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Abstract

The present paper1 aims to propose a new type of information-theoretic method to maxi-
mize mutual information between inputs and outputs. The importance of mutual informa-
tion in neural networks is well known, but the actual implementation of mutual informa-
tion maximization has been quite difficult to undertake. In addition, mutual information
has not extensively been used in neural networks, meaning that its applicability is very
limited. To overcome the shortcoming of mutual information maximization, we present
it here in a very simplified manner by supposing that mutual information is already max-
imized before learning, or at least at the beginning of learning. The method was applied
to three data sets (crab data set, wholesale data set, and human resources data set) and
examined in terms of generalization performance and connection weights. The results
showed that by disentangling connection weights, maximizing mutual information made
it possible to explicitly interpret the relations between inputs and outputs.
Keywords: mutual information; disentanglement; generalization; interpretation

1 Introduction

The present paper proposes a new type of
information-theoretic method to maximize mutual
information in neural networks. Mutual informa-
tion has played an important role in neural net-
works since Linsker proposed his maximum in-
formation presentation or maximum mutual infor-
mation preservation principle [2, 3, 4, 5] to de-
scribe neural networks in visual systems. Though
many methods have been proposed since his origi-
nal proposal, mutual information maximization has
not necessarily been successfully applied to neu-
ral networks [6, 7, 8, 9, 10, 11, 12]. For exam-

ple, Linsker’s pioneering works were mainly con-
cerned with the optimization of entropy, which is
only one component of mutual information maxi-
mization. In addition, the majority of information-
theoretic methods, such as the independent compo-
nent analysis [13, 14, 15, 16], blind source separa-
tion [17, 18], and factorial coding [19, 20], among
others, are mainly concerned with entropy maxi-
mization or mutual information minimization. This
means that these methods are very passive in ex-
tracting important features. For example, they are
used to make components as statistically indepen-
dent as possible, expecting that independent com-
ponents will eventually detect important features.

1This paper is an extended version of the paper presented during the proceedings of the 2017 IEEE Symposium Series on
Computational Intelligence (SSCI 2017)[1]
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However, this is not always true, because the ex-
traction of independent components does not nat-
urally include the operation of extracting features
[19, 20]. These methods implicitly assume that the
property of independence is accompanied by the ex-
traction of important features. Thus, it is necessary
to incorporate the operation of feature extraction in
addition to the extraction of independent compo-
nents. For this, mutual information maximization
is relatively active in relating components to their
corresponding features. This is because all compo-
nents should be equally used in maximizing mutual
information, which implies that neurons are inde-
pendent. However, the use of mutual information
maximization has not been widely pursued, save for
the very important and sophisticated contribution to
the practical implementation of mutual information
by Principe et al. [10, 11]. This is because there
has been some difficulty in its implementation due
to its complex computational procedures, in partic-
ular, the computation of conditional probability and
the corresponding conditional entropy.

Thus, there is an urgent need to simplify the
computational procedures of mutual information.
To do so, we have so far introduced an information-
theoretic method called “potential learning” to
maximize information content on neurons [21, 22,
23, 24]. By supposing the importance or potential-
ity of connection weights or neurons before learn-
ing, the computational procedures of mutual infor-
mation are greatly simplified. In addition, with
potential learning we can specify which neurons
should be fired. However, it has been shown that
these methods nevertheless have some difficulty in
dealing with mutual information. For example, in
[25], mutual information was described by pro-
ducing multiple and independent neural networks
and then considering all produced neural networks.
This sort of method has basically aimed to re-
duce the number of important neurons or connec-
tion weights as much as possible by maximizing in-
formation content in neurons. As was mentioned,
mutual information does not simply imply a reduc-
tion in the number of neurons; rather, it implies that
all neurons are used equally on average. Thus, at
the present stage of potential learning, it is impos-
sible to describe the states produced by mutual in-
formation maximization. Because much difficulty
is involved in computing mutual information, some
simplification is certainly warranted.

Thus, we propose here a more simplified
method, where mutual information is supposed to
be already maximized. This means that a network
configuration to attain maximum mutual informa-
tion is first created in the early stages of learning,
and it is then enhanced in the later stages. More
concretely, we suppose that each neuron is con-
nected with different neurons, while all neurons are
equally used on average. One of the main merits
of the present method is that any tedious compu-
tation of mutual information is completely elimi-
nated. Thus, the method can realize mutual infor-
mation maximization in the most simplified way.

This paper is organized as follows. In Section
2, we present how to formulate mutual informa-
tion by using the absolute values of weights or po-
tentiality. We also present the supposed maximum
mutual information. Next, we present how to as-
similate the potentiality in connection weights. Fi-
nally, we briefly present how to unify weights in
multi-layered neural networks, namely, collective
weights. In Section 3, we present three experimen-
tal results of the method’s being applied to the crab
data set, wholesale data set, and human resources
data set. In all experimental results, we show that
mutual information could be increased by the sim-
plified method. Specifically, the number of strong
connection weights was reduced and led to better
generalization performance. Then, by the collective
weights, multi-layered neural networks were sim-
plified into ones without hidden layers, which made
it possible to interpret final connection weights by
logistic regression analysis.

2 Theory and Computational
Methods

2.1 Mutual Information

Mutual information maximization fundamen-
tally aims to create a network with ideal connec-
tion weights, as portrayed in Figure 1(b). Let us
compute mutual information by using connection
weights from the input to the first hidden layer,
shown in Figure 1(a). The same procedures can
be applied for higher layers as well. Connection
weights from the j0th input node ( j0 = 1,2, ...,J0)
to the j1th hidden neuron ( j1 = 1,2, ...,J1) of the
first hidden layer are represented by w j1 j0 . Follow-
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Figure 1. Neural networks without maximum mutual information (a) and with maximum mutual
information (b)

ing potential learning, we try to determine the im-
portance or potentiality of weights by the absolute
values of weights [26]. This means that when the
absolute values of weights become larger, the po-
tentiality is also higher. Then, the potentiality is
computed by

u j1 j0 =
∣∣w j1 j0

∣∣ . (1)

Then, we should compute the probability of neu-
rons with higher potentiality. By normalizing the
potentiality, we have the probability for a neuron to
have higher conditional potentiality.

p( j1| j0) =
u j1 j0

∑J1
j1=1 u j1 j0

(2)

The probability of the j1th hidden neuron for higher
potentiality is obtained by

p( j1) =
J0

∑
j0=1

p( j0)p( j1| j0). (3)

Using these equations, mutual information between
the inputs and outputs in the first hidden layer is de-

fined by

I10 =
J1

∑
j1=1

J0

∑
j0=1

p( j0) p( j1| j0) log
p( j1| j0)

p( j1)

= −
J1

∑
j1=1

p( j1) log p( j1)

+
J1

∑
j1=1

J0

∑
j0=1

p( j0) p( j1| j0) log p( j1| j0)

= H1 −H10. (4)

When this mutual information is maximized, all the
neurons of the first hidden layer tend to have the
same potentiality on average, and at the same time,
each node of the input layer has higher conditional
potentiality for a specific neuron in the first hidden
layer, which is close to the network shown in Figure
1(b).

