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Abstract

A topological property or index of a network is a numeric number which characterises the
whole structure of the underlying network. It is used to predict the certain changes in the
bio, chemical and physical activities of the networks. The 4-layered probabilistic neural
networks are more general than the 3-layered probabilistic neural networks. Javaid and
Cao [Neural Comput. and Applic., DOI 10.1007/s00521-017-2972-1] and Liu et al. [Jour-
nal of Artificial Intelligence and Soft Computing Research, 8(2018), 225-266] studied the
certain degree and distance based topological indices (TI’s) of the 3-layered probabilistic
neural networks. In this paper, we extend this study to the 4-layered probabilistic neural
networks and compute the certain degree-based TI’s. In the end, a comparison between all
the computed indices is included and it is also proved that the TI’s of the 4-layered prob-
abilistic neural networks are better being strictly greater than the 3-layered probabilistic
neural networks.
Keywords: degree of node, topological properties, neural network, probabilistic neural
network

1 Introduction

A network which is obtained from nerve tissue
and nervous system as a computer system modelled
is called neural network. The probabilistic neu-
ral networks (PNNs) are studied to solve a num-

ber of problems in the different areas of engineer-
ing, medical, chemistry, computer and mathemat-
ics, see [39]. In particular, for the enhancement of
the email security systems and the intrusion detec-
tion systems [43, 44], to verify the signature [2],
to identify damage localization for bridges and the

  – 122
10.2478/jaiscr-2018-0028



112 M. Javaid, M. Abbas, Jia-Bao Liu, W. C. Teh, Jinde Cao

effectiveness for ships [33, 35], to predict the sta-
bility of breakwaters [29], for detecting resistivity
to antibiotics and diagnosing hepatitis [7, 5], for
the segmentation and quantification of brain tissues
from the certain type of images [48], and for the
characterization of genetic variations in metabolic
responses [25]. These networks are also used in
the environmental sciences, see [41]. Moreover, to
know about the different properties of the PNNs, we
refer [31].

More recently, the certain topological indices
of the 3-layered PNNs are computed for the sig-
nificant useful in the chemical industry, particu-
larly in pharmaceutical and biotechnology research,
see [23, 24, 27, 28]. In the present note, we ex-
tend this study to the 4-layered PNNs and compute
the certain degree-based TI’s in the continuation of
the progressive application role of the PNNs in the
physical sciences.

A topological index (TI) is a numerical num-
ber which is used to predict various physical, bio-
logical and chemical activities such as surface ten-
sion, density, melting point, a heat of evaporation,
and theboiling point of the involved chemical com-
pound [8, 18, 30, 34, 37]. Moreover, it studies
quantitative structure-activity relationships (QSAR)
and structure-property relationshiprs (QSPR) that
are used in the subject of cheminformatics. For fur-
ther studies, we refer [10, 11, 21].

In the subject of chemistry, first of all Wiener
(1947) used a distance-based TI to compute the
boiling point of paraffin [46]. But, degree-based
TI’s are most studied indices, see the recent survey
[19]. TI’s of the various networks such as nanostar
dendrimers, silicate, honeycomb, hexagonal, car-
bon nanotube, alkane, and hydrocarbons networks
are studied in [14, 15, 38, 12, 20, 4].

This paper includes the results related to the
TI’s which base on the degrees of the nodes and
their neighbors for the 4-layered PNNs. The rest
of the current work is settled as: the frequent used
definitions and formulas are given in Section 2, the
main results of the TI’s for the 4-layered PNNs are
computed in Section 3 and a comparison between
all the obtained indices is given in Section 4. In
the same Section, we also show that the TI’s of the
4-layered PNNs are better than the TI’s of the 3-
layered PNNs.

2 Mathematical Preliminaries

For the vertex-set V (Γ) and the edge-set E(Γ),
a molecular graph Γ = (V (Γ),E(Γ)) is a graph
in which vertices show atoms of the underlying
chemical structure and edges present bonds be-
tween them. The number of vertices lying on a
vertex s is called its degree (d(s)). Now, we define
S(s) = ∑

r∈NΓ(s)
[d(r)] and S(r) = ∑

s∈NΓ(r)
[d(s)], where

NΓ(s) = {r ∈ V (Γ)|sr ∈ E(Γ)} and NΓ(r) = {s ∈
V (Γ)|sr ∈ E(Γ)}. If an edge connects a vertex to it-
self is called a loop and two or more than two edges
are multiple edges if their end points are same. The
used notions and terminologies of the graphs are
standard, see [26, 47]. Now, we define some fre-
quently used TI’s.

