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Abstract

Collaborative Clustering is a data mining task the aim of which is to use several clus-
tering algorithms to analyze different aspects of the same data. The aim of collaborative
clustering is to reveal the common underlying structure of data spread across multiple
data sites by applying clustering techniques. The idea of collaborative clustering is that
each collaborator shares some information about the segmentation (structure) of its local
data and improve its own clustering with the information provided by the other learners.
This paper analyses the impact of the quality and the diversity of the potential learners to
the quality of the collaboration for topological collaborative clustering algorithms based
on the learning of a Self-Organizing Map (SOM). Experimental analysis on real data-sets
showed that the diversity between learners impact the quality of the collaboration. We
also showed that some internal indexes of quality are a good estimator of the increase of
quality due to the collaboration.
Keywords: collaborative clustering, topological neural networks,unsupervised learning,
diversity, quality

1 Introduction

The current growth in real-time communication
networks leads to new categories of problems. One
of these new problems is the distribution of infor-
mation between multiple locations and owners. For
example, there are data distributed across differ-
ent sites (banks, supermarkets, medical organiza-
tions, administrations) describing the same people
with different information (i.e. with different fea-
tures) or describing different people whit the same
features. The analysis of distributed data-sets re-
quires appropriate methods, particularly where the
different sites cannot share data directly for privacy
reasons. To deal with this kind of data approaches
based on the idea of several algorithms working to-
gether have been widely studied in the case of su-

pervised learning [1, 2, 3, 4] where they gave birth
to the field of Ensemble Learning. However, in the
field of unsupervised learning (clustering), ensem-
ble approaches still need further investigations. The
existing methods can be categorized into two fami-
lies: cooperative and collaborative clustering.

In cooperative clustering [5, 6], each clustering
algorithm produces its result independently. The fi-
nal clustering is computed in a post-processing step,
and the only exchange of information is about when
the individual processes are completed, so that post-
processing can start. In this case, a set of cluster-
ing algorithms is used in parallel on a given data
set. The diversity of the local results is obtained
through the diversity of the local algorithms, their
parameter values, and their initialization. Once all
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150 Parisa Rastin, Basarab Matei, Guénaël Cabanes, Nistor Grozavu and Younès Bennani

local computations are completed, a master algo-
rithm takes control and combines the local results
to get a hopefully better overall clustering. The res-
olution of possible conflicts between the local solu-
tions requires an algorithm that is able to compare
results that may differ in their format (e.g. different
numbers of clusters or different degrees of belief
associated with the results) and to find a consensus
solution that minimizes the overall violation of the
local results. The cooperative framework is closely
related to the ensemble methods developed for su-
pervised learning. Indeed, in these approaches, a
set of (diverse) classifiers is learned and the clas-
sification of new data points is obtained by taking
a (potentially weighted) vote of their predictions.
Bayesian averaging can be considered as a precur-
sor method. Numerous new ones have been de-
veloped, from the error-correcting output coding to
Bagging, and Boosting and their application in var-
ious domains have become routine with often good
results.

By contrast to the cooperative clustering model,
the collaborative model does not seek an over-
all hopefully better clustering of a given data set
through the combination of individual solutions. In
the collaborative framework, the goal is that each
local computation, quite possibly applied to distinct
data sets benefits from the work done by the other
learners [7, 8]. The learners solve together prob-
lems defined and imposed by the central controller,
affecting an individual task to each learner. Inter-
actions are recurrent between learners, responsibil-
ity is collective, the action of each collaborator is
geared to the performance of the group and vice
versa. This can be done through the exchange of
information about the local data, or the current hy-
pothesized local clustering, or the value of one al-
gorithm’s parameters. The validity of the approach
rests on the assumption that useful information can
be shared among the local tasks.

Collaborative clustering proposes to use the
clustering structure of remote data-sets (the learn-
ers) to improve the clustering of local data. In that
case, if the data of all sites cannot be used in a sin-
gle analysis, a local clustering is nevertheless pos-
sible in each site without breaching, for example,
confidentiality rules. The fundamental concept is
that each algorithm operates locally on each dataset,
then collaborate by exchanging information about

the local data structure [9, 10, 11, 12]. As the ac-
tual data are not shared, confidentiality is preserved.
The idea is that every learner shares only informa-
tion on the clustering (i.e. the structure) of its local
data and improves its own clustering with informa-
tion provided by other learners.

Collaborative clustering approaches follow a
two-step procedure [7]:

1 Local step: Each algorithm will individually
process the data it has access to and produces
a local clustering partition.

2 Collaborative step: The algorithms share their
results and try to confirm or improve their mod-
els with the goal of achieving better clustering
results.

At the end of the two phases, all the local clus-
tering algorithms have been enriched with remote
information. These two steps are sometimes fol-
lowed by an aggregation step which aims at reach-
ing a consensus with the final results after collabo-
ration. In this work we will not address the aggre-
gation step because it is a field of its own, and that
depending on the application it may not always be
advisable to aggregate, for instance when the differ-
ent views, sites or scales have conflicting partitions
[13]. We will instead focus on the collaborative step
where the algorithms exchange information with a
goal of mutual improvement.

We generally distinguish three different types of
collaborative learning: horizontal, vertical and hy-
brid [14, 15, 16]. The vertical collaboration is to
collaborate the clustering results obtained from dif-
ferent data sets described by the same variables with
different objects. In horizontal clustering, we deal
with the same patterns and different feature spaces.
The hybrid collaboration is a combination of both
horizontal and vertical collaboration.

In [17], the authors showed that the potential
learners are not equivalent to the collaboration. In-
deed, if the collaborator is not adequately chosen,
the resulting partition can be of lesser quality than
the local clustering (without collaboration). This
variability is still not clearly understood. Within
this context, this paper addresses the problem of the
choice of the learners, to ensure that collaborative
methods between unsupervised algorithms lead to
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positive results. To do so, we will focus on a spe-
cific family of unsupervised collaborative frame-
works based on topological maps: due to their pop-
ularity and interesting vector quantization proper-
ties, algorithms such as Kohonen’s Self-Organizing
Maps (SOM) [18, 19] and Bishop’s Generative To-
pographic Maps [20] have been used in unsuper-
vised collaborative learning approaches to transfer
information between algorithms [21, 22, 23].

As some learners can decrease the quality of
the collaboration, we investigated several indexes
to characterize the learners, in order to be able to
predict the potential utility of a collaborator for the
collaboration. We tested the impact of the Diversity
and Internal Quality of the learners to the gain of
quality after collaboration. The Diversity indexes
measure the similarity between the two partitions
before collaboration, whereas the Internal Quality
Indexes measure the compactness and the separa-
bility of the partition proposed by the collaborator.
Diversity and Quality indexes are known to be im-
portant for Ensemble Clustering [24, 25], which is
a problem related to Collaborative Clustering.

The rest of the paper is organized as follows:
The Horizontal and the Vertical Topological Col-
laborative Clustering algorithms used in this paper
are described and discussed in Section 2. Section 3
exposes the impact of the collaborator’s choice on
the quality of the collaboration. In Section 4, we
define the notion of Diversity and we present the
different indexes used in the experiments, then the
experimental protocol and the obtained results are
described. Section 5 focus on the Internal Quality
of the learners, we present several indexes and we
describe the experiments performed to test their im-
pact on the final quality of the collaboration, before
analyzing the obtained results. Finally, the paper
ends with a conclusion and some future works.

2 Topological Collaborative Clus-
tering

Depending on the structure of the data-sets,
there are two main types of collaboration learn-
ing principle: horizontal and vertical collaboration.
The vertical collaboration is to collaborate the clus-
tering results obtained from different data-sets de-
scribed by the same features but having different

objects. In the case of horizontal clustering, all
data-sets are described by the same objects but in
different feature spaces: the same number of ob-
jects but a different number of features. When the
data-sets share some objects and some features, it is
called a hybrid collaboration.

In this Section, we present two Topological Col-
laborative Clustering approaches adapted either for
a horizontal or a vertical collaboration.