2.2 Supposed Mutual Information

Because it is almost impossible to compute mu-
tual information directly, we propose here a simpli-
fied method, where mutual information is supposed
to be already maximized. In the equation (4), to ob-
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tain maximum mutual information, the entropy H1
should be maximized, and at the same time the con-
ditional entropy H10 should be minimized. For sim-
plicity’s sake, the first term of entropy, H1, is sup-
posed to be maximized, meaning that all neurons’
potentialities are equal on average. In addition, the
j0th input node also takes equiprobability; then, the
equation can be

I10 = logJ1+
1
J0

J1

∑
j1=1

J0

∑
j0=1

p( j1| j0) log p( j1| j0). (5)

Following this, all we have to do to maximize mu-
tual information is minimize conditional entropy,
meaning that each neuron should respond to a spe-
cific neuron in a higher layer. In addition, we try to
force connection weights to be as positive as pos-
sible for better interpretation, as shown in Figure
1(b). Thus, in computing conditional probability,
we use the connection weights themselves to real-
ize mutual information maximization. Because for
each input node j0, a specific hidden neuron j1 has
higher conditional probability, we have the follow-
ing equation to minimize conditional entropy

p( j∗1 | j0) =

{
1 j∗1 = argmax j1w j1 j0

0 otherwise.
(6)

This means that a weight should be retained only
when it is to a specific hidden neuron, has the high-
est value and all others are zero. In actual imple-
mentation, the strict application of this conditional
probability tends to cause some trouble, particularly
when the conditional probability is close to zero.
Thus, we need to add some constants to the condi-
tional potentiality as p( j1 | j0)+ ε. In the experi-
ments presented here, ε is set to the default small
value in Matlab.

2.3 Mutual Information Assimilation

In Figure 2(a), In the first epoch of the first
learning step denoted by the superscript (1,1), we
apply the conventional learning method. The final
output from the first hidden layer is computed by

(1,1)vs
j1 = tansig

(
J0

∑
j0=1

(1,1)w j1 j0xs
j0

)
, (7)

where (1,1)w j1 j0 denote weights from the j0th input
node to the j1th hidden neuron and xs

j0 is the sth in-
put (s = 1,2, ...,S) for the j0th input node. For the

other intermediate layers, the same procedures are
applied, and the final output is computed by

(1,1)os
j5 = softmax

(
J5

∑
j5=1

(1,1)w j5 j4
(1,1)vs

j5

)
, (8)

where “softmax” denotes the function defined by
exp(x)/∑exp(x). The cost function is the cross-
entropy function

(1,1)E =−
S

∑
s=1

J5

∑
j5=1

ts
j5 log (1,1)os

j5 , (9)

where ts
j5 are the targets for the corresponding out-

puts. Then, these procedures continue up to the T1th
epoch in Figure 2(a2), and we compute the condi-
tional probability

(1,T1)p( j∗1 | j0) =

{
1 j∗1 = argmax j1

(1,T1)w j1 j0

0 otherwise.
(10)

This conditional probability or potentiality is assim-
ilated in the first epoch of the second step denoted
by (2,1) in Figure 2(b1) as

(2,1)w j∗1 j0 =
(1,Tl)p( j∗1 | j0)(1,T1)w j∗1 j0 . (11)

These steps continue to the T2th epoch in Figure
2(b2), and finally, the conditional probability is
again computed and the final epoch produces the
conditional probability for the next learning step
and so on.

2.4 Collective Interpretation

Finally, we should note the well-known in-
terpretation problem, which is addressed by the
new method of collective weights. Since early re-
search on neural networks, it has been very hard
to interpret the final results obtained by learning
[27, 28, 29, 30, 31]. In the age of multi-layered neu-
ral networks, this problem has become more serious
[32, 33]. To address this problem, in the present pa-
per we introduce collective weights, where all hid-
den weights are treated collectively. In the end,
multi-layered neural networks can be reduced to
the most simplified ones without any hidden layers.
Then, it becomes possible to interpret these simpli-
fied neural networks. This method aims to interpret
relations between inputs and outputs as well as the
overall inference mechanisms of multi-layered neu-
ral networks.
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Figure 2. Computational procedures for mutual information assimilation with four hidden layers.

Then, the collective weights for networks with
four hidden layers are computed by summing up all
weights in the intermediate layers. The collective
weight from the input to the output layer is com-
puted by

w j5 j0 = (12)

J1

∑
j1=1

(
J2

∑
j2=1

(
J3

∑
j3=1

(
J4

∑
j4=1

w j5 j4w j43

)
w j3 j2

)
w j2 j1

)
w j1 j0 .

As shown in Figure 3(a), all hidden layers are
collectively treated by the equation (12). Then, the
multi-layered neural networks are reduced to their
most simplified forms, as shown in Figure 3(b1).
Then, we can interpret relations between inputs
and outputs, just by examining collective weights.
However, as shown in Figure 3(b1), there are still
many connection weights, which makes it hard to
interpret all connection weights. At this point, mu-
tual information maximization is introduced in Fig-
ure 3(a2), where the entanglement of connection

weights is eliminated and the weights are simpli-
fied. Then, from these connection weights in Fig-
ure 3(a2), we can obtain simplified and disentan-
gled collective weights in Figure 3(b2) for better
interpretation.

3 Results and Discussion

3.1 Crab Data Set

3.1.1 Experimental Outline

The well-known crab data set was used to
demonstrate the performance of our method2. The
number of variables and patterns were 6 and 200,
respectively. The variables represented six identify-
ing attributes of crabs, such as species, frontal lip,
rear width, length, width, and depth. The goal of
neural networks for this data set is to infer the gen-
der of the crabs (male or female) based on the vari-
ables. Half of the data set was used for training the
neural networks, and the remaining half was evenly
divided into the validation and testing data sets. For
easy reproduction of the present results, we used
the default parameter values of the Matlab neural

2https://jp.mathworks.com/help/nnet/gs/neural-network-toolbox-sample-data-sets.html?lang=en
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network package.