Definition 2.1. The first Zagreb index, second Za-
greb index, first general Zagrab index, generalized
Zagreb index, first multiplicative Zagreb index, sec-
ond multiplicative Zagreb index and general Randić
index of the graph Γ are defined

M1(Γ)= ∑
rs∈E(Γ)

[d(r)+d(s)],

M2(Γ)= ∑
rs∈E(Γ)

[d(r)×d(s)],

Mα
1 = ∑

r∈V (Γ)
[d(r)]α = ∑

rs∈E(Γ)
[d(r)+d(s)]α,

Mp,q(Γ)= ∑
rs∈E(Γ)

[d(r)pd(s)q+d(r)qd(s)p],

PM1(Γ)= ∏
rs∈E(Γ)

[d(r)+d(s)]

PM2(Γ)= ∏
rs∈E(Γ)

[d(r)×d(s)] and

Rα(Γ)= ∑
rs∈E(Γ)

[d(r)×d(s)]α respectively.

In the general Randić index, for α = − 1
2 ,

1
2 and 1,

we obtain Randić, reciprocal Randić and second
Zagreb index respectively. For the detailed studies,
we refer (Gutman and Trinajsti; 1972) [20], (Mi-
lan Randić; 1975) [36], Bollobás and Erdös; 1998)
[6], (Amic et al.; 1998) [1], (Li and Zheng; 2005)
[50], (Li and Gutman; 2006) [49], (Iranmanesh and
Azari; 2011) [3], (Ghorbani and Azimi; 2012) [16].
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TOPOLOGICAL PROPERTIES OF . . .

Definition 2.2. The atom bond connectivity in-
dex, forth version of atom bond connectivity in-
dex, geometric-arithmetic index, fifth version of the
geometric-arithmetic index, augmented Zagreb in-
dex and Sanskruti index are defined of the molecu-
lar graph Γ as

ABC(Γ)= ∑
rs∈E(Γ)

[

√
d(r)+d(s)−2

d(r)×d(s)
],

ABC4(Γ)= ∑
rs∈E(Γ)

[

√
S(r)+S(s)−2

S(r)×S(s)
],

GA(Γ)= ∑
rs∈E(Γ)

[
2
√

d(r)×d(s)
d(r)+d(s)

],

GA5(Γ)= ∑
rs∈E(Γ)

[
2
√

S(r)×S(s)
S(r)+S(s)

],

AZI(Γ)= ∑
rs∈E(Γ)

[
d(r)×d(s)

d(r)+d(s)−2
]3 and

S(Γ)= ∑
rs∈E(Γ)

[
S(r)×S(s)

S(r)+S(s)−2
]3 respectively.

For the further studies of the above TI’s, we refre
(Estrada et al.; 1998)[12], (Ghorbani and Hossein-
zadeh; 2010) [15], (Vukičević and Furtula; 2009)
[45], (Graovac et al.; 2011) [14]. (Furtula et al.;
2010) [13] and (Sunilkumar M. Hosamani; 2016)
[42].

The 4-layered PNNs consist of four layers of neu-
rons (nodes) such as (i) input layer with a certain
number of nodes (assume r), (ii) pattern layer with
certain number of classes (say s) such that each
class has t nodes, (iii) summation layer with an
equal number of nodes as of the pattern layer and
(iv) output layer consists of exactly one node. In the
architecture of the 4-layered PNNs, each vertex of
input layer is connected to all the vertices of each
class of the pattern layer, all the vertices of each
class of the pattern layer are connected to a corre-
sponding single vrtex of the summation layer and
all the nodes of the summation layer are connected
with the output node. Thus order and size of the 4-
layered probabilistic neural network PNN(r,s, t,1)
are |V (PNN(r,s, t,1))| = v = r + s(t + 1) + 1 and
|E(PNN(r,s, t,1))| = e = rst + st + s respectively,
where r,s and t are natural numbers. In Figure 1,
the 4-layered PNN is shown.

3 Main Results

In this Section, 4-layered PNNs are discussed
and the certain degree-based topological indices are
computed. Before the main results, we explain our
solution method as follows:

We make the vertex and edge partitions of the PNNs

on the bases of the degrees of the vertices. We also
formulate the cardinalities of all the obtained sets as
the results of the partitions. Then, we apply the for-
mulas and obtain the mathematical expressions in
the most suitable forms. At the end, a comparison
is also made with the help of the diagrams. There
are four types of vertices in PNN(r,s, t,1), namely
of degrees st, r+1, t +1, and s. Thus, we have

V1 = {u ∈V (PNN(r,s, t,1))|d(u) = st},

V2 = {u ∈V (PNN(r,s, t,1))|d(u) = 1+ r},

V3 = {u ∈V (PNN(r,s, t,1))|d(u) = 1+ t},

V4 = {u ∈V (PNN(r,s, t,1))|d(u) = s},

where |V1|= r, |V2|= st, |V3|= s and |V4|= 1. Con-
sequently, |V (PNN(r,s, t,1))| = v = |V1|+ |V2|+
|V3|+ |V4| = r+ s(t +1)+1. There are three types
of edges in PNN(r,s, t,1) on the base of degrees of
end vertices, namely {st,r + 1}, {r + 1, t + 1} and
{t +1,s}. Thus, we have

