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Abstract

A procedure for the identification of lumped models of distributed parameter electromag-
netic systems is presented in this paper. A Frequency Response Analysis (FRA) of the
device to be modeled is performed, executing repeated measurements or intensive simula-
tions. The method can be used to extract the values of the components. The fundamental
brick of this architecture is a multi-valued neuron (MVN), used in a multilayer neural net-
work (MLMVN); the neuron is modified in order to use arbitrary complex-valued inputs,
which represent the frequency response of the device. It is shown that this modification
requires just a slight change in the MLMVN learning algorithm. The method is tested
over three completely different examples to clearly explain its generality.
Keywords: Analog circuits, Complex-valued neural networks, Lumped models, Testa-
bility

1 Introduction

A fundamental characteristic of the complex-
valued neural networks (CVNNs) is the proper
treatment of phase and the information contained
in it. These networks have been well described
in [1] and have successfully been used for solv-
ing various real-world problems, such as landmine
detection [2], forecasting of wind profiles [3], and
medical image analysis [4]. In this paper, a new
application of CVNNs is introduced, namely the
lumped model identification of distributed param-
eter electromagnetic systems, and simultaneously
the CVNN paradigm is further developed.

In many different operative situations, the iden-
tification of the circuital lumped model of a generic
system (that could be distributed or physically het-

erogeneous) still represents an important challenge
that can help the designer in many activities. This
task can be difficult to approach due to: 1) the large
number of parameters, 2) the nonlinear nature of
the system to solve (nonlinear issues can appear in
linear systems either), 3) problems in the choice of
the parameters to be extracted. At the same time,
a lumped model can be useful for several applica-
tions, as, for instance, the study of the transient re-
sponse, the evaluation of the electromagnetic com-
patibility, the estimate of the harmonic content, the
detection and localization of faults, the complete
description of a complex structure. In the last years,
a number of soft computing techniques have been
applied for solving this problem, by means of ar-
tificial neural networks (ANNs) [5], genetic algo-
rithms (GAs) [6], and particle swarm optimizers
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(PSOs) [7, 8]. Most of these techniques, however,
do not advantageously exploit the complex nature
of the frequency response data. Moreover, they of-
ten do not take into account testability, ambiguity
groups, and the sensitivity of the model to be iden-
tified.

In this paper, which significantly extends [9],
where some promising preliminary results were ob-
tained, a new approach for solving this problem is
proposed, introducing a new neural tool based on
a further generalization of the multi-valued neu-
ron (MVN) [10] and multilayer neural network
with multi-valued neurons (MLMVN) [11]. MVN
is a neuron with complex-valued weights and in-
puts/output located on the unit circle. Its activation
function depends only on the phase of the weighted
sum and does not care about its magnitude. In this
work, a new modification of a multi-valued neu-
ron with arbitrary complex-valued inputs (MVN-
ACVI) will be introduced. This kind of neuron, and
consequently the network employing it, seems to be
particularly useful in that kind of problem where in-
put data are directly represented by the frequency
response of the device or system under exam. This
approach has a great advantage when solving sys-
tem identification problems like those considered in
this paper. It is important to point out that no con-
version or normalization of the input data is needed
and just a pretty small network with a low num-
ber of network parameters (and of neurons, accord-
ingly) is usually enough to achieve an excellent per-
formance.

The main idea is to use a set of measurements
or simulations made on the device/system, taken
at different values of electrical parameters and at
different frequencies, to train a multilayer network
with MVN-ACVI (MLMVN-ACVI) and then to
estimate the electrical parameters of the lumped
model, or in other words to “invert” the lumped
model. A preliminary evaluation of the testability
of the lumped model is performed for determining
the solvability degree with respect to the circuit pa-
rameters, following the classic definition given in
[12]. When testability evaluation is not sufficient
to locate the parameters, also a sensitivity analysis
can be performed. If the proposed lumped model
is not suitable or not complete, the neural learning
process does not converge. Hence, this kind of ap-
proach provides a useful information for the design

process in the modeling and simulation phase.

The paper is organized as follows: the theoret-
ical foundation is shown in Section 2, the network
for the parameter extraction, together with testabil-
ity analysis, is presented in Section 3, the simu-
lation results over some application cases are de-
scribed in Section 4.

2 Outlines on MVN and MLMVN

The discrete MVN was introduced in [10] as
the further development of an element of multiple-
valued threshold logic considered in [13]. In this
paper, the continuous MVN has been used, which
was introduced in [14]. It performs a mapping be-
tween n inputs and a single output. This mapping is
described by a multi-valued function of n variables
f (x1,. . . ,xn):On O, where O is a set of points eiφ lo-
cated on the unit circle (i is the imaginary unit). The
continuous MVN activation function is

P(z) = eiArgz = z/|z|, (1)

where z=w0+w1x1+. . . wnxn is the weighted sum,
and Arg(z) is the phase of z. Thus, for the con-
tinuous MVN, the output is the projection of the
weighted sum on the unit circle, as it is determined
by the activation function (1) (see Figure 1).

