � 3U 0
� � � � � 5U




> 0, (68)

where Ξ = ΞT = Ξ11×11 with Ξ1,1 =

−PiDi − (PiDi)
T +

N
∑
j=1

πi jP j + Q11 + R11 −

WT
i Γ3M1Wi −WT

i Γ3M4Wi, Ξ1,2 = PiAi, Ξ1,3 =
WT

i Γ3M4Wi, Ξ1,5 = Q12 + R12 + WT
i Γ4M1 +

WT
i Γ4M4, Ξ1,6 = Pi − WT

i Γ4M4, Ξ2,2 = −(1 −
hd)S, Ξ3,3 = −(1 − µ)Q11 − WT

i Γ3M2Wi −
WT

i Γ3M4Wi−WT
i Γ3M5Wi, Ξ3,4 =WT

i Γ3M5Wi, Ξ3,5 =
−(Γ4M4Wi)

T , Ξ3,6 = −(1− µ)Q12 +WT
i Γ4M2 +

WT
i Γ4M4 +WT

i Γ4M5, Ξ3,7 = −WT
i Γ4M5, Ξ4,4 =

−R11 − WT
i Γ3M3Wi − WT

i Γ3M5Wi, Ξ4,6 =
−(Γ4M5Wi)

T , Ξ4,7 = −R12 + WT
i Γ4M3 +

WT
i Γ4M5, Ξ5,5 = Q22 + R22 − M1 − M4, Ξ5,6 =

M4, Ξ6,6 =−(1−µ)Q22 −M2 −M4 −M5, Ξ6,7 =
M5, Ξ7,7 =−R22 −M3 −M5,
∆1 = [−DiS AiS 0 0 0 S 0 0 0 0 0], ∆2 =
[−ηDiU ηAiU 0 0 0 ηU 0 0 0 0 0],
G = [(e3 − e4) (e3 + e4 − 2e8) (e3 − e4 + 6e8 −
12e10) (e1 − e3) (e1 + e3 − 2e9) (e1 − e3 + 6e9 −
12e11)].

Remark 3.5. Assume that the stochastic effects,
neutral delay and external disturbance are not ap-
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pear in (7), then the system (7), becomes

dq(t)
dt

=−Diq(t)+ f (Wiq(t −η(t))). (69)

The following Corollary (3.4) can be derived by set-
ting S = 0 in the similar proof of Corollary (3.3).

Corollary 3.6. For given scalars η and µ, the
NN (69) is globally asymptotically stable in the
mean square, if there exists matrices Pi(i ∈ S) >

0,
(

Q11 Q12
� Q22

)
> 0,

(
R11 R12
� R22

)
> 0,U > 0, pos-

itive diagonal matrices M j ( j = 1,2, ...,5), any ma-
trices G j (i = 1,2, ...,9), such that the following
LMIs holds for all (i ∈ S)

Θ4 =

(
Ξ−G TUG ∆T

1
� −U

)
< 0, (70)

U=




U 0 0 G1 G2 G3
� 3U 0 G4 G5 G6
� � 5U G7 G8 G9
� � � U 0 0
� � � � 3U 0
� � � � � 5U




> 0, (71)

where Ξ = ΞT = Ξ10×10 with Ξ1,1 = −PiDi −

(PiDi)
T +

N
∑
j=1

πi jP j + Q11 + R11 − WT
i Γ3M1Wi −

WT
i Γ3M4Wi, Ξ1,2 = WT

i Γ3M4Wi, Ξ1,4 =
Q12 + R12 + WT

i Γ4M1 + WT
i Γ4M4, Ξ1,5 = Pi −

WT
i Γ4M4, Ξ2,2 = −(1 − µ)Q11 − WT

i Γ3M2Wi −
WT

i Γ3M4Wi −WT
i Γ3M5Wi, Ξ2,3 = WT

i Γ3M5Wi,
Ξ2,4 = −(Γ4M4Wi)

T , Ξ2,5 = −(1 − µ)Q12 +
WT

i Γ4M2 + WT
i Γ4M4 + WT

i Γ4M5, Ξ2,6 =
−WT

i Γ4M5, Ξ3,3 = −R11 − WT
i Γ3M3Wi −

WT
i Γ3M5Wi, Ξ3,5 = −(Γ4M5Wi)

T , Ξ3,6 =
−R12+WT

i Γ4M3+WT
i Γ4M5, Ξ4,4 = Q22+R22−

M1 − M4, Ξ4,5 = M4, Ξ5,5 = −(1 − µ)Q22 −
M2 −M4 −M5, Ξ5,6 = M5, Ξ6,6 = −R22 −M3 −
M5, ∆1 = [−ηDiU 0 0 0 ηU 0 0 0 0 0],
G = [(e2 − e3) (e2 + e3 − 2e7) (e2 − e3 + 6e7 −
12e9) (e1 − e2) (e1 + e2 − 2e8) (e1 − e2 + 6e8 −
12e10)].