E1 =E{st,r+1}

= {uv∈E(PNN(r,s, t,1))|d(u)= st,d(v)= r+1},

E2 =E{r+1,t+1}

= {uv∈E(PNN(r,s, t,1))|d(u)= r+1,d(v)= t+1},

E3 =E{t+1,s}

= {uv∈E(PNN(r,s, t,1))|d(u)= t+1,d(v)= s},

where |E{st,r+1}| = rst, |E{r+1,t+1}| = st
and |E{t+1,s+1}| = s . Consequently,
|E(PNN(r,s, t,1))| = e = |E1| + |E2| + |E3| =
rst + st + s. Now, we define the vertex and edge
partitions of PNN(r,s, t,1) on the base of degree
sum of the neighbors of end vertices for each edge.
Thus, see the following table for the partition sets
of E(PNN(r,s, t,1)).
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Figure 1. The 4-layered probabilistic neural network PNN(r,s, t,1).
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Figure 1. The 4-layered probabilistic neural network PNN(r,s, t,1).

TOPOLOGICAL PROPERTIES OF . . .

Table 1. Degree based edge partitions of
PNN(r,s, t,1)

E{d(u),d(v)} E{st,r+1} E{r+1,t+1} E{t+1,s}
|E{d(u),d(v)}| rst st s

Table 2. Degree sum of the neighbors based edge
partitions of PNN(r,s, t,1)

E{S(u),S(v)} |E{S(u),S(v)}|
E{st(r+1),rst+t+1} rst
E{rst+t+1,t(r+1)+s} st
E{t(r+1)+s,s(t+1)} s

Theorem 3.1. Let Γ ∼= PNN(r,s, t,1) be a 4-
layered PNN. Then, for r,s, t ≥ 1, its Randić index
(R− 1

2
(Γ)), reciprocal Randić index (R 1

2
(Γ)), second

Zagreb index (R1(Γ)) and the general Randić index
Rα(Γ) are given as

Rα(Γ)=



√
s

(r+1)(t+1) [
√

t(r
√

t +1+
√

st)+
√

r+1],

for α =−1
2 ,

s[t
√

r+1(r
√

st +
√

t +1)+
√

s(t +1)],
for α = 1

2 ,

s[t(r+1)(rst + t +1)+ s(t +1)],
for α = 1,

s[t(r+1)α{r(st)α +(t +1)α}+{s(t +1)}α],
for α ∈ R.

Proof. For the required results, we use definitions
of Section 2 and Tables of Section 3 as follow.

Rα(Γ)= ∑
pq∈E(Γ)

[d(p)×d(q)]α

= ∑
pq∈E{st,r+1}

[d(p)×d(q)]α

+ ∑
pq∈E{r+1,t+1}

[d(p)×d(q)]α

+ ∑
pq∈E{t+1,s}

[d(p)×d(q)]α

=(rst)[st(r+1)]α+(st)[(r+1)(t+1)]α+s[s(t+1)]α

= s[t(r+1)α{r(st)α+(t+1)α}+{s(t+1)}α].

If we use α = − 1
2 ,

1
2 and1 , we obtain R− 1

2
(Γ),

R 1
2
(Γ)), and R1(Γ), respectively.

Theorem 3.2. Let Γ ∼= PNN(r,s, t,1) be a 4-layered
PNN. Then, for r,s, t ≥ 1, Mα

1 (Γ), Mp,q(Γ), PM1(Γ)
and PM2(Γ) indices are given by

(i)Mα
1 (Γ) = s[t{r(st + r+1)α+(r+ t +2)α}+(s+

t +1)α],
(ii)Mp,q(Γ) = s[(s)p{rt(t)p(r + 1)q + (t + 1)q} +
t(r + 1)p{r(st)q + (t + 1)q}+ (t + 1)p{t(r + 1)q +
sq}],
(iii)PM1(Γ) = [{(st + r + 1)r(t + r + 2)}t(t + s +
1)]s,
(iv)PM2(Γ) = [{(st)r(r+1)r+1(t+1)}t{s(t+1)}]s.

Proof. For the required results, we use definitions
of Section 2 and Tables of Section 3 as follow.