Figure 1. Geometrical interpretation of the
continuous MVN activation function.

MVN and its learning algorithm are compre-
hensively reviewed in [15]. The MVN learning al-
gorithm is based on the error-correction rule. Ac-
cording to this rule the weights are adjusted in one
of the following two ways [15]
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Wr+1 =Wr +
Cr

n+1
δX ,

Wr+1 =Wr +
Cr

(n+1)|zr|
δX ,

(2)

where δ is the error, X is the neuron input vector
with the conjugated components (here and further
we assume that the unitary input x0 = 1 is a “pseudo
input” corresponding to the bias), r is the index of
the learning step, n is the number of neuron inputs,
Wr and Wr+1 are the weighting vectors before and
after correction, respectively, zr is the weighted sum
on the current (rth) learning step, and Cr is the learn-
ing rate.

MLMVN, which was introduced in [11], is a
multilayer neural network with a standard feedfor-
ward topology where neurons are integrated into
layers, and the output of each neuron from the cur-
rent layer is connected to the corresponding in-
puts of neurons from the following layer. The
use of MVN as a basic neuron in MLMVN de-
termines important distinctions and advantages of
MLMVN compared to a classical multilayer per-
ceptron (MLP). These advantages are the simplic-
ity of learning and a significantly better generaliza-
tion capability. The MLMVN learning algorithm
is derivative-free. It is based on the same error-
correction learning rule as the one of a single MVN.
This MLMVN learning algorithm works as follows
[14-16]. Let MLMVN contain m layers of neurons
(m-1 hidden layers and the output layer whose in-
dex is m). First, the network error shall be calcu-
lated and backpropagated. This error backpropaga-
tion process is determined as follows

δ∗km = Dkm −Ykm,

δkm =
1
sm

delta∗km,

δk j =
1
s j

Nj+1

∑
i=1

deltai j+1(w
i j+1
k )−1; j = 1, ...,m−1,

(3)

where: Dkm and Ykm are, respectively, the desired
and actual outputs of the kth neuron from the mth

(output) layer; δ∗km is a network error calculated at
the kth neuron of the mth (output) layer; δkm is a
local error of the kth neuron from the mth (output)

layer; δkm is a local error of the kth neuron from
the jth layer; s j = Nj−1 + 1, j = 2, ...,m;s1 = n+ 1
(where Nj is the number of neurons in the jth layer
and n is the number of network inputs); wi j

k is the
kth weight of the ith neuron from the jth layer.

After the error backpropagation is done, the
weights shall be adjusted layer by layer as follows

w%km
i = wkm

i +
Ckm

(Nm−1 +1)
δkmY %

i,m−1i = 1, ...,Nm−1,

(4)

w%k j
i =wk j

i +
Ck j

(Nj−1 +1)|zk j|
δk jY

%
i, j−1i= 1, ...,Nm−1,

(5)

where w%km
i , w%k j

i are corrected weights, Nj is the
number of neurons in the jth layer (N0 = n, that is the
number of network inputs), Ck j is the learning rate
(it should be complex-valued in general, but it is
empirically set to 1 in all known applications),Yi, j−1
is the actual output of the ith neuron of the (j-1)th

layer (it is intended corrected when its superscript
is ˜ and conjugated when its superscript is “bar”;
Yi,0 = Y %

i,0, that is the ith network input). Equation
(4) determines the correction of the output neuron
weights, while (5) determines the correction of the
hidden neuron weights from the 1st hidden layer to
the (m-1)th one.

The most important limitation of MLMVN is to
be “slow” in the learning time with respect to the
real value NN [16], but this drawback has been dra-
matically mitigated by a modification in the algo-
rithm, introduced in [17], where it is also demon-
strated the high efficiency of this tool for con-
tinuous function approximation. The version of
the MLMVN presented in [17] has been used in
the present work. MVN inputs and outputs (and
MLMVN inputs and outputs accordingly) are lo-
cated on the unit circle. This is very suitable for
solving various classification and regression prob-
lems. In fact, if such a problem can be described
by a function f : Sn → S whereS = [a,b]⊂ R, it can
easily be mapped (using a trivial normalization) to
f : Õn → Õ where O is a set of points belonging
to the unit circle and Õ ⊂ O. The circularity prop-
erty of MVN/MLMVN inputs and outputs makes
it also highly efficient for decoding signals in an
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EEG-based brain-computer interface [18]. How-
ever, there are many applications where the parame-
ters are complex-valued and not necessarily located
on the unit circle. On such occasions, not only
phase matters (as it is in MVN), but the magnitude
is also very important.