4 Dissipativity analysis

Based on the Theorem (3.1), this Section in-
vestigate the dissipativity analysis for NTSMJSNNs
(7) in the following Theorem (4.1).

Theorem 4.1. Consider the NN (7) with nonlin-
ear stochastic noise σ(t,q(t),q(t −η(t)), i) satisfy-
ing the condition (9). Assume that σ(t,q(t),q(t −
η(t)), i), the matrices F1i and F2i satisfy (15) and
(17), respectively. For given scalars η,h and
µ, the NN (7) is (Q ,S ,R ) − γ− dissipative, if

there exists matrices Pi(i ∈ S)> 0,
(

Q11 Q12
� Q22

)
>

0,
(

R11 R12
� R22

)
> 0,S> 0,U> 0, positive diagonal

matrices Λi(i ∈ S), M j ( j = 1,2, ...,5), any matri-
ces G j ( j = 1,2, ...,9), and scalar γ > 0 such that
the following LMIs holds for all (i ∈ S)

Pi ≤ Λi, (72)

Θ5 =




Ξ−G TUG ∆T
1 ∆T

2
� −S 0
� � −U


< 0, (73)

U=




U 0 0 G1 G2 G3
� 3U 0 G4 G5 G6
� � 5U G7 G8 G9
� � � U 0 0
� � � � 3U 0
� � � � � 5U




> 0, (74)

where Ξ = ΞT = Ξ12×12 with Ξ1,1 = −PiDi −

(PiDi)
T +

N
∑
j=1

πi jP j + Q11 + R11 + ΛiFT
1iF1i −

WT
i Γ3M1Wi −WT

i Γ3M4Wi, Ξ1,2 = PiAi, Ξ1,3 =
WT

i Γ3M4Wi, Ξ1,5 = Q12 + R12 + WT
i Γ4M1 +

WT
i Γ4M4, Ξ1,6 = Pi − WT

i Γ4M4, Ξ1,12 =
Pi, Ξ2,2 = −(1 − hd)S, Ξ3,3 = −(1 −
µ)Q11 +ΛiFT

2iF2i −WT
i Γ3M2Wi −WT

i Γ3M4Wi −
WT

i Γ3M5Wi, Ξ3,4 = WT
i Γ3M5Wi, Ξ3,5 =

−(Γ4M4Wi)
T , Ξ3,6 = −(1− µ)Q12 +WT

i Γ4M2 +
WT

i Γ4M4 +WT
i Γ4M5, Ξ3,7 = −WT

i Γ4M5, Ξ4,4 =
−R11 − WT

i Γ3M3Wi − WT
i Γ3M5Wi, Ξ4,6 =

−(Γ4M5Wi)
T , Ξ4,7 = −R12 + WT

i Γ4M3 +
WT

i Γ4M5, Ξ5,5 = Q22 + R22 − M1 − M4 −
Q , Ξ5,6 = M4, Ξ5,12 = −S , Ξ6,6 = −(1 −
µ)Q22 − M2 − M4 − M5, Ξ6,7 = M5, Ξ7,7 =
−R22 − M3 − M5, Ξ12,12 = −R + γI, ∆1 =
[−DiS AiS 0 0 0 S 0 0 0 0 0 S], ∆2 =
[−ηDiU ηAiU 0 0 0 ηU 0 0 0 0 0 ηU],
G = [(e3 − e4) (e3 + e4 − 2e8) (e3 − e4 + 6e8 −
12e10) (e1 − e3) (e1 + e3 − 2e9) (e1 − e3 + 6e9 −
12e11)].

Proof: To derive the dissipativity investigation, we
take the comparable LKFs (33) and define the fol-



199Yang Cao, R. Samidurai, R. Sriraman

pear in (7), then the system (7), becomes

dq(t)
dt

=−Diq(t)+ f (Wiq(t −η(t))). (69)

The following Corollary (3.4) can be derived by set-
ting S = 0 in the similar proof of Corollary (3.3).