(i)

Mα
1 (Γ)= ∑

pq∈E(Γ)
[d(p)+d(q)]α

= ∑
pq∈E{st,r+1}

[d(p)+d(q)]α

+ ∑
pq∈E{r+1,t+1}

[d(p)+d(q)]α

+ ∑
pq∈E{t+1,s}

[d(p)+d(q)]α

=(rst)[st+(r+1)]α+(st)[(r+1)+(t+1)]α

+s[s+(t+1)]α

= s[t{r(st+r+1)α+(r+t+2)α}+(s+t+1)α],

(ii)

Mp,q(Γ)= ∑
uv∈E(Γ)

[d(u)pd(v)q+d(u)qd(v)p]

= ∑
uv∈E{st,r+1}

[d(u)pd(v)q+d(u)qd(v)p]

+ ∑
uv∈E{r+1,t+1}

[d(u)pd(v)q+d(u)qd(v)p]

+ ∑
uv∈E{t+1,s}

[d(u)pd(v)q+d(u)qd(v)p]

= (rst)[(st)p(r+1)q+(st)q(r+1)p]

+(st)[(r+1)p(t+1)q+(r+1)q(t+1)p
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+[sp(t+1)q+sq(t+1)p]

= s[(s)p{rt(t)p(r+1)q+(t+1)q}

+t(r+1)p{r(st)q+(t+1)q}

+(t+1)p{t(r+1)q+sq}],

(iii)

PM1(Γ)= ∏
pq∈E(T )

[d(p)+d(q)]

= ∏
pq∈E{st,r+1}

[d(p)+d(q)]× ∏
pq∈E{r+1,t+1}

[d(p)+d(q)]

× ∏
pq∈E{t+1,s}

[d(p)+d(q)]

= [(st)+(r+1)]rst × [(r+1)+(t+1)]st ×[(t+1)+s]s

= [{(st+r+1)r(t+r+2)}t(t+s+1)]s,

(iv)

PM2(Γ)= ∏
pq∈E(T )

[d(p)×d(q)]

= ∏
pq∈E{st,r+1}

[d(p)×d(q)]× ∏
pq∈E{r+1,t+1}

[d(p)×d(q)]

× ∏
pq∈E{t+1,s}

[d(p)×d(q)]

= [(st)(r+1)]rst ×[(r+1)(t+1)]st ×[(t+1)s]s

= [{(st)r(r+1)r+1(t+1)}t{s(t+1)}]s.

The following corollary can be obtain with the help
of Theorem 3.2.

Corollary to Theorem 3.2. Let Γ ∼= PNN(r,s, t,1)
be a 4-layered PNN. Then, for r,s, t ≥ 1, F(Γ) and
HM(Γ) are given by

(i)F(Γ)= ∑
pq∈E(Γ)

[(d(p))2+(d(q))2]

= s[t(r+1)3+(t+1)3+s2(rt3+1)],

(ii)HM(Γ)= ∑
pq∈E(Γ)

[d(p)+d(q)]2

= s[t{r(st+r+1)2+(r+t+2)2}+(s+t+1)2].

Theorem 3.3. Let Γ ∼= PNN(r,s, t,1) be a 4-layered
PNN. Then, for r,s, t ≥ 1, ABC(Γ), GA(Γ) AZI are
given by

(i) ABC(Γ) =
√

s
t(t+1)(r+1) [t{r

√
(t +1)(st + r−1)

+
√

st(r+ t)}+
√

t(r+1)(s+ t −1)],
(ii) GA(Γ) = (2s)[t

√
r+1{r

√
st

st+r+1 +
√

t+1
r+t+2} +

(

√
s(t+1)

s+t+1 )],

(iii) AZI(Γ) = s[t(r + 1)3{r( st
st+r−1)

3 + ( t+1
r+t )

3}+
( s(t+1)

t+s−1)
3].

Proof. For the required results, we use definitions
of Section 2 and Tables of Section 3 as follow. (i)

ABC(Γ)= ∑
pq∈E(Γ)

√
d(p)+d(q)−2

d(p)×d(q)

= ∑
pq∈E{st,r+1}

[

√
d(p)+d(q)−2

d(p)×d(q)
]

+ ∑
pq∈E{r+1,t+1}

[

√
d(p)+d(q)−2

d(p)×d(q)
]

+ ∑
pq∈E{t+1,s}

[

√
d(p)+d(q)−2

d(p)×d(q)
]

= (rst)

√
(st)+(r+1)−2
(st)× (r+1)

+(st)

√
(r+1)+(t +1)−2
(r+1)× (t +1)

+(s)

√
(t +1)+(s)−2
(s)× (t +1)

=

√
s

t(t +1)(r+1)
[t{r

√
(t +1)(st + r−1)+

√
st(r+ t)}

+
√

t(r+1)(s+ t −1)],

(ii)

GA(Γ)= ∑
pq∈E(Γ)

2
√

d(p)×d(q)
d(p)+d(q)

= ∑
pq∈E{st,r+1}

[
2
√

d(p)×d(q)
d(p)+d(q)

]

+ ∑
pq∈E{r+1,t+1}

[
2
√

d(p)×d(q)
d(p)+d(q)

]