3.1.2 Mutual Information Maximization

Mutual information is composed of entropy and
conditional entropy. Thus, we show here that en-
tropy kept its relatively high values, while condi-
tional entropy gradually deceased. Then, mutual
information increased when the number of steps in-
creased. Figure 4 shows entropy (1), conditional
entropy (2), and mutual information (3) for the first
hidden layer (a) through to the output layer (g). En-
tropy for the weights for the first layer in Figure 4(a)
gradually decreased when the number of steps in-
creased. However, decrease in the entropy became
slower for the connection weights to the third hid-
den layer in Figure 4(b) and to the weights to the
eleventh layer in Figure 4(f). When we closely ex-
amined mutual information, we could see that it was
relatively larger for hidden to hidden layers com-
pared to input to output layers. This is because the
input and output layers are directly linked to in-
puts and outputs. In addition, mutual information
slightly fluctuated for the output layer, because it
was most explicitly related to the error minimiza-
tion between the targets and outputs. On the other
hand, conditional entropy decreased constantly for
all layers in Figure 4(a)-(f). Since the mutual in-
formation was obtained by subtracting conditional

entropy from entropy, naturally, mutual information
increased gradually in Figure 4(a)-(f).

The results show that the present simplified
method could greatly increase mutual information
by supposing that entropy (H1) is already maxi-
mized. All this leaves for us to do is to minimize
conditional entropy (H). The present results con-
firmed the validity of this presumption. In all lay-
ers, entropy tended to be stable with relatively high
values.

3.1.3 Connection Weights and Generalization

Figure 5 shows connection weights to the first
hidden layer (a) through to the output layer (g) for
the first step (1) and the final step (4). As can be
seen in the figure, in the second step, connection
weights close to those at the final step in Figure
5(4) were already obtained, though minor weights
were observed. For the third step, minor connec-
tion weights were gradually eliminated, and from
this step on, connection weights became stable and
changed little. Figure 6 shows connection weights
from the input node to the first hidden layer in
the Hinton diagram and in the ordinary diagram.
In the ordinary diagram in Figure 6(b), only the
strongest connection weights between two layers
were given. As can be seen in the figure, all the
strongest weights were separately connected with
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puts and outputs. In addition, mutual information
slightly fluctuated for the output layer, because it
was most explicitly related to the error minimiza-
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formation was obtained by subtracting conditional
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method could greatly increase mutual information
by supposing that entropy (H1) is already maxi-
mized. All this leaves for us to do is to minimize
conditional entropy (H). The present results con-
firmed the validity of this presumption. In all lay-
ers, entropy tended to be stable with relatively high
values.

3.1.3 Connection Weights and Generalization

Figure 5 shows connection weights to the first
hidden layer (a) through to the output layer (g) for
the first step (1) and the final step (4). As can be
seen in the figure, in the second step, connection
weights close to those at the final step in Figure
5(4) were already obtained, though minor weights
were observed. For the third step, minor connec-
tion weights were gradually eliminated, and from
this step on, connection weights became stable and
changed little. Figure 6 shows connection weights
from the input node to the first hidden layer in
the Hinton diagram and in the ordinary diagram.
In the ordinary diagram in Figure 6(b), only the
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Figure 4. Entropy (1), conditional entropy (2), and mutual information (3) for weights to the first hidden
layer (a) through to the output layer (f) for the crab data set.
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different neurons. Thus, disentanglement was al-
most accomplished.

Figure 7(a) shows generalization errors as a
function of the number of hidden layers. Errors
by the mutual information method gradually de-
creased when the number of layers gradually in-
creased. On the other hand, generalization errors
by the non-mutual information method increased
when the number of layers increased. In particular,
when the number of layers became higher, general-
ization errors rapidly increased. Figure 7(b) shows
the number of steps with minimum validation er-
rors as a function of the number of layers. As can
be seen, the number of steps by mutual informa-
tion maximization was much higher than that by the
non-mutual information method. This means that
over-training was restricted by the mutual informa-
tion method.

In addition, in the field of deep learning, much
recent attention has been paid to multi-layered neu-
ral networks. Then, mutual information should play
more important roles in increasing the performance
of multi-layered neural networks. For example, in
multi-layered neural networks, many layers, and
neurons are used, and we must face the problem of
entanglement [34], where many neurons or connec-
tion weights tend to be entangled with each other.
The entanglement is one of the main causes of dif-
ficulty in improving generalization and interpreting
connection weights. As mentioned earlier, it is not
sufficient to make components as independent as
possible; rather, we need to relate the components
with their corresponding ones. To disentangle con-
nection weights or neurons, we introduced mutual
information between neurons here. When mutual
information is maximized, all neurons should on
average be used equally. On the other hands, each
neuron should be explicitly connected with differ-
ent neurons. Thus, all neurons are used on average,
and all neurons are connected differently with the
other neurons. Thus, we can say that all the neu-
rons can be disentangled and be expected to trans-
mit information on inputs and errors explicitly and
efficiently.

3.1.4 Interpreting Collective Weights

Figure 8(a) shows the collective weights for the
first output neuron, where input neuron No.3 was
the largest. For the second output neuron in Fig-

ure 8(b), input neuron No.3 had the largest abso-
lute value, but it was negative. By the non-mutual
information method, the collective weights in Fig-
ure 8(b) were almost the same as that by the mutual
information method. Mutual information focused
on the first neuron, while non-mutual information
used both output neurons. In addition, we can see
that the correlation coefficients between connection
weights to two output neurons were slightly re-
duced to -0.9458 by the mutual information method
from -0.9831 by non-mutual information. The re-
gression coefficients by the logistic regression anal-
ysis showed that variable No.3 had the largest value,
but some other coefficients had relatively large val-
ues as well. Thus, the present method shows the
relations between inputs and outputs more explic-
itly. The results show that the collective weights
were effective in extracting relations between inputs
and inputs. In particular, mutual information maxi-
mization seemed to make important relations more
explicit.

3.2 Wholesale Data Set

3.2.1 Experimental Outline

The dataset refers to clients of a wholesale dis-
tributor. It includes the annual spending in mone-
tary units on diverse product categories [35]. The
number of input patterns was 440 and the num-
ber of input variables were seven. We examined
which variables contributed to the channel differ-
ences, namely, the hotel and coffee shops channel
and the retail channel. The number of hidden layers
was increased from one to ten layers. Fifty percent
of the data set was used for training, 25 percent for
validation and the remaining 25 percent for testing.
We used the Matlab neural network package with
all default parameter values for easy reproduction
of the results presented here.