Corollary 3.6. For given scalars η and µ, the
NN (69) is globally asymptotically stable in the
mean square, if there exists matrices Pi(i ∈ S) >

0,
(

Q11 Q12
� Q22

)
> 0,

(
R11 R12
� R22

)
> 0,U > 0, pos-

itive diagonal matrices M j ( j = 1,2, ...,5), any ma-
trices G j (i = 1,2, ...,9), such that the following
LMIs holds for all (i ∈ S)

Θ4 =

(
Ξ−G TUG ∆T

1
� −U

)
< 0, (70)

U=




U 0 0 G1 G2 G3
� 3U 0 G4 G5 G6
� � 5U G7 G8 G9
� � � U 0 0
� � � � 3U 0
� � � � � 5U




> 0, (71)

where Ξ = ΞT = Ξ10×10 with Ξ1,1 = −PiDi −

(PiDi)
T +

N
∑
j=1

πi jP j + Q11 + R11 − WT
i Γ3M1Wi −

WT
i Γ3M4Wi, Ξ1,2 = WT

i Γ3M4Wi, Ξ1,4 =
Q12 + R12 + WT

i Γ4M1 + WT
i Γ4M4, Ξ1,5 = Pi −

WT
i Γ4M4, Ξ2,2 = −(1 − µ)Q11 − WT

i Γ3M2Wi −
WT

i Γ3M4Wi −WT
i Γ3M5Wi, Ξ2,3 = WT

i Γ3M5Wi,
Ξ2,4 = −(Γ4M4Wi)

T , Ξ2,5 = −(1 − µ)Q12 +
WT

i Γ4M2 + WT
i Γ4M4 + WT

i Γ4M5, Ξ2,6 =
−WT

i Γ4M5, Ξ3,3 = −R11 − WT
i Γ3M3Wi −

WT
i Γ3M5Wi, Ξ3,5 = −(Γ4M5Wi)

T , Ξ3,6 =
−R12+WT

i Γ4M3+WT
i Γ4M5, Ξ4,4 = Q22+R22−

M1 − M4, Ξ4,5 = M4, Ξ5,5 = −(1 − µ)Q22 −
M2 −M4 −M5, Ξ5,6 = M5, Ξ6,6 = −R22 −M3 −
M5, ∆1 = [−ηDiU 0 0 0 ηU 0 0 0 0 0],
G = [(e2 − e3) (e2 + e3 − 2e7) (e2 − e3 + 6e7 −
12e9) (e1 − e2) (e1 + e2 − 2e8) (e1 − e2 + 6e8 −
12e10)].

4 Dissipativity analysis

Based on the Theorem (3.1), this Section in-
vestigate the dissipativity analysis for NTSMJSNNs
(7) in the following Theorem (4.1).

Theorem 4.1. Consider the NN (7) with nonlin-
ear stochastic noise σ(t,q(t),q(t −η(t)), i) satisfy-
ing the condition (9). Assume that σ(t,q(t),q(t −
η(t)), i), the matrices F1i and F2i satisfy (15) and
(17), respectively. For given scalars η,h and
µ, the NN (7) is (Q ,S ,R ) − γ− dissipative, if

there exists matrices Pi(i ∈ S)> 0,
(

Q11 Q12
� Q22

)
>

0,
(

R11 R12
� R22

)
> 0,S> 0,U> 0, positive diagonal

matrices Λi(i ∈ S), M j ( j = 1,2, ...,5), any matri-
ces G j ( j = 1,2, ...,9), and scalar γ > 0 such that
the following LMIs holds for all (i ∈ S)

Pi ≤ Λi, (72)

Θ5 =




Ξ−G TUG ∆T
1 ∆T

2
� −S 0
� � −U


< 0, (73)

U=




U 0 0 G1 G2 G3
� 3U 0 G4 G5 G6
� � 5U G7 G8 G9
� � � U 0 0
� � � � 3U 0
� � � � � 5U




> 0, (74)