2.1 Horizontal collaboration

In this Section, we are specifically interested in
horizontal collaborations. Horizontal collaboration
is usually more difficult than vertical collaboration,
since in such cases, the data are described in dif-
ferent spaces: each data-set is described by differ-
ent variables but has the same objects (samples) as
other data-sets. In this case, the problem is how to
exchange information between clusters derived out
of data-sets having different features?

In the Horizontal Topological Collaborative
Clustering, each data-set is clustered using a Self-
Organizing Map (SOM). To simplify the formal-
ism, without loss of generality, we assume that the
maps built from various data-sets have been initial-
ized with the same dimensions (number of neurons)
and the same structure (topology). In the follow-
ing we note [ii] the indexes of the different SOM,
and i the indexes of neurons in any SOM. There
is no special link between the two sets of indexes,
e.g. the i-th neuron of the [ii]-th SOM is treated the
same way as the j-th neuron of the same SOM. The
main idea of the horizontal collaboration principle
between different SOM algorithms is that, if an ob-
servation from the [ii]-th data-set is projected on the
j-th neuron in the [ii]-th map, then that same ob-
servation in the [ j j]-th data-set will be projected on
the same j-th neuron of the [ j j]-th map or one of its
neighboring neurons. In other words, correspond-
ing neurons in different maps should capture the
same observations. Therefore, an additional term
reflecting the principle of collaboration is added to
the classical SOM objective function. A new col-
laboration step is also added to estimate the impor-
tance of the collaboration, during the collaborative
learning process. To compute the relevance of the
collaboration, two parameters are introduced: the
first one is to adapt the distant clustering informa-
tion and the second is for weighting the collabora-



152 Parisa Rastin, Basarab Matei, Guénaël Cabanes, Nistor Grozavu and Younès Bennani

tive clustering link (the map which receive informa-
tion about the distant map).

An analysis of the objective function of the
SOM algorithm shows there exists some similari-
ties to the K-Means algorithm. For that reason, it is
very natural to adopt the same collaborative scheme
for SOM maps. That is, introducing an appropriate
modification of SOM cost function via the addition
of a collaborative term to convey the topological in-
formation. This approach was adopted by Grozavu
and Benanni [22, 26] where they highlighted the
capacity of improving the overall clustering perfor-
mance of the map. Formally, the following new ob-
jective function is composed of two terms

R[ii]
H (W ) = R[ii]

Q (W )+R[ii]
Col−H(W ). (1)

The first term in the right-hand side of equation (1)
corresponds to the classical SOM objective function
and writes

R[ii]
Q (W ) =

P

∑
j j=1
j j ̸=ii

N

∑
i=1

|w|

∑
j=1

K[ii]
σ( j,χ(xi))

∥x[ii]i -w[ii]
j ∥2. (2)

The second term in the right-hand side of the equa-
tion (1) corresponds to the collaborative procedure

R[ii]
Col−H(W ) =

P

∑
j j=1
j j ̸=ii

N

∑
i=1

|w|

∑
j=1

Li j∥x[ii]i -w[ii]
j ∥2. (3)

In equations (2) and (3) the parameter P repre-
sents the number of datasets (or the classifications),
N - represents the number of observations and |w|
is the number of prototype vectors from the [ii]− th
SOM map (the number of neurons). χ(xi) is the
assignment function which allows finding the Best
Matching Unit (BMU), it selects the neuron with
the closest prototype from the data xi using the Eu-
clidean distance and it’s defined as follows

χ(xi) = argmin
(
∥xi −w j∥2) . (4)

The factor σ(i, j) represents the distance between
two neurons i and j from the map, and it is defined
as the length of the shortest path linking cells i and
j on the SOM map.
The factor K[cc]

σ(i, j) is the neighborhood function on
the SOM[cc] map between two cells i and j. This

function depends on the distance between two neu-
rons and is defined as follows

K[cc]
σ(i, j) = exp

(
−σ2 (i, j)

T 2

)
, (5)

where T is the temperature which allows control-
ling the neighborhood influence of a cell on the
map, it decreases with the T parameter.

The nature of the neighborhood function K[cc]
σ(i, j)

is identical for all the maps, but its value varies from
one map to another: it depends on the closest pro-
totype to the observation that is not necessarily the
same for all the SOM maps.

In addition, Li j is defined as

Li j =
(

K[ii]
σ( j,χ(xi))

−K[ j j]
σ( j,χ(xi))

)2
. (6)

This factor emulates the best matching unit distance
between two different maps. It gives a numeri-
cal estimation of the difference of representation of
the two maps, by comparing the neighborhood dis-
tances of a data point i and the neuron j in both
maps. If this distance is similar in the two SOMs
for each data point, it means that the BMUs of data
points are the same (or at least are close neighbors)
in both maps. The factor gives a fine method to
avoid the issue of having to be in the same feature
space, because it relies solely on the topology of
the two maps and the built of a neighborhood dis-
tance. However, as it is defined in Equation (5), the
neighborhood function Kσ relies on a distance met-
ric σ(i, j) which depends on the feature space of the
data. Therefore, for any comparison to be possible
between the neighborhood, we first need to normal-
ize the neighborhood functions across the different
feature spaces.
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Algorithm 1 Horizontal Collaboration
for t = 1 to Niter do

1. Local step:
for each map [ii], ii = 1 to P do

Find the prototypes minimizing the classical
SOM objective function:

w∗ = argmin
w

[
N

∑
i=1

|w|

∑
j=1

K[ii]
σ( j,χ(xi))

‖x[ii]i −w[ii]
j ‖2

]

end for
2. Collaboration step:
for each map [ii], ii = 1 to P do

Update the prototypes of the [ii] map by using
(8) that minimize the objective function R[ii]

H of
the horizontal collaboration.

end for
end for

is used as follows:

w∗[ii] = argmin
W

[
R[ii]

H (W )
]

(7)

The obtained update rule is given by:

w∗[ii]
jk (t +1) = w∗[ii]

jk (t)

+

N
∑

i=1
K[ii]

σ( j,χ(xi))
x[ii]ik +

P
∑

j j=1
j j �=ii

N
∑

i=1
Li jx

[ii]
ik

N
∑

i=1
K[ii]

σ( j,χ(xi))
+

P
∑

j j=1
j j �=ii

N
∑

i=1
Li j

(8)

where Li j is defined by (6). Indeed, during the col-
laboration with a SOM map, the algorithm takes into
account the prototypes of the map and its topology
through the neighborhood function.
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σ( j,χ(xi))

)2
. (6)

This factor emulates the best matching unit distance
between two different maps. It gives a numerical
estimation of the difference of representation of the
two maps, by comparing the neighborhood distances
of a data point i and the neuron j in both maps. If
this distance is similar in the two SOMs for each
data point, it means that the BMUs of data points
are the same (or at least are close neighbors) in both
maps. The factor gives a fine method to avoid the
issue of having to be in the same feature space, be-
cause it relies solely on the topology of the two maps
and the built of a neighborhood distance. However,
as it is defined in Equation (5), the neighborhood
function Kσ relies on a distance metric σ(i, j) which
depends on the feature space of the data. There-
fore, for any comparison to be possible between
the neighborhood, we first need to normalize the
neighborhood functions across the different feature
spaces.

As described in Algorithm 1, to compute the col-
laborated prototypes matrix, a gradient optimization

Algorithm 1 Horizontal Collaboration
for t = 1 to Niter do

1. Local step:
for each map [ii], ii = 1 to P do

Find the prototypes minimizing the classical
SOM objective function:

w∗ = argmin
w

[
N

∑
i=1

|w|

∑
j=1

K[ii]
σ( j,χ(xi))

‖x[ii]i −w[ii]
j ‖2

]

end for
2. Collaboration step:
for each map [ii], ii = 1 to P do

Update the prototypes of the [ii] map by using
(8) that minimize the objective function R[ii]

H of
the horizontal collaboration.

end for
end for

is used as follows:

w∗[ii] = argmin
W

[
R[ii]

H (W )
]

(7)

The obtained update rule is given by:

w∗[ii]
jk (t +1) = w∗[ii]

jk (t)

+

N
∑

i=1
K[ii]

σ( j,χ(xi))
x[ii]ik +

P
∑

j j=1
j j �=ii

N
∑

i=1
Li jx

[ii]
ik

N
∑

i=1
K[ii]

σ( j,χ(xi))
+

P
∑

j j=1
j j �=ii

N
∑

i=1
Li j

(8)

where Li j is defined by (6). Indeed, during the col-
laboration with a SOM map, the algorithm takes into
account the prototypes of the map and its topology
through the neighborhood function.