3.2.2 Mutual Information Maximization

The experimental results show that in the lower
layers, conditional entropy decreased sufficiently,
and thus mutual information increased gradually.
For the higher layers, conditional entropy decreased
rapidly, and correspondingly, mutual information
rapidly increased and remained constant. Figure 9
shows entropy, conditional entropy and mutual in-
formation for the weights to the first hidden layer
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different neurons. Thus, disentanglement was al-
most accomplished.

Figure 7(a) shows generalization errors as a
function of the number of hidden layers. Errors
by the mutual information method gradually de-
creased when the number of layers gradually in-
creased. On the other hand, generalization errors
by the non-mutual information method increased
when the number of layers increased. In particular,
when the number of layers became higher, general-
ization errors rapidly increased. Figure 7(b) shows
the number of steps with minimum validation er-
rors as a function of the number of layers. As can
be seen, the number of steps by mutual informa-
tion maximization was much higher than that by the
non-mutual information method. This means that
over-training was restricted by the mutual informa-
tion method.

In addition, in the field of deep learning, much
recent attention has been paid to multi-layered neu-
ral networks. Then, mutual information should play
more important roles in increasing the performance
of multi-layered neural networks. For example, in
multi-layered neural networks, many layers, and
neurons are used, and we must face the problem of
entanglement [34], where many neurons or connec-
tion weights tend to be entangled with each other.
The entanglement is one of the main causes of dif-
ficulty in improving generalization and interpreting
connection weights. As mentioned earlier, it is not
sufficient to make components as independent as
possible; rather, we need to relate the components
with their corresponding ones. To disentangle con-
nection weights or neurons, we introduced mutual
information between neurons here. When mutual
information is maximized, all neurons should on
average be used equally. On the other hands, each
neuron should be explicitly connected with differ-
ent neurons. Thus, all neurons are used on average,
and all neurons are connected differently with the
other neurons. Thus, we can say that all the neu-
rons can be disentangled and be expected to trans-
mit information on inputs and errors explicitly and
efficiently.

3.1.4 Interpreting Collective Weights

Figure 8(a) shows the collective weights for the
first output neuron, where input neuron No.3 was
the largest. For the second output neuron in Fig-

ure 8(b), input neuron No.3 had the largest abso-
lute value, but it was negative. By the non-mutual
information method, the collective weights in Fig-
ure 8(b) were almost the same as that by the mutual
information method. Mutual information focused
on the first neuron, while non-mutual information
used both output neurons. In addition, we can see
that the correlation coefficients between connection
weights to two output neurons were slightly re-
duced to -0.9458 by the mutual information method
from -0.9831 by non-mutual information. The re-
gression coefficients by the logistic regression anal-
ysis showed that variable No.3 had the largest value,
but some other coefficients had relatively large val-
ues as well. Thus, the present method shows the
relations between inputs and outputs more explic-
itly. The results show that the collective weights
were effective in extracting relations between inputs
and inputs. In particular, mutual information maxi-
mization seemed to make important relations more
explicit.

3.2 Wholesale Data Set

3.2.1 Experimental Outline

The dataset refers to clients of a wholesale dis-
tributor. It includes the annual spending in mone-
tary units on diverse product categories [35]. The
number of input patterns was 440 and the num-
ber of input variables were seven. We examined
which variables contributed to the channel differ-
ences, namely, the hotel and coffee shops channel
and the retail channel. The number of hidden layers
was increased from one to ten layers. Fifty percent
of the data set was used for training, 25 percent for
validation and the remaining 25 percent for testing.
We used the Matlab neural network package with
all default parameter values for easy reproduction
of the results presented here.

3.2.2 Mutual Information Maximization

The experimental results show that in the lower
layers, conditional entropy decreased sufficiently,
and thus mutual information increased gradually.
For the higher layers, conditional entropy decreased
rapidly, and correspondingly, mutual information
rapidly increased and remained constant. Figure 9
shows entropy, conditional entropy and mutual in-
formation for the weights to the first hidden layer
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Figure 5. Connection weights from the first (a) to output (f) layer, and for the first step (1) to the final step
(4) for the crab data set.
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Figure 6. Connection weights from the inputs to the first hidden layer in a Hinton diagram (a) and in a
conventional diagram for the weights surrounded by a red square in Figure 5 for the crab data set.
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Figure 7. Generalization errors (a) and the number of steps to reach the minimum validation errors (b) by
mutual, non-mutual, and logistic regression for the crab data set.
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(a) through to the output layer (f). As can be seen
in Figure 9(a), entropy decreased gradually for the
weight to the first hidden layer, but conditional en-
tropy deceased more rapidly. Then, mutual infor-
mation gradually increased in the end. For the
weights to the third hidden layer in Figure 9(b), en-
tropy decreased at the beginning and remained to
be almost constant, while conditional entropy de-
creased gradually. Then, mutual information grad-
ually increased. For the weights to the fifth hidden
layer in Figure 9(c) to those to the output layer in
Figure 9(f), conditional entropy decreased immedi-
ately and remained almost constant. Correspond-
ingly, mutual information increased rapidly and re-
mained constant.

The results show that connection weights from
the input nodes to the first hidden layer in Figure
9(a) and weights to the output layer in Figure 9(f)
were not easily controlled by mutual information
maximization. For the weights to the first hidden
layer in Figure 9(a), entropy tended to decrease,
while the entropy tended to be constant for the other
cases. This shows that connection weights to the
first hidden layer were more strongly influenced
by inputs. On the other hand, for the connection
weights to the output layer in Figure 9(f), the values
of entropy, conditional entropy, and mutual infor-
mation were relatively smaller, because they were
used to decrease errors between targets and outputs.
In addition, the number of output neurons was only
two, while the number of hidden neurons was ten;
this made it impossible to increase mutual informa-
tion. The results showed that mutual information
could be increased more flexible in the intermediate
layers.