where Ξ = ΞT = Ξ12×12 with Ξ1,1 = −PiDi −

(PiDi)
T +

N
∑
j=1

πi jP j + Q11 + R11 + ΛiFT
1iF1i −

WT
i Γ3M1Wi −WT

i Γ3M4Wi, Ξ1,2 = PiAi, Ξ1,3 =
WT

i Γ3M4Wi, Ξ1,5 = Q12 + R12 + WT
i Γ4M1 +

WT
i Γ4M4, Ξ1,6 = Pi − WT

i Γ4M4, Ξ1,12 =
Pi, Ξ2,2 = −(1 − hd)S, Ξ3,3 = −(1 −
µ)Q11 +ΛiFT

2iF2i −WT
i Γ3M2Wi −WT

i Γ3M4Wi −
WT

i Γ3M5Wi, Ξ3,4 = WT
i Γ3M5Wi, Ξ3,5 =

−(Γ4M4Wi)
T , Ξ3,6 = −(1− µ)Q12 +WT

i Γ4M2 +
WT

i Γ4M4 +WT
i Γ4M5, Ξ3,7 = −WT

i Γ4M5, Ξ4,4 =
−R11 − WT

i Γ3M3Wi − WT
i Γ3M5Wi, Ξ4,6 =

−(Γ4M5Wi)
T , Ξ4,7 = −R12 + WT

i Γ4M3 +
WT

i Γ4M5, Ξ5,5 = Q22 + R22 − M1 − M4 −
Q , Ξ5,6 = M4, Ξ5,12 = −S , Ξ6,6 = −(1 −
µ)Q22 − M2 − M4 − M5, Ξ6,7 = M5, Ξ7,7 =
−R22 − M3 − M5, Ξ12,12 = −R + γI, ∆1 =
[−DiS AiS 0 0 0 S 0 0 0 0 0 S], ∆2 =
[−ηDiU ηAiU 0 0 0 ηU 0 0 0 0 0 ηU],
G = [(e3 − e4) (e3 + e4 − 2e8) (e3 − e4 + 6e8 −
12e10) (e1 − e3) (e1 + e3 − 2e9) (e1 − e3 + 6e9 −
12e11)].

Proof: To derive the dissipativity investigation, we
take the comparable LKFs (33) and define the fol-
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lowing dissipativity condition

Jγ,tr =
∫ tr

0
E
{[(

p(t)
u(t)

)T (Q S
⋆ R − γI

)
(75)

(
p(t)
u(t)

)}
dt. (76)

Following the proof of Theorem (3.1), we get
∫ tr

0
E{LV(t,q(t), i)}dt −Jγ,tr ≤ (77)

∫ tr

0
E{ξ̂T (t)Θ5ξ̂(t)}dt, (78)

where ξ̂(t) = [ξT (t), uT (t)]T . It can be deduced
from (73), that

∫ tr

0
E{LV(t,q(t), i)}dt ≤ Jγ,tr . (79)

Under zero initial condition, we conclude that
the condition (24) holds, which implies that
the NTSMJSNNs (7) is strictly (Q ,S ,R ) −
γ−dissipative. This completes the proof.

Remark 4.2. The objective of the delay-dependent
stability criteria is to reduce the conservatism as
much as possible. In order to handle this issue
easily, the LKF approach is well considered to de-
rive essential criteria, which plays a leading role in
the less conservatism. Thus, there has been differ-
ent kinds of LKFs have been introduced to derive
the effective stability criteria [17-34]. Nevertheless,
when calculating the upper bound of the deriva-
tive of LKF, some helpful terms are neglected. For
illustrate, the term η

∫ t
t−η

∫ t
u q̇T (s)Uq̇(s)dsdu is ig-

nored in [20, 36, 24, 25]. However, in the previ-
ous works [3, 16, 28, 30, 39] such term is taken
into the account of LKF and the derivative of such
LKF η

∫ t
t−η

∫ t
u q̇T (s)Uq̇(s)dsdu is often estimated as

η2q̇T (t)Uq̇(t)−η
∫ t

t−η
∫ t

u q̇T (s)Uq̇(s)ds, which may
lead to reducing the conservatism as much as pos-
sible. Thus, there is still room for further analysis
and reduce the conservatism.

Remark 4.3. In order to further reduce
the conservatism, some useful delay-dependent
integral term V5(t,q(t), i) is considered into
the account of LKF. Moreover, the integral
terms in derivative of LV5(t,q(t), i), such as
−η

∫ t
t−η q̇T (t)Uq̇(t)ds does not simply employ, the

equivalent integral terms −η
∫ t

t−η(t) q̇T (t)Uq̇(t)ds

and −η
∫ t−η(t)

t−η q̇T (t)Uq̇(t)ds are well considered.

By applying tighter bound integral inequality, a new
set of sufficient conditions have derived in Theorem
(3.1), which may reduce the conservatism of stabil-
ity criteria further. In addition, the stochastic per-
turbations terms are well taken into the account of
Theorem (3.1).