117M. Javaid, M. Abbas, Jia-Bao Liu, W. C. Teh, Jinde Cao

+[sp(t+1)q+sq(t+1)p]

= s[(s)p{rt(t)p(r+1)q+(t+1)q}

+t(r+1)p{r(st)q+(t+1)q}

+(t+1)p{t(r+1)q+sq}],

(iii)

PM1(Γ)= ∏
pq∈E(T )

[d(p)+d(q)]

= ∏
pq∈E{st,r+1}

[d(p)+d(q)]× ∏
pq∈E{r+1,t+1}

[d(p)+d(q)]

× ∏
pq∈E{t+1,s}

[d(p)+d(q)]

= [(st)+(r+1)]rst × [(r+1)+(t+1)]st ×[(t+1)+s]s

= [{(st+r+1)r(t+r+2)}t(t+s+1)]s,

(iv)

PM2(Γ)= ∏
pq∈E(T )

[d(p)×d(q)]

= ∏
pq∈E{st,r+1}

[d(p)×d(q)]× ∏
pq∈E{r+1,t+1}

[d(p)×d(q)]

× ∏
pq∈E{t+1,s}

[d(p)×d(q)]

= [(st)(r+1)]rst ×[(r+1)(t+1)]st ×[(t+1)s]s

= [{(st)r(r+1)r+1(t+1)}t{s(t+1)}]s.

The following corollary can be obtain with the help
of Theorem 3.2.

Corollary to Theorem 3.2. Let Γ ∼= PNN(r,s, t,1)
be a 4-layered PNN. Then, for r,s, t ≥ 1, F(Γ) and
HM(Γ) are given by

(i)F(Γ)= ∑
pq∈E(Γ)

[(d(p))2+(d(q))2]

= s[t(r+1)3+(t+1)3+s2(rt3+1)],

(ii)HM(Γ)= ∑
pq∈E(Γ)

[d(p)+d(q)]2

= s[t{r(st+r+1)2+(r+t+2)2}+(s+t+1)2].

Theorem 3.3. Let Γ ∼= PNN(r,s, t,1) be a 4-layered
PNN. Then, for r,s, t ≥ 1, ABC(Γ), GA(Γ) AZI are
given by

(i) ABC(Γ) =
√

s
t(t+1)(r+1) [t{r

√
(t +1)(st + r−1)

+
√

st(r+ t)}+
√

t(r+1)(s+ t −1)],
(ii) GA(Γ) = (2s)[t

√
r+1{r

√
st

st+r+1 +
√

t+1
r+t+2} +

(

√
s(t+1)

s+t+1 )],

(iii) AZI(Γ) = s[t(r + 1)3{r( st
st+r−1)

3 + ( t+1
r+t )

3}+
( s(t+1)

t+s−1)
3].

Proof. For the required results, we use definitions
of Section 2 and Tables of Section 3 as follow. (i)

ABC(Γ)= ∑
pq∈E(Γ)

√
d(p)+d(q)−2

d(p)×d(q)

= ∑
pq∈E{st,r+1}

[

√
d(p)+d(q)−2

d(p)×d(q)
]

+ ∑
pq∈E{r+1,t+1}

[

√
d(p)+d(q)−2

d(p)×d(q)
]

+ ∑
pq∈E{t+1,s}

[

√
d(p)+d(q)−2

d(p)×d(q)
]

= (rst)

√
(st)+(r+1)−2
(st)× (r+1)

+(st)

√
(r+1)+(t +1)−2
(r+1)× (t +1)

+(s)

√
(t +1)+(s)−2
(s)× (t +1)

=

√
s

t(t +1)(r+1)
[t{r

√
(t +1)(st + r−1)+

√
st(r+ t)}

+
√

t(r+1)(s+ t −1)],

(ii)

GA(Γ)= ∑
pq∈E(Γ)

2
√

d(p)×d(q)
d(p)+d(q)

= ∑
pq∈E{st,r+1}

[
2
√

d(p)×d(q)
d(p)+d(q)

]

+ ∑
pq∈E{r+1,t+1}

[
2
√

d(p)×d(q)
d(p)+d(q)

]
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+ ∑
pq∈E{t+1,s}

[
2
√

d(p)×d(q)
d(p)+d(q)

]

= (rst)[
2
√

st × (r+1)
st +(r+1)

]+(st)[
2
√
(r+1)× (t +1)

(r+1)+(t +1)
]

+s[
2
√

s× (t +1)
s+(t +1)

]

= (2s)[t{r

√
st × (r+1)

st +(r+1)
+

√
(r+1)× (t +1)
(r+1)+(t +1)

}

+(

√
s× (t +1)

s+(t +1)
)]

= (2s)[t
√

r+1{r
√

st
st + r+1

+

√
t +1

r+ t +2
}

+(

√
s(t +1)

s+ t +1
)],

(iii)

AZI(T )= ∑
pq∈E(T )