3.2.3 Comparison of Connection Weights

The results show that, by supposing maximum
mutual information, many strong weights in the
first step disappeared, and only in the third step,
sparse and positive weights were obtained by the
present method. In addition, it was confirmed that
the majority of neurons were connected with dif-
ferent neurons, disentangling neurons and connec-
tion weights. Figure 10 shows weights from the
first hidden layer (a) through to the output layer (f).
In the first step in Figure 10(1), because no mutual
information was applied, many strong positive and
negative weights were observed. In the second step

in Figure 10(2), the number of strong connection
weights was reduced greatly, but some smaller posi-
tive and negative weights could be seen. In the third
step in Figure 10(3), the majority of small connec-
tion weights disappeared, and only a small num-
ber of connection weights remained strong. For
the final step in Figure 10(4), the number of mi-
nor connection weights, and in particular, negative
weights, were further reduced, and almost all con-
nection weights were positive. These results show
how that three learning steps were enough to reach
a state close to the final state. In the later steps, con-
nection weights were fine-tuned to eliminate minor
weights and to make connection weights positive.

Figure 11 shows connection weights from the
input layer to the first hidden layer in Figure 10(a4).
The first input node was not explicitly connected
with the hidden neurons, and the fourth and the
sixth input nodes were connected with the same
sixth hidden neuron. All the other input nodes
were connected with different hidden neurons. This
means that unnecessary neurons or nodes could be
automatically eliminated.

3.2.4 Interpreting Collective Weights

Collective weights by the present method pro-
duced quite clear characteristics than the by the
method without information maximization. In ad-
dition, it turned out that the collective weights were
quite similar to the regression coefficients by the
logistic regression analysis. Figure 12 shows the
collective weights for the wholesale data set. By
mutual information maximization, the input vari-
able No.6 had the largest positive value for the first
output neurons and negatively for the second out-
put neuron. On the other hand, without mutual
information maximization, in addition to variable
No.6, several other variables gained some impor-
tance. Then, the correlation coefficient between
connection weights to two output neurons was re-
duced from -0.9862 by the non-mutual information
method to -0.8754 by mutual information and the
non-mutual information method, meaning that con-
nection weights by mutual information maximiza-
tion were slightly less correlated. Finally, the re-
gression analysis showed the same tendency (that
variable No.6 was the most important). These re-
sults show that the multi-layered neural networks
with mutual information maximization produced al-
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(a) through to the output layer (f). As can be seen
in Figure 9(a), entropy decreased gradually for the
weight to the first hidden layer, but conditional en-
tropy deceased more rapidly. Then, mutual infor-
mation gradually increased in the end. For the
weights to the third hidden layer in Figure 9(b), en-
tropy decreased at the beginning and remained to
be almost constant, while conditional entropy de-
creased gradually. Then, mutual information grad-
ually increased. For the weights to the fifth hidden
layer in Figure 9(c) to those to the output layer in
Figure 9(f), conditional entropy decreased immedi-
ately and remained almost constant. Correspond-
ingly, mutual information increased rapidly and re-
mained constant.

The results show that connection weights from
the input nodes to the first hidden layer in Figure
9(a) and weights to the output layer in Figure 9(f)
were not easily controlled by mutual information
maximization. For the weights to the first hidden
layer in Figure 9(a), entropy tended to decrease,
while the entropy tended to be constant for the other
cases. This shows that connection weights to the
first hidden layer were more strongly influenced
by inputs. On the other hand, for the connection
weights to the output layer in Figure 9(f), the values
of entropy, conditional entropy, and mutual infor-
mation were relatively smaller, because they were
used to decrease errors between targets and outputs.
In addition, the number of output neurons was only
two, while the number of hidden neurons was ten;
this made it impossible to increase mutual informa-
tion. The results showed that mutual information
could be increased more flexible in the intermediate
layers.

3.2.3 Comparison of Connection Weights

The results show that, by supposing maximum
mutual information, many strong weights in the
first step disappeared, and only in the third step,
sparse and positive weights were obtained by the
present method. In addition, it was confirmed that
the majority of neurons were connected with dif-
ferent neurons, disentangling neurons and connec-
tion weights. Figure 10 shows weights from the
first hidden layer (a) through to the output layer (f).
In the first step in Figure 10(1), because no mutual
information was applied, many strong positive and
negative weights were observed. In the second step

in Figure 10(2), the number of strong connection
weights was reduced greatly, but some smaller posi-
tive and negative weights could be seen. In the third
step in Figure 10(3), the majority of small connec-
tion weights disappeared, and only a small num-
ber of connection weights remained strong. For
the final step in Figure 10(4), the number of mi-
nor connection weights, and in particular, negative
weights, were further reduced, and almost all con-
nection weights were positive. These results show
how that three learning steps were enough to reach
a state close to the final state. In the later steps, con-
nection weights were fine-tuned to eliminate minor
weights and to make connection weights positive.

Figure 11 shows connection weights from the
input layer to the first hidden layer in Figure 10(a4).
The first input node was not explicitly connected
with the hidden neurons, and the fourth and the
sixth input nodes were connected with the same
sixth hidden neuron. All the other input nodes
were connected with different hidden neurons. This
means that unnecessary neurons or nodes could be
automatically eliminated.

3.2.4 Interpreting Collective Weights

Collective weights by the present method pro-
duced quite clear characteristics than the by the
method without information maximization. In ad-
dition, it turned out that the collective weights were
quite similar to the regression coefficients by the
logistic regression analysis. Figure 12 shows the
collective weights for the wholesale data set. By
mutual information maximization, the input vari-
able No.6 had the largest positive value for the first
output neurons and negatively for the second out-
put neuron. On the other hand, without mutual
information maximization, in addition to variable
No.6, several other variables gained some impor-
tance. Then, the correlation coefficient between
connection weights to two output neurons was re-
duced from -0.9862 by the non-mutual information
method to -0.8754 by mutual information and the
non-mutual information method, meaning that con-
nection weights by mutual information maximiza-
tion were slightly less correlated. Finally, the re-
gression analysis showed the same tendency (that
variable No.6 was the most important). These re-
sults show that the multi-layered neural networks
with mutual information maximization produced al-
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(a) Weights to the 1st hidden layer

(b) Weights to the 3rd hidden layer

(c) Weights to the 5th hidden layer

(d) Weights to the 7th hidden layer

(e) Weights to the 9th hidden layer

(f) Weights to the 11th hidden layer

(1) Entropy (3) Mutual information(2) Conditional Entropy

Figure 9. Entropy (1), conditional entropy (2), and mutual information (3) for weights to the first hidden
layer (a) through to the output layer (f) for the wholesale data set.
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(a) Weihts to the 1st hidden layer

(b) 3rd hidden layer

(c) 5th hidden layer

(d) 7th hidden layer

(e) 9th hidden layer

(f) Output layer
(1) 1st step (2) 2nd step (3) 3rd step (4) Final step

Figure 10. Connection weights from the first (a) through to the output (f) layer and for the first step (1) to
the final step (4) for the wholesale data set.
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(a) Weihts to the 1st hidden layer

(b) 3rd hidden layer

(c) 5th hidden layer
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Figure 10. Connection weights from the first (a) through to the output (f) layer and for the first step (1) to
the final step (4) for the wholesale data set.
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the wholesale data set. The correlation coefficient between connection weights to two output neurons were
-0.8754 and -0.9862 by mutual information and the non-mutual information method.
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most the same input-output relations as that by the
regression analysis. In addition, mutual informa-
tion maximization had the effect of making weights
clearer.