5
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tive clustering link (the map which receive informa-
tion about the distant map).

An analysis of the objective function of the
SOM algorithm shows there exists some similari-
ties to the K-Means algorithm. For that reason, it is
very natural to adopt the same collaborative scheme
for SOM maps. That is, introducing an appropriate
modification of SOM cost function via the addition
of a collaborative term to convey the topological in-
formation. This approach was adopted by Grozavu
and Benanni [22, 26] where they highlighted the
capacity of improving the overall clustering perfor-
mance of the map. Formally, the following new ob-
jective function is composed of two terms

R[ii]
H (W ) = R[ii]

Q (W )+R[ii]
Col−H(W ). (1)

The first term in the right-hand side of equation (1)
corresponds to the classical SOM objective function
and writes

R[ii]
Q (W ) =

P

∑
j j=1
j j ̸=ii

N

∑
i=1

|w|

∑
j=1

K[ii]
σ( j,χ(xi))

∥x[ii]i -w[ii]
j ∥2. (2)

The second term in the right-hand side of the equa-
tion (1) corresponds to the collaborative procedure

R[ii]
Col−H(W ) =

P

∑
j j=1
j j ̸=ii

N

∑
i=1

|w|

∑
j=1

Li j∥x[ii]i -w[ii]
j ∥2. (3)

In equations (2) and (3) the parameter P repre-
sents the number of datasets (or the classifications),
N - represents the number of observations and |w|
is the number of prototype vectors from the [ii]− th
SOM map (the number of neurons). χ(xi) is the
assignment function which allows finding the Best
Matching Unit (BMU), it selects the neuron with
the closest prototype from the data xi using the Eu-
clidean distance and it’s defined as follows

χ(xi) = argmin
(
∥xi −w j∥2) . (4)

The factor σ(i, j) represents the distance between
two neurons i and j from the map, and it is defined
as the length of the shortest path linking cells i and
j on the SOM map.
The factor K[cc]

σ(i, j) is the neighborhood function on
the SOM[cc] map between two cells i and j. This

function depends on the distance between two neu-
rons and is defined as follows

K[cc]
σ(i, j) = exp

(
−σ2 (i, j)

T 2

)
, (5)

where T is the temperature which allows control-
ling the neighborhood influence of a cell on the
map, it decreases with the T parameter.

The nature of the neighborhood function K[cc]
σ(i, j)

is identical for all the maps, but its value varies from
one map to another: it depends on the closest pro-
totype to the observation that is not necessarily the
same for all the SOM maps.

In addition, Li j is defined as

Li j =
(

K[ii]
σ( j,χ(xi))

−K[ j j]
σ( j,χ(xi))

)2
. (6)

This factor emulates the best matching unit distance
between two different maps. It gives a numeri-
cal estimation of the difference of representation of
the two maps, by comparing the neighborhood dis-
tances of a data point i and the neuron j in both
maps. If this distance is similar in the two SOMs
for each data point, it means that the BMUs of data
points are the same (or at least are close neighbors)
in both maps. The factor gives a fine method to
avoid the issue of having to be in the same feature
space, because it relies solely on the topology of
the two maps and the built of a neighborhood dis-
tance. However, as it is defined in Equation (5), the
neighborhood function Kσ relies on a distance met-
ric σ(i, j) which depends on the feature space of the
data. Therefore, for any comparison to be possible
between the neighborhood, we first need to normal-
ize the neighborhood functions across the different
feature spaces.
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As described in Algorithm 1, to compute the
collaborated prototypes matrix, a gradient opti-
mization is used as follows

w∗[ii] = argminW

[
R[ii]

H (W )
]
. (7)

The obtained update rule is given by

w∗[ii]
jk (t +1) = w∗[ii]

jk (t)

+

N
∑

i=1
K[ii]

σ( j,χ(xi))
x[ii]ik +

P
∑

j j=1
j j ̸=ii

N
∑

i=1
Li jx

[ii]
ik

N
∑

i=1
K[ii]

σ( j,χ(xi))
+

P
∑

j j=1
j j ̸=ii

N
∑

i=1
Li j

,

(8)

where Li j is defined by (6). Indeed, during the col-
laboration with a SOM map, the algorithm takes
into account the prototypes of the map and its topol-
ogy through the neighborhood function.

2.2 Vertical collaboration

In the vertical case, contrary to horizontal col-
laboration, all the data-sets have the same features
(same description space) but have different obser-
vations. In this case, the observations of these data-
sets are of equal size, and the size of prototype vec-
tors for all the SOM maps will be the same. The
basic idea of collaboration, in this case, is the fol-
lowing: a neuron j of ii-th SOM map and the same
neuron j of the j j-th map should be very similar us-
ing the Euclidean distance. In other words, corre-
sponding neurons in the different maps should rep-
resent groups of similar observations. That’s why
we changed the objective function of the classical
SOM algorithm to introduce this constraint on the
various maps during the collaboration step. For-
mally, we have achieved the following new objec-
tive function

R[ii]
V (W ) = R[ii]

Q (W )+R[ii]
Col−V (W ). (9)

Here R[ii]
Q (W ) is still defined by (2), while

R[ii]
Col−V (W ) writes

R[ii]
Col−V (W ) =

P

∑
j j=1, j j ̸=ii

N[ii]

∑
i=1

|w|

∑
j=1

Li j∥w[ii]
j −w[ j j]

j ∥2 (10)

with Li j defined by (6), where again P represents the
number of datasets, N - the number of observations

of the ii-th dataset, |w| is the number of prototype
vectors from the ii SOM map and which is equal for
all the maps. Note the difference between (10) and
(3) in the factors ∥w[ii]

j −w[ j j]
j ∥2 and ∥x[ii]i -w[ii]

j ∥2 re-
spectively. Indeed, contrarily to the horizontal col-
laboration, in the case of vertical collaboration the
data are in the same feature space and the value
of the collaboration confidence parameters can be
computed using the similarity between two collab-
oration maps (the prototypes similarity) as in Algo-
rithm 2. As for the horizontal collaboration, in the

case of vertical collaborative learning, the gradient
optimization procedure is used to compute the pro-
totypes matrix

w∗[ii] = argminW

[
R[ii]

V (W )
]

(11)

The obtained update rule is given by

w∗[ii]
jk (t +1) = w∗[ii]

jk (t)

+

N
∑

i=1
K[ii]

σ( j,χ(xi))
x[ii]ik +

P
∑

j j=1, j j ̸=ii

N[ii]

∑
i=1

Li jw
[ j j]
ik

N
∑

i=1
K[ii]

σ( j,χ(xi))
+

P
∑

j j=1, j j ̸=ii

N
∑

i=1
Li j

(12)

where Li j is defined by (6). The learning algorithm
in this case arises under the scheme given by Algo-
rithm 2.