[
d(p)×d(q)

d(p)+d(q)−2
]3

= ∑
pq∈E{st,r+1}

[
d(p)×d(q)

d(p)+d(q)−2
]3

+ ∑
pq∈E{r+1,t+1}

[
d(p)×d(q)

d(p)+d(q)−2
]3

+ ∑
pq∈E{t+1,s}

[
d(p)×d(q)

d(p)+d(q)−2
]3

= (rst)[
(st)× (r+1)

(st)+(r+1)−2
]3

+(st)[
(r+1)× (t +1)

(r+1)+(t +1)−2
]3

+s[
s× (t +1)
t + s−1

]3

= s[t(r+1)3{r(
st

st + r−1
)3 +(

t +1
r+ t

)3}

+(
s(t +1)
t + s−1

)3].

Theorem 3.4. Let Γ ∼= PNN(r,s, t,1) be a 4-layered
PNN. Then, for r,s, t ≥ 1, ABC4, GA5, and S are
given as

(i) ABC4(Γ) = s[ t√
rst+t+1

{r
√

2rst+st+t−1
st(r+1) +√

rst+rt+2t+s−1
tr+t+s }+

√
rt+st+t+2s−2
s(rt+t+s)(t+1) ],

(ii) GA5(Γ) = 2s[t
√

rst + t +1{r(
√

st(r+1)
2rst+st+t+1) +

√
tr+t+s

rst+tr+2t+s+1}+
√

s(tr+t+s)(t+1)
tr+st+2s+t ],

(iii) S(Γ) = s[t(rst + t + 1)3{r( st(r+1)
2rst+st+t−1)

3 +

( (tr+t+s)
rst+tr+2t+s−1)

3}+( s(tr+t+s)(t+1)
tr+st+2s+t−2 )

3].

Proof. For the required results, we use definitions
of Section 2 and Tables of Section 3 as follow.

(i)

ABC4(Γ)= ∑
pq∈E(Γ)

√
S(p)+S(q)−2

S(p)×S(q)

= ∑
pq∈E{st(r+1),rst+t+1}

√
S(p)+S(q)−2

S(p)×S(q)

+ ∑
pq∈E{rst+t+1,t(r+1)+s}

√
S(p)+S(q)−2

S(p)×S(q)

+ ∑
pq∈E{t(r+1)+s,s(t+1)}

√
S(p)+S(q)−2

S(p)×S(q)

= (rst)

√
st(r+1)+(rst + t +1)−2

st(r+1)× (rst + t +1)

+(st)

√
(rst + t +1)+(rt + t + s)−2
(rst + t +1)× (tr+ t + s)

+(s)

√
(rt + t + s)+ s(t +1)−2
(rt + t + s)× (st + s)

= s[t{r
√

2rst+st+t−1
st(r+1)(rst+t+1)

+
√

rst+rt+2t+s−1
(rst+t+1)(tr+t+s)}

+

√
rt + st + t +2s−2
s(rt + t + s)(t +1)

]

= s[ t√
rst+t+1

{r
√

2rst+st+t−1
st(r+1)

+
√

rst+rt+2t+s−1
tr+t+s }

+

√
rt + st + t +2s−2
s(rt + t + s)(t +1)

],

(ii)

GA5(Γ)= ∑
pq∈E(Γ)

[
2
√

S(p)×S(q)
S(p)+S(q)

]
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= ∑
pq∈E{st(r+1),rst+t+1}

[
2
√

S(p)×S(q)
S(p)+S(q)

]

+ ∑
pq∈E{rst+t+1,t(r+1)+s}

[
2
√

S(p)×S(q)
S(p)+S(q)

]

+ ∑
pq∈E{t(r+1)+s,s(t+1)}

[
2
√

S(p)×S(q)
S(p)+S(q)

]

= (rst)[
2
√

st(r+1)× (rst + t +1)
(rst + st)+(rst + t +1)

]

+(st)[
2
√
(rst + t +1)× (tr+ t + s)

(rst + t +1)+(tr+ t + s)
]

+(s)[
2
√
(tr+ t + s)× (st + s)

(tr+ t + s)+(st + s)
]

= 2s[t{r

√
st(r+1)(rst + t +1)
2rst + st + t +1

+

√
(rst + t +1)(tr+ t + s)
rst + tr+2t + s+1

}

+

√
s(tr+ t + s)(t +1)
tr+ st +2s+ t

]

= 2s[t
√

rst + t +1{r(

√
st(r+1)

2rst + st + t +1
)

+

√
tr+ t + s

rst + tr+2t + s+1
}

+

√
s(tr+ t + s)(t +1)
tr+ st +2s+ t

],

(iii)

S(Γ)= ∑
pq∈E(Γ)

[
S(p)×S(q)