3.2.5 Generalization Comparison

Mutual information maximization produced the
best generalization performance in terms of aver-
age, minimum, and maximum values. Table 1
shows the summary of generalization errors by the
three methods. The lowest generalization error of
0.0909 was obtained by mutual information maxi-
mization with six hidden layers. This method also
obtained the lowest standard deviation of 0.0178
with ten hidden layers. The lowest minimum er-
ror of 0.0545 was obtained with two hidden layers
by mutual and non-mutual information. The lowest
maximum value of 0.1182 was obtained by infor-
mation maximization with six and ten hidden lay-
ers. The logistic regression analysis produced the
second-best average error of 0.0982. One of the
main differences between mutual information and
non-mutual information was that, for mutual infor-
mation, the number of steps to reach the minimum
validation error was always larger than that for non-
mutual information. For example, without mutual
information, the number of steps to reach the low-
est validation error ranged between 1.1 (two hid-
den layers) and 2.7 (ten hidden layers). On the
other hand, by mutual information maximization,
the number of steps for the lowest validation er-
rors increased from 4.5 with four hidden layers to
9.3 with ten hidden layers. This means that mu-
tual information maximization could improve gen-
eralization performance by increasing the number
of steps without over-training. The over-training
was strictly controlled by mutual information max-
imization.

3.3 Human Resources Data Set

3.3.1 Experimental Outline

The purpose of the Human Resources Data
Set was to examine the reason why employees
leave companies. 3 The number of inputs was
14,999, and eight variables were used: satisfaction
level, last evaluation, number of projects, average
monthly hours, time spent at the company, whether

they had a work accident, whether they had a pro-
motion in the last five years, and salary. Half of the
data set was for training, and the remaining was di-
vided into a 25 percent validation and 25 percent
testing data set.

3.3.2 Mutual Information Maximization

The experimental results confirmed that mutual
information increased gradually when the number
of steps increased because conditional entropy de-
creased, while entropy values remained high. Fig-
ure 13 shows entropy (1), conditional entropy (2),
and mutual information (3) as a function of the
number of steps. For the weights to the first hidden
layer, entropy decreased slightly in Figure 13(a),
but conditional entropy decreased further. Thus,
mutual information increased gradually. Connec-
tion weights directly connected with inputs cannot
be easily controlled by mutual information maxi-
mization; this is why mutual information for the
connection weights to the first hidden layer in-
creased very slowly. For the connection weights to
the third hidden layer in Figure 13(b) and to the fifth
hidden layer in Figure 13(c), entropy decreased at
the beginning and became almost constant, and con-
ditional entropy deceased substantially. Thus, mu-
tual information increased gradually as a function
of the number of steps. However, for the connection
weights to the seventh hidden layer in Figure 13(d),
the entropy was almost constant, but it was smaller
than that at the other layers. Because of this, mutual
information increased but with relatively smaller
values. We think that, in this layer, the number
of active hidden neurons became smaller, and sev-
eral hidden neurons were not actually used. For
the connection weights for the weights to the ninth
and the output layer in Figures 13(e) and (f), con-
ditional entropy decreased and then remained con-
stant with some fluctuations. Thus, mutual infor-
mation jumped to certain high values and fluctuated
for the later steps of learning. Connection weights
directly connected with outputs and close to the out-
put layer cannot be easily changed by mutual infor-
mation maximization, because of the effect of error
minimization is larger than for the other layers.

3https://www.kaggle.com/deepakgarg22396/human-resources/data
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most the same input-output relations as that by the
regression analysis. In addition, mutual informa-
tion maximization had the effect of making weights
clearer.

3.2.5 Generalization Comparison

Mutual information maximization produced the
best generalization performance in terms of aver-
age, minimum, and maximum values. Table 1
shows the summary of generalization errors by the
three methods. The lowest generalization error of
0.0909 was obtained by mutual information maxi-
mization with six hidden layers. This method also
obtained the lowest standard deviation of 0.0178
with ten hidden layers. The lowest minimum er-
ror of 0.0545 was obtained with two hidden layers
by mutual and non-mutual information. The lowest
maximum value of 0.1182 was obtained by infor-
mation maximization with six and ten hidden lay-
ers. The logistic regression analysis produced the
second-best average error of 0.0982. One of the
main differences between mutual information and
non-mutual information was that, for mutual infor-
mation, the number of steps to reach the minimum
validation error was always larger than that for non-
mutual information. For example, without mutual
information, the number of steps to reach the low-
est validation error ranged between 1.1 (two hid-
den layers) and 2.7 (ten hidden layers). On the
other hand, by mutual information maximization,
the number of steps for the lowest validation er-
rors increased from 4.5 with four hidden layers to
9.3 with ten hidden layers. This means that mu-
tual information maximization could improve gen-
eralization performance by increasing the number
of steps without over-training. The over-training
was strictly controlled by mutual information max-
imization.

3.3 Human Resources Data Set

3.3.1 Experimental Outline

The purpose of the Human Resources Data
Set was to examine the reason why employees
leave companies. 3 The number of inputs was
14,999, and eight variables were used: satisfaction
level, last evaluation, number of projects, average
monthly hours, time spent at the company, whether

they had a work accident, whether they had a pro-
motion in the last five years, and salary. Half of the
data set was for training, and the remaining was di-
vided into a 25 percent validation and 25 percent
testing data set.