2.2 Vertical collaboration

In the vertical case, contrary to horizontal collabo-
ration, all the data-sets have the same features (same
description space) but have different observations. In
this case, the observations of these data-sets are of
equal size, and the size of prototype vectors for all
the SOM maps will be the same. The basic idea of
collaboration, in this case, is the following: a neu-
ron j of ii-th SOM map and the same neuron j of the
j j-th map should be very similar using the Euclidean
distance. In other words, corresponding neurons in
the different maps should represent groups of similar
observations. That’s why we changed the objective
function of the classical SOM algorithm to introduce
this constraint on the various maps during the collab-
oration step. Formally, we have achieved the follow-
ing new objective function:

R[ii]
V (W ) = R[ii]

Q (W )+R[ii]
Col−V (W ). (9)

Here R[ii]
Q (W ) is still defined by (2), while R[ii]

Col−V (W )
writes

R[ii]
Col−V (W ) =

P

∑
j j=1, j j �=ii

N[ii]

∑
i=1

|w|

∑
j=1

Li j‖w[ii]
j −w[ j j]

j ‖2 (10)

with Li j defined by (6), where again P represents the
number of datasets, N - the number of observations
of the ii-th dataset, |w| is the number of prototype
vectors from the ii SOM map and which is equal for
all the maps. Note the difference between (10) and
(3) in the factors ‖w[ii]

j −w[ j j]
j ‖2 and ‖x[ii]i -w[ii]

j ‖2 re-
spectively. Indeed, contrarily to the horizontal col-
laboration, in the case of vertical collaboration the
data are in the same feature space and the value of
the collaboration confidence parameters can be com-
puted using the similarity between two collabora-
tion maps (the prototypes similarity) as in Algorithm
2.

Algorithm 2 Vertical Collaboration
1. Local step:

for t = 1 to Niter do
For each DB[ii], ii = 1 to P :

Find the prototypes minimizing the classical
SOM objective function:

w∗ = argmin
w

[
N

∑
i=1

|w|

∑
j=1

K[ii]
σ( j,χ(xi))

‖x[ii]i −w[ii]
j ‖2

]

2. Collaboration step:
For the vertical collaboration of the [ii]-th map
with the map [ j j]:
Collaboration phase:
Update the prototypes of the [ii] map minimizing
the objective function of the vertical collaboration
R[ii]

V (W ) by using the expression (12).
end for

As for the horizontal collaboration, in the case of ver-
tical collaborative learning, the gradient optimization
procedure is used to compute the prototypes matrix:

w∗[ii] = argmin
W

[
R[ii]

V (W )
]

(11)

The obtained update rule is given by:

w∗[ii]
jk (t +1) = w∗[ii]

jk (t)

+

N
∑

i=1
K[ii]

σ( j,χ(xi))
x[ii]ik +

P
∑

j j=1, j j �=ii

N[ii]

∑
i=1

Li jw
[ j j]
ik

N
∑

i=1
K[ii]

σ( j,χ(xi))
+

P
∑

j j=1, j j �=ii

N
∑

i=1
Li j

(12)

where Li j is defined by (6). The learning algorithm in
this case arises under the scheme given by Algorithm
2.

6
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3 Impact of the learners on the col-
laboration’s quality

In [10], the authors show that not all of the po-
tential learners are suitable to collaborate in the hor-
izontal collaboration (Table 1). Here we present
similar results in the vertical case (Table 2).

Table 1. Experimental results of the horizontal
collaborative approach on different data sets

Dataset Map Purity
Waveform SOM1 86.54

SOM2 39.5
SOM1→2 73.24
SOM2→1 58.34

Isolet SOM1 80.79
SOM2 93.27

SOM1→2 81.46
SOM2→1 92.87

Wdbc SOM1 94.02
SOM2 96.49

SOM1→2 95.23
SOM2→1 96.57

SpamBase SOM1 80.57
SOM2 84.95

SOM1→2 82.84
SOM2→1 83.79

These tables present the purity [27] of the clus-
tering before and after collaboration. The purity is
the average proportion of the majority label in each
cluster; ”true” labels of the data must be known in
order to compute the purity. A local clustering is
noted Mx and a collaboration between x and y is
noted Mx→y if x uses information from y and My→x

if y uses information from x. It is quite clear that
Mx→y is beneficial for x when y have a higher pu-
rity than x. However, if the collaborator has a lower
purity, the purity of the collaboration usually de-
creases. This shows that it is important to choose
carefully the best learners among the potential can-
didates. The purity is computed based on already
known labels of the data (it is an External Quality
Index) and cannot usually be computed as the labels
are rarely known in the real case clustering problem.
We, therefore, need to find other criteria to estimate
the quality of the collaborator for the collaboration.

The objective of this work is to test several cri-
teria in order to help the choice of the most rele-

vant learners. The purpose is to find the best col-
laborator to collaborate with and improve the local
quality. Intuitively, a relevant collaborator should
produce a good model of its own data, i.e. the pro-
posed clustering can be trusted. In addition, the col-
laborator’s model should not be too different from
the local model to be able to obtain a reasonable
agreement between the structure of the local data-
set and the model proposed by the learners. To test
these ideas, we tested two types of indexes: The Di-
versity between the local clustering model and the
model proposed by the learners (Section 4) and the
individual internal Quality of each learner (Section
5).

Table 2. Experimental results of the vertical
collaborative approach on different data sets

Dataset Map Purity
Waveform SOM1 69.71

SOM2 69.87
SOM1→2 74.57
SOM2→1 70.71

Isolet SOM1 98.85
SOM2 98.46

SOM1→2 79.54
SOM2→1 98.30

Wdbc SOM1 96.71
SOM2 97.87

SOM1→2 96.99
SOM2→1 97.49

SpamBase SOM1 76.26
SOM2 70.43

SOM1→2 72.28
SOM2→1 69.78

4 Impact of the Diversity between
Learners

The Diversity is the difference between two
cluster partitioning (local and collaborator). In en-
semble methods, there is a relation between ensem-
ble efficiency and ensemble diversity, and a diver-
sity measure can be useful to choose the combina-
tion method [24, 25].

In this paper, we address the question of the use
of diversity information for an unsupervised learn-
ing task aiming at finding find the best collabo-
ration between several clustering during the learn-
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3 Impact of the learners on the col-
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In [10], the authors show that not all of the po-
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izontal collaboration (Table 1). Here we present
similar results in the vertical case (Table 2).
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tering before and after collaboration. The purity is
the average proportion of the majority label in each
cluster; ”true” labels of the data must be known in
order to compute the purity. A local clustering is
noted Mx and a collaboration between x and y is
noted Mx→y if x uses information from y and My→x

if y uses information from x. It is quite clear that
Mx→y is beneficial for x when y have a higher pu-
rity than x. However, if the collaborator has a lower
purity, the purity of the collaboration usually de-
creases. This shows that it is important to choose
carefully the best learners among the potential can-
didates. The purity is computed based on already
known labels of the data (it is an External Quality
Index) and cannot usually be computed as the labels
are rarely known in the real case clustering problem.
We, therefore, need to find other criteria to estimate
the quality of the collaborator for the collaboration.

The objective of this work is to test several cri-
teria in order to help the choice of the most rele-

vant learners. The purpose is to find the best col-
laborator to collaborate with and improve the local
quality. Intuitively, a relevant collaborator should
produce a good model of its own data, i.e. the pro-
posed clustering can be trusted. In addition, the col-
laborator’s model should not be too different from
the local model to be able to obtain a reasonable
agreement between the structure of the local data-
set and the model proposed by the learners. To test
these ideas, we tested two types of indexes: The Di-
versity between the local clustering model and the
model proposed by the learners (Section 4) and the
individual internal Quality of each learner (Section
5).

Table 2. Experimental results of the vertical
collaborative approach on different data sets

Dataset Map Purity
Waveform SOM1 69.71

SOM2 69.87
SOM1→2 74.57
SOM2→1 70.71

Isolet SOM1 98.85
SOM2 98.46

SOM1→2 79.54
SOM2→1 98.30

Wdbc SOM1 96.71
SOM2 97.87

SOM1→2 96.99
SOM2→1 97.49

SpamBase SOM1 76.26
SOM2 70.43

SOM1→2 72.28
SOM2→1 69.78

4 Impact of the Diversity between
Learners

The Diversity is the difference between two
cluster partitioning (local and collaborator). In en-
semble methods, there is a relation between ensem-
ble efficiency and ensemble diversity, and a diver-
sity measure can be useful to choose the combina-
tion method [24, 25].