S(p)+S(q)−2
]3

= ∑
pq∈E{st(r+1),rst+t+1}

[
S(p)×S(q)

S(p)+S(q)−2
]3

+ ∑
pq∈E{rst+t+1,t(r+1)+s}

[
S(p)×S(q)

S(p)+S(q)−2
]3

+ ∑
pq∈E{t(r+1)+s,s(t+1)}

[
S(p)×S(q)

S(p)+S(q)−2
]3

=(rst)[
st(r+1)× (rst + t +1)

st(r+1)+(rst + t +1)−2
]3

+(st)[
(rst + t +1)× (tr+ t + s)

(rst + t +1)+(tr+ t + s)−2
]3

+(s)[
(tr+ t + s)× (st + s)

(tr+ t + s)+(st + s)−2
]3

= s[t(rst + t +1)3{r( st(r+1)
2rst+st+t−1)

3

+( (tr+t+s)
rst+tr+2t+s−1)

3}

+(
s(tr+ t + s)(t +1)
tr+ st +2s+ t −2

)3].

Conclusion

This Section includes the comparison between
all the computed TI’s for the 4-layered PNNs. In
Section 3, the results are obtained in term of r (to-
tal vertices in first layer), s (number of classes in
pattern layer and number of nodes in summation
layer) and t (number of nodes in each class of pat-
tern layer). Moreover, |V (PNN(r,s, t,1))| = v =
r+ s(t +1)+1. If we assume s = 2 and t = 1, then
the 4-layered PNN becomes PNN(r,2,1,1) with or-
der v = r+5.

In Figure 2, the values of v and the computed
TI’s of the 4-layered PNN (PNN(r,2,1,1)) are
taken along the horizontal and vertical line respec-
tively. It can be noted that the TI’s M1, M2, M1,1,
AZI, ABC, ABC4, GA and GA5 remain constant such
that M2 and M1,1 are dominant. However, the San-
skurti index (S) is rapidly increasing with the in-
creasing values of v. In Figure 3, PM1, F , and
HM are constant with HM as a dominant index and
PM2 rapidly increases with the increasing values of
v. Now in Figure 4, we find PM2 as a dominant
than the S index which shows that PM2 is better one
among all the computed indices.

Now, to prove that the TI’s of the 4-layered
PNNs are better than the topological indices of the
3-layered PNNs, we only show that PM2 of the
4-layered PNNs is greater than the PM2 of the 3-
layered PNNs. For the purpose, we proceed as fol-
lows.
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= ∑
pq∈E{st(r+1),rst+t+1}

[
2
√

S(p)×S(q)
S(p)+S(q)

]

+ ∑
pq∈E{rst+t+1,t(r+1)+s}

[
2
√

S(p)×S(q)
S(p)+S(q)

]

+ ∑
pq∈E{t(r+1)+s,s(t+1)}

[
2
√

S(p)×S(q)
S(p)+S(q)

]

= (rst)[
2
√

st(r+1)× (rst + t +1)
(rst + st)+(rst + t +1)

]

+(st)[
2
√
(rst + t +1)× (tr+ t + s)

(rst + t +1)+(tr+ t + s)
]

+(s)[
2
√
(tr+ t + s)× (st + s)

(tr+ t + s)+(st + s)
]

= 2s[t{r

√
st(r+1)(rst + t +1)
2rst + st + t +1

+

√
(rst + t +1)(tr+ t + s)
rst + tr+2t + s+1

}

+

√
s(tr+ t + s)(t +1)
tr+ st +2s+ t

]

= 2s[t
√

rst + t +1{r(

√
st(r+1)

2rst + st + t +1
)

+

√
tr+ t + s

rst + tr+2t + s+1
}

+

√
s(tr+ t + s)(t +1)
tr+ st +2s+ t

],

(iii)

S(Γ)= ∑
pq∈E(Γ)

[
S(p)×S(q)

S(p)+S(q)−2
]3

= ∑
pq∈E{st(r+1),rst+t+1}

[
S(p)×S(q)

S(p)+S(q)−2
]3

+ ∑
pq∈E{rst+t+1,t(r+1)+s}

[
S(p)×S(q)

S(p)+S(q)−2
]3

+ ∑
pq∈E{t(r+1)+s,s(t+1)}

[
S(p)×S(q)

S(p)+S(q)−2
]3

=(rst)[
st(r+1)× (rst + t +1)

st(r+1)+(rst + t +1)−2
]3

+(st)[
(rst + t +1)× (tr+ t + s)

(rst + t +1)+(tr+ t + s)−2
]3

+(s)[
(tr+ t + s)× (st + s)

(tr+ t + s)+(st + s)−2
]3

= s[t(rst + t +1)3{r( st(r+1)
2rst+st+t−1)

3

+( (tr+t+s)
rst+tr+2t+s−1)

3}

+(
s(tr+ t + s)(t +1)
tr+ st +2s+ t −2

)3].