3.3.2 Mutual Information Maximization

The experimental results confirmed that mutual
information increased gradually when the number
of steps increased because conditional entropy de-
creased, while entropy values remained high. Fig-
ure 13 shows entropy (1), conditional entropy (2),
and mutual information (3) as a function of the
number of steps. For the weights to the first hidden
layer, entropy decreased slightly in Figure 13(a),
but conditional entropy decreased further. Thus,
mutual information increased gradually. Connec-
tion weights directly connected with inputs cannot
be easily controlled by mutual information maxi-
mization; this is why mutual information for the
connection weights to the first hidden layer in-
creased very slowly. For the connection weights to
the third hidden layer in Figure 13(b) and to the fifth
hidden layer in Figure 13(c), entropy decreased at
the beginning and became almost constant, and con-
ditional entropy deceased substantially. Thus, mu-
tual information increased gradually as a function
of the number of steps. However, for the connection
weights to the seventh hidden layer in Figure 13(d),
the entropy was almost constant, but it was smaller
than that at the other layers. Because of this, mutual
information increased but with relatively smaller
values. We think that, in this layer, the number
of active hidden neurons became smaller, and sev-
eral hidden neurons were not actually used. For
the connection weights for the weights to the ninth
and the output layer in Figures 13(e) and (f), con-
ditional entropy decreased and then remained con-
stant with some fluctuations. Thus, mutual infor-
mation jumped to certain high values and fluctuated
for the later steps of learning. Connection weights
directly connected with outputs and close to the out-
put layer cannot be easily changed by mutual infor-
mation maximization, because of the effect of error
minimization is larger than for the other layers.

3https://www.kaggle.com/deepakgarg22396/human-resources/data
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Table 1. Summary of experimental results on generalization performance for the wholesale data set

Methods Layers Steps Average Std dev Min Max
Logistic 0.0982 0.0186 0.0727 0.1273
Withtout 1 1.2 0.1100 0.0349 0.0636 0.1636

2 1.1 0.1018 0.0263 0.0545 0.1364
3 2.2 0.1282 0.0480 0.0818 0.2364
4 1.5 0.1045 0.0243 0.0727 0.1455
5 1.9 0.1182 0.0231 0.0727 0.1455
6 2.2 0.1182 0.0291 0.0818 0.1909
7 1.9 0.1145 0.0291 0.0727 0.1727
8 1.7 0.1209 0.0261 0.0909 0.1727
9 2.3 0.1209 0.0231 0.0636 0.1455
10 2.7 0.1100 0.0295 0.0818 0.1727

With 1 7.7 0.1100 0.0432 0.0636 0.1909
2 5.3 0.1100 0.0292 0.0545 0.1545
3 6.3 0.1091 0.0187 0.0909 0.1455
4 4.5 0.1073 0.0249 0.0636 0.1455
5 7.6 0.1036 0.0202 0.0636 0.1364
6 5.4 0.0909 0.0182 0.0636 0.1182
7 6.9 0.0982 0.0195 0.0727 0.1273
8 4.7 0.0918 0.0220 0.0636 0.1273
9 5.8 0.1045 0.0258 0.0818 0.1455
10 9.3 0.0955 0.0178 0.0636 0.1182
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(a) Weights to the 1st hidden layer

(b) Weights to the 3rd hidden layer

(c) Weights to the 5th hidden layer

(d) Weights to the 7th hidden layer

(e) Weights to the 9th hidden layer

(f) Weights to the 11th hidden layer

(1) Entropy (3) Mutual information(2) Conditional Entropy

Figure 13. Entropy (1), conditional entropy (2), and mutual information (3) for weights to the first hidden
layer (a) through to the output layer (f) for the human resources data set.
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(a) Weights to the 1st hidden layer

(b) Weights to the 3rd hidden layer

(c) Weights to the 5th hidden layer

(d) Weights to the 7th hidden layer

(e) Weights to the 9th hidden layer

(f) Weights to the 11th hidden layer
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Figure 13. Entropy (1), conditional entropy (2), and mutual information (3) for weights to the first hidden
layer (a) through to the output layer (f) for the human resources data set.

SUPPOSED MAXIMUM MUTUAL INFORMATION FOR . . .

3.3.3 Comparison of Connection Weights

Connection weights became close to the final
ones with only three steps, where[M1] the number
of strong weights was smaller. Figure 14 shows
connection weights for the first step (1) to the final
step (4). Strong positive and negative weights in
Figure 14(1) for the first step became smaller in the
second step in Figure 14(2), with some minor nega-
tive connection weights. In the third step in Figure
14(3), the minor negative connection weights were
almost eliminated, and weights were close to the
final connection weights in Figure 14(4). These re-
sults show the effectiveness of the present method
where, because maximum mutual information is
supposed to be already attained from the beginning
by assigning one for specific conditional probabil-
ity, many connection weights are forced to be zero,
while only several connection weights remained
strong. This supposed maximum information had
the effect of accelerating the process of mutual in-
formation. The present results confirmed that only
several steps are necessary for attaining the maxi-
mum information state.

Figure 15 more explicitly shows connection
weights between the input layer and the first hid-
den layer, depicted by red squares in Figure 14. As
can be seen in the figure, the first node in the in-
put layer was connected with the third neuron in the
first hidden layer. The second input node was con-
nected with the fifth hidden neuron, and the third in-
put node was connected with the eighth hidden neu-
ron. Finally, the fourth input node was connected
with one hidden neuron, namely, the sixth hidden
neuron. Thus, the majority of input nodes were con-
nected with different hidden neurons, while the re-
maining ones were not connected with any hidden
neurons. The results show that several inputs and
hidden neurons were not directly connected. Thus,
the present method had the effect of eliminating un-
necessary inputs as well as hidden neurons.

3.3.4 Interpreting Collective Weights

The clearest collective weights obtained by mu-
tual information maximization could be easily inter-
preted. In addition, when collective weights to two
output neurons were combined, they became simi-
lar to the coefficients by regression analysis. Figure
16 shows collective weights for the first and sec-
ond output neuron by mutual information (a), non-

mutual information (b), and regression coefficients
by the regression analysis (c). As shown in Fig-
ure 16(a), for the first output neuron, the fifth in-
put node had the largest weights, while the first and
the third weights had larger absolute values for the
second output neuron in Figure 16(b). On the other
hand, collective weights by non-mutual information
in Figure 16(b) had different large weights for the
first and second output neurons.