Remark 4.4. The cited Lemma (2.1) and Lemma
(2.2) are the great approach to reducing conser-
vatism when studying the stability of delayed NNs,
so it has been utilized widely in the stability of time
delay systems (see in [29, 41, 47, 48] and the refer-
ences therein).

Remark 4.5. The dissipativity analysis includes
some previously known results, which contain the
H∞, passivity performance in a unified framework.
For instance, when we choose Q =−I,S = 0,R −
γI = γ2I, in (73) yields globally asymptotic stability
with disturbance attenuation γ. Suppose we choose
Q = 0,S = I,R − γI = γI, in (73) yields globally
asymptotic stability with passivity criterion.

5 Illustrative examples

Here, three numerical examples and simulations
are given to show the effectiveness of the proposed
results.
Example 1. Consider the system (7) with
u(t) = 0 and the nonlinear stochastic disturbance
σ(t,q(t),q(t −η(t)), i) satisfying (15) and the fol-
lowing two modes:
Mode:1

D1 =

(
0.5 0
0 0.5

)
, W1 =

(
1.6 2.9
0.4 1.6

)
,

A1 =

(
0.2 0.1
0.3 0.2

)
,

Mode:2

D2 =

(
0.7 0
0 0.8

)
, W2 =

(
1.7 1.9
0.6 0.6

)
,

A2 =

(
0.1 0.1
0.2 0.2

)
.

Let Π =

(
−2 2
3 −3

)
. If 2D σ(t,q(t),q(t −η(t)), i)

can be described by (20), then tr{σT (t,q(t),q(t −
η(t)), i)σ(t,q(t),q(t − η(t)), i)} in (9) is bounded
with F1i = F2i = 0.4I. The nonlinear activation
functions are chosen as f j(·) = tanh(q j) ( j =
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1,2) with Γ1 =

(
0.1280 0

0 0.0195

)
,Γ2 =

(
0.3680 0

0 0.1795

)
. The discrete time-varying de-

lay is considered as η(t) = 1.4154+ 0.2sint which
satisfies η = 1.6154 and µ = 0.5. Also, letting the
neutral delay h = 0.5. Solving LMIs in Theorem
(3.1) and Theorem (3.2) respectively, the MAUBs η
is obtained with various µ. The obtained results are
shown in Table 1. From Table 1, it is clear that The-
orem (3.2) is less conservative than Theorem (3.1)
due to the relaxation of the condition (10) to (18).
Under the initial conditions x(0) = [0.4,−0.4]T the
following simulation results can be obtained. Fig-
ure 1 shows that the state trajectory of system (7)
without u(t) and the Markovian jumping modes is
plotted in Figure 2.

Example 2. Consider the system (69), with
i = 1, where the parameters of the system are given
as follows

D1 =




7.3458 0 0
0 6.9987 0
0 0 5.5949


 ,

W1 =




13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7920 −2.6334 −20.1300


 ,

Γ1 =




0 0 0
0 0 0
0 0 0


 ,

Γ2 =




0.3680 0 0
0 0.1795 0
0 0 0.2876


 .

First, we show that the advantages of the proposed
results. In order to handle this issue easily, we con-
sider the same system parameters discussed in [42,
43, 44, 45, 4] to the system model (69) with one
mode, by using MATLAB LMI control toolbox and
solving LMIs in Corollary (3.4) are feasible. The
detailed comparison of MAUBs with those results
discussed by various methods are given in Table 2.
From Table 2, it is clear that Corollary (3.4) is less
conservative than those results discussed in [42, 43,
44, 45, 4].
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Figure 1. The state responses of system (7) with
u(t) = 0 in Example 1.
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Example 3. Consider the system (7) and
the nonlinear stochastic disturbance σ(t,q(t),q(t −
η(t)), i) satisfying (15) and the following two
modes:
Mode:1

D1 =

(
7.0214 0

0 7.4367

)
,

W1 =

(
−6.4993 −12.0275
−0.6867 5.6614

)
,

A1 =

(
0.2 0.1
0.3 0.2

)
,
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1,2) with Γ1 =

(
0.1280 0

0 0.0195

)
,Γ2 =

(
0.3680 0

0 0.1795

)
. The discrete time-varying de-

lay is considered as η(t) = 1.4154+ 0.2sint which
satisfies η = 1.6154 and µ = 0.5. Also, letting the
neutral delay h = 0.5. Solving LMIs in Theorem
(3.1) and Theorem (3.2) respectively, the MAUBs η
is obtained with various µ. The obtained results are
shown in Table 1. From Table 1, it is clear that The-
orem (3.2) is less conservative than Theorem (3.1)
due to the relaxation of the condition (10) to (18).
Under the initial conditions x(0) = [0.4,−0.4]T the
following simulation results can be obtained. Fig-
ure 1 shows that the state trajectory of system (7)
without u(t) and the Markovian jumping modes is
plotted in Figure 2.