In this paper, we address the question of the use
of diversity information for an unsupervised learn-
ing task aiming at finding find the best collabo-
ration between several clustering during the learn-
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ing. In order to test if the diversity between learn-
ers is a relevant index to choose the best collabo-
rator, we first tried several diversity indexes to se-
lect the most discriminant index between informa-
tive and non-informative learners. We also exam-
ined the different way of using these diversity index
to find and improve the results. In general, a low
diversity means that the different data-sets are parti-
tioned in the same way by the clustering algorithms.
A high diversity means that the two data-sets are
partitioned in a very different way, either because
of differences in the two clustering methods used
or because of intrinsic difference in the data repre-
sentation in the two spaces. In this study, any high
diversity was due to a difference in the data struc-
ture, because we used the same algorithm to parti-
tion both data- sets.

4.1 Relevance of the Diversity indexes

We first investigated the relevance of several
diversity indexes for the collaboration task. We
therefore compared several well-known indexes and
their capability at discriminate similar clustering to
random clustering.

When the data-sets represent different objects
in the same feature space, Diversity can be defined
as the average of the minimal Euclidean distance
between clusters’ prototypes of the two partitions.
When the data-sets represent the same objects in
different space, a distance between prototypes can-
not be defined and Diversity indexes are usually
based on the agreement between the two partitions,
i.e. each pair of an object should be either in the
same cluster in both partitions or in different clus-
ters in both partitions. We focus on this type of in-
dexes in this paper.

A simple diversity measure consists in calculat-
ing the complement of a similarity measure S be-
tween two partitions P1 and P2: D(P1,P2) = 1 −
S(P1,P2). We tested six Diversity indexes based on
several similarity measures that we recall below. To
this end, we define a11 as the number of object pairs
belonging to the same cluster in P1 and P2, a10 de-
notes the number of pairs that belong to the same
cluster in P1 but not in P2, and a01 denotes the pairs
in the same cluster in P2 but not in P1. Finally, a00
denotes the number of object pairs in different clus-
ters in P1 and P2. N the total number of objects, ni

the number of objects in cluster i in P1, n j the num-

ber of objects in cluster j in P2 and ni j the number
of object in cluster i in P1 and j in P2. In Adjusted
Rand, nc is the agreement we would expect to arise
by chance alone using Rand index. We will con-
sider the following similarity measures: the Rand
measure proposed in [28] defined by

R =
a00 +a11

a00 +a01 +a10 +a11
, (13)

the Adjusted Rand measure proposed in [29] de-
fined by

AR =
a00 +a11 −nc

a00 +a01 +a10 +a11 −nc
, (14)

the Jaccard measure proposed in [30] defined by

J =
a11

a01 +a10 +a11
, (15)

the Wallace measure proposed in [31] defined by

WP1→P2 =
a11

a11 +a10
, (16)

the Adjusted Wallace measure proposed in [32] de-
fined by

AW =
WP1→P2 −

∑
|P2 |
i ni(ni−1)
N(N−1)

1− ∑
|P2 |
i ni(ni−1)
N(N−1)

, (17)

the Normalized Mutual Information measure pro-
posed in [33] defined by

NMI =
−2∑i j ni jlog ni jN

nin j

∑i nilog ni
N +∑ j n jlog n j

N
, (18)

the Variation of Information measure proposed in
[34] defined by

V I = - 2∑
i j

ni j

N
log

ni jN
nin j

∑
i

ni

N
log

ni

N
−∑

j

n j

N
log

n j

N
,

(19)

To analyze the relevance of the different in-
dexes, we tested how discriminant each index is be-
tween informative and non-informative learners. In
that order, we used noisy features to manipulate the
quantity of relevant information shared by the col-
laborator. In that case, the quality of the collabo-
ration depends directly on the percentage of noise
in the collaborator’s data-set. We used that prop-
erty to test different diversity indexes. Our experi-
ments are based on the ”waveform” data-set. This
data-set consists of 5000 instances divided into 3
classes. The original base included 40 attributes, 19
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are all noise attributes with mean 0 and variance 1.
Each class is generated from a combination of 2 of
3 ”base” waves.

We constructed ten subsets, each with five at-
tributes. Five of these subsets (db1 to db5) were
constructed with informative attributes (Relevant
data-sets) and five subsets (db6 to db10) with un-
informative (noisy) features (Noisy data-sets). We
then computed several diversity measures between
two Relevant data-sets, a Noisy and a Relevant, and
two Noisy data-sets, based on the comparison be-
tween the two SOM representations.

As non-noisy data-sets were constructed to have
the same class structure with three defined clusters,
they are expected to have a high similarity (low di-
versity). On the contrary, each Noisy data-set is dif-
ferent from other Noisy and to non-Noisy data-sets.
A relevant diversity index should, therefore, be high
(close to 1) as soon as a Noisy data-set is involved,
and low (close to 0) otherwise. Table 3 presents the
values of the Similarity indexes (i.e. 1-Diversity)
in several cases of collaboration. As we can see,
the ARI (Adjusted Rand Index) and the NMI (Nor-
mal Mutual Information) are both very low (close
to zero) as soon as a Noisy data-set is involved and
have a much higher value when two non-noisy data-
sets collaborate. Therefore, they both are a good
candidate for a Diversity measure. The other in-
dexes show little difference between collaboration
with and without noisy and are probably not suit-
able to be used as a Diversity index. The differ-
ence between ARI, NMI and the other indexes is
that the former are normalized in order to have a
value close to zeros when the clusters are chosen
randomly. This allows a full use of the [0,1] range
and a clearer distinction between random and simi-
lar models. In the following experiments, we chose
to use the Adjusted Rand Index as a Diversity index.

4.2 Effect of the Diversity on the quality of
the collaboration

To evaluate the effect of the diversity between
learners on the quality of the collaboration, we used
several data-sets of different size and complexity
[35]. In addition to the ”waveform” data-set al-
ready described, the experimental protocol is ap-
plied on the ”Wisconsin Diagnostic Breast Cancer
(WDBC)”, ”Isolet”, ”Glass”, ”Wine” and ”Spam-
Base” data-sets:

– Wisconsin Diagnostic Breast Cancer (WDBC):
This data has 569 instances with 32 variables
(ID, diagnosis, 30 real-valued input variables).
Each data observation is labeled as benign (357)
or malignant (212). Variables are computed
from a digitized image of a Fine Needle Aspirate
(FNA) of a breast mass. They describe charac-
teristics of the cell nuclei present in the image.

– Isolet: This data-set was generated as follows.
150 subjects spoke the name of each letter of
the alphabet twice. Hence, we have 52 train-
ing examples for each speaker. The speakers are
grouped into 5 sets of 30 speakers each. The data
consists of 1559 instances and 617 variables. All
variables are continuous, real-valued variables
scaled into the range [−1.0,1.0].

– Glass: This real data-set contains 6 classes for
a total of 214 objects, where each class corre-
sponding to a type of glass. An object is de-
scribed by 10 attributes.

– Wine: These data are the results of a chemical
analysis of 178 wines (samples) grown in the
same region in Italy but derived from 3 different
categories. The attributes describe the quanti-
ties of 13 constituents found in each of the three
types of wines.

– Spam Base: The SpamBase data set is composed
for 4601 observations described by 57 variables.
Every variable described an e-mail and its cate-
gory: spam or not-spam. Most of the attributes
indicate whether a particular word or character
was frequently occurring in the e-mail. The run-
length attributes (55-57) measure the length of
sequences of consecutive capital letters.

The criteria we chose to estimate the quality of
the collaboration is the gain of purity after collabo-
ration (i.e. the difference between the purity of the
local clustering before and after collaboration). The
purity of a neuron is the percentage of data belong-
ing to the majority class. Assuming that the data
labels set L = {l1, l2, ..., l|L|} and the prototypes set
C = {c1,c2, ...,c|C|} are known, the formula that ex-
presses the purity of a map is

purity =
|C|

∑
k=1

|ck|
N

×
max|L|i=1 |cik|

|ck|
, (20)
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are all noise attributes with mean 0 and variance 1.
Each class is generated from a combination of 2 of
3 ”base” waves.