Conclusion

This Section includes the comparison between
all the computed TI’s for the 4-layered PNNs. In
Section 3, the results are obtained in term of r (to-
tal vertices in first layer), s (number of classes in
pattern layer and number of nodes in summation
layer) and t (number of nodes in each class of pat-
tern layer). Moreover, |V (PNN(r,s, t,1))| = v =
r+ s(t +1)+1. If we assume s = 2 and t = 1, then
the 4-layered PNN becomes PNN(r,2,1,1) with or-
der v = r+5.

In Figure 2, the values of v and the computed
TI’s of the 4-layered PNN (PNN(r,2,1,1)) are
taken along the horizontal and vertical line respec-
tively. It can be noted that the TI’s M1, M2, M1,1,
AZI, ABC, ABC4, GA and GA5 remain constant such
that M2 and M1,1 are dominant. However, the San-
skurti index (S) is rapidly increasing with the in-
creasing values of v. In Figure 3, PM1, F , and
HM are constant with HM as a dominant index and
PM2 rapidly increases with the increasing values of
v. Now in Figure 4, we find PM2 as a dominant
than the S index which shows that PM2 is better one
among all the computed indices.

Now, to prove that the TI’s of the 4-layered
PNNs are better than the topological indices of the
3-layered PNNs, we only show that PM2 of the
4-layered PNNs is greater than the PM2 of the 3-
layered PNNs. For the purpose, we proceed as fol-
lows.
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Figure 2. S is shown as a better index than M1, M2,
M1,1, AZI, ABC, ABC4, GA and GA5 for the

4-layered probabilistic neural network
PNN(r,2,1,1).

Figure 3. PM2 is shown as a better index than
PM1, F and HM for the 4-layered probabilistic

neural network PNN(r,2,1,1)

Figure 4. Comparison between the S and PM2
topological indices of PNN(r,2,1,1)

Consider,

(s)rt(t)rt(r+1)t(r+1) = (s)rt(t)rt(r+1)t(r+1)

Since for positive integral values of s and t, (t +
1)t+1s > (t)t , we have

(s)rt(t)rt(r+1)t(r+1)(t+1)t+1s>

(s)rt(t)rt(r+1)t(r+1)(t)t

[(s)rt(t)rt(r+1)t(r+1)(t+1)t+1s]s >

[(s)rt(t)rt(r+1)t(r+1)(t)t ]s

[{(st)r(r+1)r+1(t+1)}t{s(t+1)}]s >

[(s)rt(t(r+1))t(r+1)]s,

where [{(st)r(r + 1)r+1(t + 1)}t{s(t + 1)}]s is
PM2 of the 4-layered PNNs (PNN(r,s, t,1)) and
[(s)rt(t(r + 1))t(r+1)]s is PM2 of the 3-layered
PNNs (PNN(r,s, t)). The last inequality shows that
the PM2 of the 4-layered PNNs (PNN(r,s, t,1))
is greater than the PM2 of the 3-layered PNNs

(PNN(r,s, t)). For further study of the 3-layered
PNNs, we refer [27]. Hence, we conclude that the
obtained TI’s can be helpful to understand the topo-
logical properties of the 4-layered PNNs. For the
uses of these indices in various fields particularly in
pharmaceutical industry, see [24, 23, 27, 19].
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Trinajstić, The vertex-connectivity index revisited,
J. Chem. Inf. Comput. Sci. 38 (1998) 819-822

[2] L.F. Araghi, H. Khaloozade, M.R. Arvan, Ship
identification using probabilistic neural networks.
In: Proceedings of the international multiconfer-
ence of engineers and computer scientists, 2(2009),
18-20

[3] M. Azari, A. Iranmanesh, Generalized Zagreb in-
dex of graphs, Studia Univ. Babes-Bolyai. 56 (3)
(2011) 59-70
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[8] F.M. Brückler, T. Došlíc, A. Graovac, I. Gutman,
On a class of distance-based molecular structure
descriptors, Chem. Phys. Lett. 503, (2011), 336-
338

[9] A.-S. Chen, M.T. Leung, H. Daouk, Application of
neural networks to an emerging financial market:
forecasting and trading the Taiwan Stock Index,
Computers and Operations Research, 30, (2003),
901923

[10] J. Devillers, A.T. Balaban, Topological Indices and
Related Descriptors in QSAR and QSPR, Gordon
Breach, Amsterdam, 1999.

[11] M.V. Diudea (Ed.), QSPR/QSAR Studies by
Molecular Descriptors, NOVA, New York, 2001.

[12] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An
atom-bond connectivity index: modelling the en-
thalpy of formation of alkanes, Indian J. Chem. 37
A(1998) 849-855.

[13] B. Furtula, A. Graovac, D. Vukičević, Augmented
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