The logistic analysis produced coefficients that
seemed to be different from those produced by mu-
tual information. However, we could see quite sim-
ilar characteristics between them. For example, the
largest positive coefficient was input variable No.6,
which was also the largest positive collective weight
for the first output neuron in Figure 16(a). On the
other hand, the largest and the second largest abso-
lute value for the negative weights were input vari-
ables No.1 and No.3. They had also the largest and
the second largest values for the second output neu-
ron. Thus, the largest coefficients of the logistic re-
gression analysis were decomposed into the collec-
tive weights to two output neurons by the present
method. These results show that two output neu-
rons tended to extract mutually exclusive features.
The above results can be made clearer by noting
that the correlation coefficient between connection
weights to two output neurons was greatly reduced,
from -0.9804 to 0.033, by the mutual information
maximization method.

Let us interpret the final results more concretely.
The first output neuron refers to the probability that
employees will leave the company. Variable No.5
represents the time spent at the company. Thus, em-
ployees tend to leave the company after they have
spent more time there. The second output, in Fig-
ure 16(a2), represents the probability with which
the employees will not leave the company. The
largest absolute weight is connected with variable
No.3, representing the number of projects. Thus,
as the number of projects increases, the employees
tend to be more reluctant to leave the company. The
second largest weight was connected with variable
No.1, representing satisfaction level. Thus, as the
satisfaction level increases, the employees tend to
be naturally reluctant to leave the company. The re-
sults show that, to prevent the employees from leav-
ing the company, two factors?the satisfaction level
and the number of projects?must be seriously taken
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Figure 14. Connection weights from the first (a) through to the output (f) layer for the first step (1), the
second (2), the third (3), and the 20th step (4) for the human resources data set.
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Figure 14. Connection weights from the first (a) through to the output (f) layer for the first step (1), the
second (2), the third (3), and the 20th step (4) for the human resources data set.
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Figure 15. Connection weights to the input layer to the first hidden layer, corresponding to Figure 14(a4)
for the human resources data set.

into account. Compared with the other results by
the non-mutual information method in Figure 16(b)
and by the regression analysis in Figure 16(c), the
mutual information method could produce the most
explicit interpretations, which seemed to be intu-
itively reasonable.

3.3.5 Generalization Comparison

Multi-layered neural networks produced better
generalization performance than the logistic analy-
sis. In particular, mutual information maximization
produced the best generalization performance. Ta-
ble 2 shows generalization errors for ten different
hidden layers. As can be seen in the figure, the low-
est errors of 0.0483, 0.0377, and 0.0549 were all
obtained by mutual information maximization. One
exception was the standard deviation of 0.0034,
which was obtained by the non-mutual information
method. Without mutual information maximiza-
tion, generalization errors were larger than those
by mutual information maximization for almost all
hidden layers. On the other hand, the logistic analy-
sis produced the worst errors of 0.2270, 0.2149, and
0.2509 in terms of average, minimum, and maxi-
mum values.

One of the main differences between mutual in-
formation and non-mutual information is the num-
ber of steps needed to reach the smallest validation

errors. By non-mutual information, the number of
steps ranged between 3.1 and 8.2 on average, while
by mutual information maximization, the number
of steps increased from 5.9 with one hidden layer
to 13.5 with five hidden layers. As was already
mentioned, with five layers, the minimum gener-
alization error was obtained. Thus, the number of
steps is directly related to improved generalization
performance. We can say that, by mutual infor-
mation maximization, the over-training is appropri-
ately controlled.

4 Conclusion

The present paper aimed to propose a new type
of information-theoretic method in which mutual
information is supposed to be maximized before
learning, or at least at the beginning of learning. We
have so far developed a new information-theoretic
method for simplifying information maximization
[21, 22, 23, 24, 25]. Basically, information max-
imization is realized by decreasing the number of
important neurons and connection weights. Thus,
by appropriately defining and maximizing informa-
tion content, only one neuron or connection weight
becomes the strongest, while all the others are in-
active. This method has so far produced neural net-
works with a small number of connection weights
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Table 2. Summary of experimental results on generalization performance for the human resources data set

Methods Layers Steps Average Std dev Min Max
Logisitc 0.2270 0.0112 0.2149 0.2509
Without 1 4.3 0.0566 0.0072 0.0451 0.0691

2 5.6 0.0535 0.0034 0.0474 0.0583
3 3.9 0.0553 0.0063 0.0451 0.0680
4 4.6 0.0546 0.0071 0.0434 0.0646
5 5.1 0.0553 0.0067 0.0457 0.0669
6 4.2 0.0548 0.0046 0.0491 0.0600
7 5.1 0.0565 0.0046 0.0474 0.0617
8 3.1 0.0550 0.0055 0.0457 0.0640
9 3.9 0.0555 0.0052 0.0429 0.0629
10 8.2 0.0621 0.0090 0.0503 0.0771

With 1 5.9 0.0567 0.0057 0.0486 0.0663
2 9.4 0.0494 0.0051 0.0411 0.0589
3 11 0.0497 0.0061 0.0440 0.0646
4 12 0.0491 0.0055 0.0383 0.0566
5 13.5 0.0483 0.0054 0.0389 0.0549
6 13.4 0.0495 0.0066 0.0394 0.0566
7 12.2 0.0486 0.0049 0.0411 0.0583
8 13 0.0511 0.0057 0.0429 0.0583
9 14 0.0534 0.0091 0.0377 0.0657

10 9.5 0.0619 0.0165 0.0383 0.0897
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Figure 16. Collective weights into the first (1) and the second (2) output neuron by the mutual (a) and
non-mutual (b) information method and regression coefficients (c) by the logistic regression analysis for the
human resources data set. The correlation coefficients between connection weights to two output neurons

were 0.033 and -0.9804 by the mutual information and non-mutual information methods, respectively.

or neurons. However, it has been observed that
some redundant connection weights or neurons are
necessary for improved generalization and interpre-
tation. When the number of neurons and connec-
tion weights increases, some neurons or connection
weights become entangled with other ones, pre-
venting us from interpreting the final connection
weights. To disentangle these components, we need
to maximize mutual information. When mutual
information between neurons is maximized, each
neuron responds to very specific neurons, and at the
same time, all neurons are used equally on average.
However, it is well known that the precise compu-
tation of mutual information maximization is very
expensive. Thus, we proposed here a simplified
method in which mutual information was supposed
to be already maximized.

The method was applied to the crab data set, the
wholesale data set, and human resources data set.
The experimental results show that mutual informa-
tion could be increased by the present method, lead-
ing to improved generalization performance. Fi-
nally, we could interpret relations between inputs
and outputs. The results confirm that the present

method could extract the most important variables.
In addition, generalization performance could be
much better than that by the logistic regression anal-
ysis. Further research should examine the ways in
which features extracted by the present method are
different from those extracted by other methods.
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