We constructed ten subsets, each with five at-
tributes. Five of these subsets (db1 to db5) were
constructed with informative attributes (Relevant
data-sets) and five subsets (db6 to db10) with un-
informative (noisy) features (Noisy data-sets). We
then computed several diversity measures between
two Relevant data-sets, a Noisy and a Relevant, and
two Noisy data-sets, based on the comparison be-
tween the two SOM representations.

As non-noisy data-sets were constructed to have
the same class structure with three defined clusters,
they are expected to have a high similarity (low di-
versity). On the contrary, each Noisy data-set is dif-
ferent from other Noisy and to non-Noisy data-sets.
A relevant diversity index should, therefore, be high
(close to 1) as soon as a Noisy data-set is involved,
and low (close to 0) otherwise. Table 3 presents the
values of the Similarity indexes (i.e. 1-Diversity)
in several cases of collaboration. As we can see,
the ARI (Adjusted Rand Index) and the NMI (Nor-
mal Mutual Information) are both very low (close
to zero) as soon as a Noisy data-set is involved and
have a much higher value when two non-noisy data-
sets collaborate. Therefore, they both are a good
candidate for a Diversity measure. The other in-
dexes show little difference between collaboration
with and without noisy and are probably not suit-
able to be used as a Diversity index. The differ-
ence between ARI, NMI and the other indexes is
that the former are normalized in order to have a
value close to zeros when the clusters are chosen
randomly. This allows a full use of the [0,1] range
and a clearer distinction between random and simi-
lar models. In the following experiments, we chose
to use the Adjusted Rand Index as a Diversity index.

4.2 Effect of the Diversity on the quality of
the collaboration

To evaluate the effect of the diversity between
learners on the quality of the collaboration, we used
several data-sets of different size and complexity
[35]. In addition to the ”waveform” data-set al-
ready described, the experimental protocol is ap-
plied on the ”Wisconsin Diagnostic Breast Cancer
(WDBC)”, ”Isolet”, ”Glass”, ”Wine” and ”Spam-
Base” data-sets:

– Wisconsin Diagnostic Breast Cancer (WDBC):
This data has 569 instances with 32 variables
(ID, diagnosis, 30 real-valued input variables).
Each data observation is labeled as benign (357)
or malignant (212). Variables are computed
from a digitized image of a Fine Needle Aspirate
(FNA) of a breast mass. They describe charac-
teristics of the cell nuclei present in the image.

– Isolet: This data-set was generated as follows.
150 subjects spoke the name of each letter of
the alphabet twice. Hence, we have 52 train-
ing examples for each speaker. The speakers are
grouped into 5 sets of 30 speakers each. The data
consists of 1559 instances and 617 variables. All
variables are continuous, real-valued variables
scaled into the range [−1.0,1.0].

– Glass: This real data-set contains 6 classes for
a total of 214 objects, where each class corre-
sponding to a type of glass. An object is de-
scribed by 10 attributes.

– Wine: These data are the results of a chemical
analysis of 178 wines (samples) grown in the
same region in Italy but derived from 3 different
categories. The attributes describe the quanti-
ties of 13 constituents found in each of the three
types of wines.

– Spam Base: The SpamBase data set is composed
for 4601 observations described by 57 variables.
Every variable described an e-mail and its cate-
gory: spam or not-spam. Most of the attributes
indicate whether a particular word or character
was frequently occurring in the e-mail. The run-
length attributes (55-57) measure the length of
sequences of consecutive capital letters.

The criteria we chose to estimate the quality of
the collaboration is the gain of purity after collabo-
ration (i.e. the difference between the purity of the
local clustering before and after collaboration). The
purity of a neuron is the percentage of data belong-
ing to the majority class. Assuming that the data
labels set L = {l1, l2, ..., l|L|} and the prototypes set
C = {c1,c2, ...,c|C|} are known, the formula that ex-
presses the purity of a map is

purity =
|C|

∑
k=1

|ck|
N

×
max|L|i=1 |cik|

|ck|
, (20)
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Figure 1. Gain of Purity (ordinate) in function of the Diversity between learners (abscissa) for a horizontal
collaboration between a high-quality learner receiving information from a collaborator of random quality.

(a) ”Waveform” data-set (b) ”Isolet” data-set

(c) ”SpamBase” data-set (d) ”WDBC” data-set

(e) ”Glass” data-set (f) ”Wine” data-set

Figure 1: Gain of Purity (ordinate) in function of the Diversity between learners (abscissa) for a horizontal
collaboration between a high-quality learner receiving information from a collaborator of random quality.
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Figure 2. Gain of Purity (ordinate) in function of the Diversity between learners (abscissa) for a vertical
collaboration between a high-quality learner receiving information from a collaborator of random quality.

(a) ”Waveform” data-set (b) ”Isolet” data-set

(c) ”SpamBase” data-set (d) ”WDBC” data-set

(e) ”Glass” data-set (f) ”Wine” data-set

Figure 2: Gain of Purity (ordinate) in function of the Diversity between learners (abscissa) for a vertical
collaboration between a high-quality learner receiving information from a collaborator of random quality.
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Figure 2. Gain of Purity (ordinate) in function of the Diversity between learners (abscissa) for a vertical
collaboration between a high-quality learner receiving information from a collaborator of random quality.

IMPACT OF LEARNERS’ QUALITY AND . . .

Figure 3. Gain of Purity (ordinate) in function of the Diversity between learners (abscissa) for randomly
chosen pairs of learners.

(a) ”Waveform” data-set (b) ”Isolet” data-set

(c) ”SpamBase” data-set (d) ”WDBC” data-set

(e) ”Glass” data-set (f) ”Wine” data-set

Figure 3: Gain of Purity (ordinate) in function of the Diversity between learners (abscissa) for randomly
chosen pairs of learners.
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Table 3. Similarity measure on the waveform subsets

Subset Relevant data-sets Relevant vs Noisy data-sets Noisy data-sets
Similarity index db2/db3 db3/db4 db2/db8 db4/db9 db7/db8 db9/db10
Rand 0.6707 0.7042 0.5539 0.555 0.5430 0.5553
Adjusted Rand 0.2625 0.3356 0.00008 0.0002 0.0000 0.0000
Jaccard 0.3429 0.3869 0.2017 0.2008 0.2000 0.2003
Wallace’s coefficient 0.5079 0.5578 0.3332 0.3342 0.3300 0.3334
Adjusted Wallace 0.5135 0.5581 0.3383 0.3347 0.3500 0.3411
Normal Mutual Information 0.2620 0.3072 0.0002 0.0006 0.0003 0.0004
Variation of Information 2.334 2.1918 3.1577 3.1631 3.1680 3.1664

where |ck| is the total number of data associated
with the neuron ck, and |cik| is the number of data
of class li which are associated with the neuron ck.

For each data-set we generated 1000 pairs of
learners by generating subsets of 4 random features.
We applied algorithm ?? and algorithm ?? on each
pair (The size of all maps was fixed to 10 × 10),
then we computed the gain of purity of each col-
laboration, i.e. for each pair. One member of the
pair (noted ”local” collaborator) was chosen to have
a high purity (over 0.8) before collaboration, the
other (noted ”remote” collaborator) being chosen
randomly. The gain in purity (before and after col-
laboration) was computed only for the ”local” col-
laborator. Figures 1 and 2 show the results for each
data-sets, each dot represent a collaboration, either
horizontal (Figure 1) or vertical (Figure 2). Blue
points represent collaborations where the local col-
laborator has a lower purity than the remote col-
laborator, red points represent the opposite case. It
is clear from this Figure that the local collaborator
should receive information from a remote collabo-
rator with a higher purity to increase its own purity
through the collaboration. In most real case in clus-
tering problems we don’t have the true labels of the
data and it is no possible to compute the Purity in-
dex, however, we can see here that the Diversity be-
tween Learners can provide some information about
the quality of the Collaboration. Indeed, when the
diversity is low, the two learners propose very sim-
ilar results and the collaboration is not informative,
leading to a gain close to 0. However, as the local
collaborator has a high purity if the remote collab-
orator proposes a very different solution (high di-
versity), this solution is probably incorrect and the
collaboration will decrease the purity of the local
collaborator. An intermediate diversity is therefore

optimal.