Example 2. Consider the system (69), with
i = 1, where the parameters of the system are given
as follows

D1 =




7.3458 0 0
0 6.9987 0
0 0 5.5949


 ,

W1 =




13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7920 −2.6334 −20.1300


 ,

Γ1 =




0 0 0
0 0 0
0 0 0


 ,

Γ2 =




0.3680 0 0
0 0.1795 0
0 0 0.2876


 .

First, we show that the advantages of the proposed
results. In order to handle this issue easily, we con-
sider the same system parameters discussed in [42,
43, 44, 45, 4] to the system model (69) with one
mode, by using MATLAB LMI control toolbox and
solving LMIs in Corollary (3.4) are feasible. The
detailed comparison of MAUBs with those results
discussed by various methods are given in Table 2.
From Table 2, it is clear that Corollary (3.4) is less
conservative than those results discussed in [42, 43,
44, 45, 4].
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Figure 1. The state responses of system (7) with
u(t) = 0 in Example 1.
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Example 3. Consider the system (7) and
the nonlinear stochastic disturbance σ(t,q(t),q(t −
η(t)), i) satisfying (15) and the following two
modes:
Mode:1

D1 =

(
7.0214 0

0 7.4367

)
,

W1 =

(
−6.4993 −12.0275
−0.6867 5.6614

)
,

A1 =

(
0.2 0.1
0.3 0.2

)
,

STABILITY AND DISSIPATIVITY ANALYSIS FOR. . .

Table 1. The MAUBs η for different µ

Methods µ 0.1 0.3 0.5 0.7 0.9 ≥ 1
Theorem (3.1) η 1.8643 1.6762 1.6154 1.3098 1.1003 1.0037
Theorem (3.2) η 1.8989 1.7014 1.6802 1.4000 1.1270 1.0716

Table 2. The MAUBs η for different µ

Methods µ 0.1 0.3 0.5 0.9 ≥ 1
[42] η 0.8402 0.5493 0.4264 0.3214 -
[43] η 0.9331 - 0.4268 - -
[44] η 0.8411 0.5496 0.4267 0.3227 -
[45] η 1.1114 - 0.4514 - -
[4] η 1.1153 0.6710 0.5090 0.4305 -

Corollary (3.4) η 1.8745 1.5750 1.3394 1.0735 0.9841

Mode:2

D2 =

(
6.0214 0

0 6.4367

)
,

W2 =

(
−5.4993 −11.0275
−1.6867 4.6614

)
,

A2 =

(
0.3 −0.1
0.2 0.4

)
,

Moreover we take,

Q =

(
1 0
0 1

)
, S =

(
1 0
1 1

)
, R =

(
3 0
0 3

)
,

Γ1 = Γ2 =

(
0.3680 0

0 0.1795

)
.

The purpose of this example is to show that the un-
derlying NTSMJSNNs (7) is strictly (Q ,S ,R )−

γ−dissipative. Let Π =

(
−2 2
3 −3

)
. If

2D σ(t,q(t),q(t − η(t)), i) can be described by
(20), then tr{σT (t,q(t),q(t−η(t)), i)σ(t,q(t),q(t−
η(t)), i)} in (9) is bounded with F1i = F2i = 0.4I.
Also, we choose η = 0.4 and h = 0.3, under various
µ, the optimal dissipativity performance γ values is
specified by Table 3, it can be obtained by Theorem
(4.1).

6 Conclusion

In this paper, the problem of global asymp-
totic stability and dissipativity analysis for a class
of NTSMJSNNs with time-varying delays has been
investigated. In order to handle this issue, we

construct an appropriate LKF with some new
terms and employing integral inequality techniques,
some new sufficient conditions have been obtained,
which ensure that the global asymptotically stabil-
ity in the mean square. Besides, the main results of
this paper are further extended to the dissipativity
analysis. The conditions obtained in this paper have
been established in terms of strict LMIs, whose fea-
sible solution can be verified by effective MATLAB
LMI toolbox. Finally, three illustrative examples
with simulation are presented to demonstrate the ef-
fectiveness of the proposed results.
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