If we think about the goal of a collaboration,
these results make sense: the goal of a collaboration
is to have the SOM algorithms helping each other.
Therefore, when several algorithms find solutions
that are similar, it is most likely that they have actu-
ally found a structure in the data. As such, collabo-
rating with algorithms that have solutions similar to
the local partitioning is a convenient way to avoid
the risk of negative collaboration. There are actu-
ally two good reasons not to collaborate with an al-
gorithm the results of which are too different from
the local partition:

1 This collaborator may be in a feature space
where the clusters to be found are completely
different, even for the same objects.

2 If this collaborator has a solution that is dissim-
ilar to these of all other algorithms, maybe it is
just a bad solution.

This is valid only if the local collaborator has
a high quality. In the general case, the relation-
ship between Diversity and gain of purity is differ-
ent. We tested 1000 collaborations between learn-
ers chosen randomly (see Figure 3 for some exam-
ples in the horizontal framework). In the general
case, it is clear that the Diversity is directly linked
to the variability of the quality of the collaboration.
A low Diversity between learners will lead to a use-
less collaboration. On the contrary, a high Diversity
can potentially greatly improve the result after col-
laboration, when the local collaborator proposes an
incorrect solution and receive a very good solution
from the remote collaborator, or greatly decrease
the quality of the clustering after collaboration (in
the opposite case), or anything between these two
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Table 3. Similarity measure on the waveform subsets

Subset Relevant data-sets Relevant vs Noisy data-sets Noisy data-sets
Similarity index db2/db3 db3/db4 db2/db8 db4/db9 db7/db8 db9/db10
Rand 0.6707 0.7042 0.5539 0.555 0.5430 0.5553
Adjusted Rand 0.2625 0.3356 0.00008 0.0002 0.0000 0.0000
Jaccard 0.3429 0.3869 0.2017 0.2008 0.2000 0.2003
Wallace’s coefficient 0.5079 0.5578 0.3332 0.3342 0.3300 0.3334
Adjusted Wallace 0.5135 0.5581 0.3383 0.3347 0.3500 0.3411
Normal Mutual Information 0.2620 0.3072 0.0002 0.0006 0.0003 0.0004
Variation of Information 2.334 2.1918 3.1577 3.1631 3.1680 3.1664

where |ck| is the total number of data associated
with the neuron ck, and |cik| is the number of data
of class li which are associated with the neuron ck.

For each data-set we generated 1000 pairs of
learners by generating subsets of 4 random features.
We applied algorithm ?? and algorithm ?? on each
pair (The size of all maps was fixed to 10 × 10),
then we computed the gain of purity of each col-
laboration, i.e. for each pair. One member of the
pair (noted ”local” collaborator) was chosen to have
a high purity (over 0.8) before collaboration, the
other (noted ”remote” collaborator) being chosen
randomly. The gain in purity (before and after col-
laboration) was computed only for the ”local” col-
laborator. Figures 1 and 2 show the results for each
data-sets, each dot represent a collaboration, either
horizontal (Figure 1) or vertical (Figure 2). Blue
points represent collaborations where the local col-
laborator has a lower purity than the remote col-
laborator, red points represent the opposite case. It
is clear from this Figure that the local collaborator
should receive information from a remote collabo-
rator with a higher purity to increase its own purity
through the collaboration. In most real case in clus-
tering problems we don’t have the true labels of the
data and it is no possible to compute the Purity in-
dex, however, we can see here that the Diversity be-
tween Learners can provide some information about
the quality of the Collaboration. Indeed, when the
diversity is low, the two learners propose very sim-
ilar results and the collaboration is not informative,
leading to a gain close to 0. However, as the local
collaborator has a high purity if the remote collab-
orator proposes a very different solution (high di-
versity), this solution is probably incorrect and the
collaboration will decrease the purity of the local
collaborator. An intermediate diversity is therefore

optimal.

If we think about the goal of a collaboration,
these results make sense: the goal of a collaboration
is to have the SOM algorithms helping each other.
Therefore, when several algorithms find solutions
that are similar, it is most likely that they have actu-
ally found a structure in the data. As such, collabo-
rating with algorithms that have solutions similar to
the local partitioning is a convenient way to avoid
the risk of negative collaboration. There are actu-
ally two good reasons not to collaborate with an al-
gorithm the results of which are too different from
the local partition:

1 This collaborator may be in a feature space
where the clusters to be found are completely
different, even for the same objects.

2 If this collaborator has a solution that is dissim-
ilar to these of all other algorithms, maybe it is
just a bad solution.

This is valid only if the local collaborator has
a high quality. In the general case, the relation-
ship between Diversity and gain of purity is differ-
ent. We tested 1000 collaborations between learn-
ers chosen randomly (see Figure 3 for some exam-
ples in the horizontal framework). In the general
case, it is clear that the Diversity is directly linked
to the variability of the quality of the collaboration.
A low Diversity between learners will lead to a use-
less collaboration. On the contrary, a high Diversity
can potentially greatly improve the result after col-
laboration, when the local collaborator proposes an
incorrect solution and receive a very good solution
from the remote collaborator, or greatly decrease
the quality of the clustering after collaboration (in
the opposite case), or anything between these two

IMPACT OF LEARNERS’ QUALITY AND . . .

extremes. Actually, the most important informa-
tion here seems to be the quality of the collabora-
tor. As the Purity is an external index which cannot
be computed most of the time, we investigated the
impact of several Internal Quality indexes to predict
the gain in purity after collaboration.

5 Impact of the Internal Quality of
the Learners

In this Section, we analyze the link between the
proportion of relevant information in a data-set and
the Internal Quality of a clustering on these data.
Then we show how Internal Quality indexes and
gain of purity after collaboration are related to each
other.

5.1 Relationship between quantity of infor-
mation and Internal Quality

We used the percentage of noisy features as an
indicator of the proportion of relevant information
in a data-set. Noisy data-set are less informative
than noise-free data-set, because noisy features con-
tain random values. Noise is not the only cause to
explain the lack of relevant information in a collab-
orator: unrelated description of the objects between
the two learners can be another one (in that case the
two partitions are very different). However, noise
is the easiest to manipulate and only depend on the
internal property of the data-set.

We investigated the Correlation between the
percentage of noise in the data and the internal in-
dexes, in order to find the best index to predict the
percentage of relevant information (i.e. here the
percentage of noise). In this experiment, we studied
six different internal indexes: Calinski-Harabasz,
Davies-Bouldin, Krzanowski-Lai, and Silhouette,
as well as two SOM-specific indexes: Topological
error and Quantization error. We recall the defini-
tions of these internal quality indexes.

In the following k is the number of clusters and
n is the number of data x of dimension d. W is the
sum of the within-cluster variances and B is the sum
of the between-cluster variances. xm is the center of
gravity of cluster m. In Silhouette, a(i) is the av-
erage distance between xi and the observations be-
longing to the same cluster as xi and b(i) is the low-
est average distance between xi and the observations

in each other clusters.

The Calinski-Harabasz index is introduced in
[36]

CH(k) =
B(k)/(k−1)

W (k))/(n− k)
. (21)

The Davies-Bouldin index, introduced in [37],
is defined as

DB =
1
k

k

∑max
l ̸=m

avgxi∈l∥xi − xl∥+ avgi∥xi − xm∥
∥xl − xm∥

,

(22)
where avg is the average function.

The Krzanowski-Lai index [38] writes

KL =

∣∣∣∣∣
W (k−1)(k−1)2/d −W (k)k2/d

W (k)k2/d −W (k+1)(k+1)2/d

∣∣∣∣∣ . (23)

Finally, the Silhouette index [39] is given by

S(i) =
b(i)−a(i)

max{a(i),b(i)}
, (24)

the two internal indexes are the Topological er-
ror index Te [40], which is defined as the proportion
of data with the two closest neurons not connected,
and the quantization error index Qe [41]: the aver-
age distance between each data point and its closest
prototype.

The experimental data-set is the waveform data-
set. We generated 1000 subsets from the waveform
data-set, by choosing randomly 10 features with re-
placement among the 40 features of waveform. As
waveform contains 20 informative and 20 noisy fea-
tures, the proportion of noisy features varies be-
tween 0 and 100% in the subsets. A SOM (size
10x10) was applied to each of the subsets, and the
quality indexes were computed to evaluate the SOM
quality. Finally, a correlation analysis between the
percentage of noise and the quality indexes were
performed to find the best index to predict the noise.

Figure 4 shows the correlation between each
index and the percentage of noise. There is a
clear correlation with at least three indexes: Davies-
Bouldin, Calinski-Harabasz and Silhouette. Silhou-
ette index is the best candidate to predict the pro-
portion of relevant information due to the presence
of noise in the data.
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Figure 4. Correlation between the percentage of noisy features and the quality of the clustering for several
quality indexes. r is the Pearson’s correlation, all p < 0.001 (t test).

5.2 Correlation between collaborator’s
Quality and the gain in Purity

Then we conducted in 1000 collaborations be-
tween random learners to calculate the Pearson cor-
relation r and the statistical significance p of this
correlation (t-test) between the Internal Quality In-
dex of the remote collaborator and the gain in a pu-
rity of the local collaborator after collaboration (Ta-
ble 4).

Table 4. Pearson’s Correlation between the gain in
purity and the quality of the collaborator for

several quality indexes.

Indices r p
Quantification error -0.3395 0.0087
Topological error -0.4497 0.0000
Silhouette 0.3915 0.0001
Davis-Bouldin 0.3936 0.0001
Calinski-Harabasz 0.3000 0.1593
Krzanowski-Lai -0.3193 0.0405

The gain of purity is clearly significantly corre-
lated to most internal Quality index. The best cor-
relations are with Silhouette, Davies-Bouldin and
the Topological error. The topological error is the

best predictor of the gain in Purity, but this index is
specific to SOM-based methods. It seems that Sil-
houette index is at the same time a good predictor of
the proportion of noise in the data and the potential
gain in Purity from a collaboration.

These results again make sense. Collabora-
tive Clustering is about trusting the information re-
ceived from the learners in order to update its own
partition based on local data. If a collaborator ob-
tains a partition with a clear structure (i.e. a good
internal quality), the information it shares is worth
using. On the contrary, if the structure is unclear, it
is probably better to use only information from the
local data.

6 Conclusion

In this paper, we studied the impact of the learn-
ers’ Diversity and Quality on the output of the col-
laboration. The results show that the Diversity be-
tween learners can be an important information for
predicting the gain in purity due to the collabora-
tion. However, the Diversity must be completed
with an estimation of the Internal Quality of the
learners.

(a) Noise vs. Te: r = 0.36. (b) Noise vs. Qe: r =−0.20. (c) Noise vs. CH: r =−0.69.

(d) Noise vs. DB: r = 0.56. (e) Noise vs. KL: r =−0.17. (f) Noise vs. Silhouette: r =−0.74.

Figure 4: Correlation between the percentage of noisy features and the quality of the clustering for several
quality indexes. r is the Pearson’s correlation, all p < 0.001 (t test).

the quantization error index Qe [41]: the average dis-
tance between each data point and its closest proto-
type.

The experimental data-set is the waveform data-
set. We generated 1000 subsets from the waveform
data-set, by choosing randomly 10 features with re-
placement among the 40 features of waveform. As
waveform contains 20 informative and 20 noisy fea-
tures, the proportion of noisy features varies between
0 and 100% in the subsets. A SOM (size 10x10)
was applied to each of the subsets, and the quality
indexes were computed to evaluate the SOM quality.
Finally, a correlation analysis between the percent-
age of noise and the quality indexes were performed
to find the best index to predict the noise.

Figure 4 shows the correlation between each index
and the percentage of noise. There is a clear corre-
lation with at least three indexes: Davies-Bouldin,
Calinski-Harabasz and Silhouette. Silhouette index
is the best candidate to predict the proportion of rel-
evant information due to the presence of noise in the
data.

5.2 Correlation between collaborator’s
Quality and the gain in Purity

Then we conducted in 1000 collaborations between
random learners to calculate the Pearson correlation
r and the statistical significance p of this correlation
(t-test) between the Internal Quality Index of the re-
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Figure 4. Correlation between the percentage of noisy features and the quality of the clustering for several
quality indexes. r is the Pearson’s correlation, all p < 0.001 (t test).

5.2 Correlation between collaborator’s
Quality and the gain in Purity

Then we conducted in 1000 collaborations be-
tween random learners to calculate the Pearson cor-
relation r and the statistical significance p of this
correlation (t-test) between the Internal Quality In-
dex of the remote collaborator and the gain in a pu-
rity of the local collaborator after collaboration (Ta-
ble 4).

Table 4. Pearson’s Correlation between the gain in
purity and the quality of the collaborator for

several quality indexes.

Indices r p
Quantification error -0.3395 0.0087
Topological error -0.4497 0.0000
Silhouette 0.3915 0.0001
Davis-Bouldin 0.3936 0.0001
Calinski-Harabasz 0.3000 0.1593
Krzanowski-Lai -0.3193 0.0405

The gain of purity is clearly significantly corre-
lated to most internal Quality index. The best cor-
relations are with Silhouette, Davies-Bouldin and
the Topological error. The topological error is the

best predictor of the gain in Purity, but this index is
specific to SOM-based methods. It seems that Sil-
houette index is at the same time a good predictor of
the proportion of noise in the data and the potential
gain in Purity from a collaboration.

These results again make sense. Collabora-
tive Clustering is about trusting the information re-
ceived from the learners in order to update its own
partition based on local data. If a collaborator ob-
tains a partition with a clear structure (i.e. a good
internal quality), the information it shares is worth
using. On the contrary, if the structure is unclear, it
is probably better to use only information from the
local data.

6 Conclusion

In this paper, we studied the impact of the learn-
ers’ Diversity and Quality on the output of the col-
laboration. The results show that the Diversity be-
tween learners can be an important information for
predicting the gain in purity due to the collabora-
tion. However, the Diversity must be completed
with an estimation of the Internal Quality of the
learners.

IMPACT OF LEARNERS’ QUALITY AND . . .

If the Quality of the local clustering is low, any
collaborator with higher Quality will improve the
quality of the clustering. However, if the Quality
of the local clustering is high, the optimal learners
should have both a high Quality and an intermediate
Diversity (far from 0 and 1).

Indeed, two good clustering solutions must be
different enough to add new information to the
collaboration. They should not be too different,
though, as a collaboration between two very differ-
ent well-structured partitions will result in an aver-
age solution of lower quality.

We showed that the Adjusted Rand index and
the Normalized Mutual Information index are good
candidates to estimate the diversity between Learn-
ers and that Silhouette index is a good estimator of
the quantity of noise in the data and the final Quality
of the collaboration.

Our future work will be to propose a weighted
version of the Topological Collaborative Clustering,
allowing an automatic weight to each collaborator
based of its importance according to its intrinsic
quality and diversity.
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IMPACT OF LEARNERS’ QUALITY AND . . .

If the Quality of the local clustering is low, any
collaborator with higher Quality will improve the
quality of the clustering. However, if the Quality
of the local clustering is high, the optimal learners
should have both a high Quality and an intermediate
Diversity (far from 0 and 1).

Indeed, two good clustering solutions must be
different enough to add new information to the
collaboration. They should not be too different,
though, as a collaboration between two very differ-
ent well-structured partitions will result in an aver-
age solution of lower quality.

We showed that the Adjusted Rand index and
the Normalized Mutual Information index are good
candidates to estimate the diversity between Learn-
ers and that Silhouette index is a good estimator of
the quantity of noise in the data and the final Quality
of the collaboration.

Our future work will be to propose a weighted
version of the Topological Collaborative Clustering,
allowing an automatic weight to each collaborator
based of its importance according to its intrinsic
quality and diversity.
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