Thus, it should be attractive to modify MVN
in such a way that it will be able to operate over
an arbitrary complex input (not necessarily reduced
to unitary magnitude). This approach shall make it
possible to preserve and properly handle the full in-
formation about phase and magnitude of frequency
response samples.

Let us show that this modification of MVN re-
quires just a slight change in its error-correction
learning rule. Moreover, if this modified MVN with
arbitrary complex-valued inputs (MVN-ACVI) will
be used in the first hidden layer of MLMVN (to
ensure acceptance of the arbitrary complex-valued
inputs by the network), its learning algorithm will
also require just a very slight modification. In this
way, we may obtain MLMVN with the arbitrary
complex-valued inputs (MLMVN-ACVI).

Let us use the idea developed in [18] where
a complex-valued neuron with arbitrary complex-
valued inputs and output was considered. However,
in our case, while the neuron inputs are arbitrary
complex numbers, its output is still located on the
unit circle.

Let us consider first a single MVN-ACVI. Let
D be a desired output of an MVN-ACVI and z its
current weighted sum. Let the neuron error be de-
termined by

δ = D− z, (6)

like in [17]. Let us adjust the weights using the
same error-correction learning rule, which was sug-
gested in [19] for a complex-valued neuron with ar-
bitrary inputs and outputs. We obtain the following
learning rule (assuming x0= 1)

w%
i = wi +

Cδ
(n+1)

x−1i = 0,1, ...,n, (7)

where wi is the current weight (to be adjusted),
w̃i is the adjusted weight and C is a learning rate
(complex-valued in general, but we still use C = 1
in all simulations as in the learning rule (2b)). It
is interesting that if x ∈ O (thus x is located on the
unit circle), then x−1 = x̄ and (7) coincides with the

error correction learning rule (2a) for MVN. Actu-
ally, this means that (7) is a more general form of
the error-correction learning rule and the first of the
rules (2) is its particular form for MVN.

We may easily check that if the neuron weights
are adjusted according to (7), then the adjusted
weighted sum will be equal to the desired output.
Let us find the adjusted weighted sum

z% = w%
0 +w%

1 x1 + ...+w%
n x1 =

=
(

w0 +
δ

(n+1)

)
+
(

w1 +
δ

(n+1)x
−1
1

)
x1 + ...

+
(

wn +
δ

(n+1)x
−1
n

)
xn =

= w0 +
δ

(n+1) +w1x1 +
δ

(n+1) + ...+wnxn +
δ

(n+1) =

= w0 +w1x1 + ...+wnxn +δ = z+δ = D

.

Evidently, (7) can easily be modified to get a
rule, which generalizes the rule (2b)

w%
i = wi +

Cδ
(n+1) |z|

x−1 i = 0,1, ...,n, (8)

where z is a current weighted sum. Evidently, the
convergence theorem for the learning algorithm of
MVN-ACVI based on either of the learning rules
(7) or (8) can easily be proven in the same way as it
was done for the MVN learning algorithm in [15].

Let us employ now MVN-ACVI in the first hid-
den layer of MLMVN, to ensure that a network
accepts arbitrary complex-valued inputs. In other
hidden layers (if any) and in the output layer we
will still use MVN. Hence we obtain in this way
MLMVN-ACVI. To train this network, we may use
the learning algorithm with a batch acceleration
step for the output neurons [17]. The only modi-
fication to this algorithm, which we have to make,
is the adaptation of the learning rule (8) to the neu-
rons from the first hidden layer. Hence we obtain
the following algorithm.

1 The error of the network is calculated according
to (6) for all the learning samples and then the
output neuron weights are adjusted as described
in [17]. This completes the batch acceleration
step.

2 Then the learning process continues in the reg-
ular, serial manner, one sample after the other.
The network error (errors in case of multiple
output neurons) is calculated for a learning sam-
ple and this error (errors) is backpropagated to
the hidden neurons according to (3).
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3 The first hidden layer neuron weights are cor-
rected according to the following rule, which
follows from (8)

w̃k1
i = wk1

i +
Ck1

(n+1) |zk1|
δk1x−1

i ; i = 0,1, ...,n.

4 For the rest of the hidden layers, the neuron
weights are then corrected layer-by-layer ac-
cording to (5).

The output neuron weights remain unchanged.

5 Repeat steps 2-4 for all the learning samples.

6 If the learning goal has not yet been reached
(usually, the learning process continues until the
mean squared error or the root mean squared er-
ror for a learning set drops below some tolerance
value), then go back to step 1). If the learning
goal is reached, then the learning process termi-
nates.

It is important to mention that the suggested mod-
ification of MLMVN, which leads to MLMVN-
ACVI, does not introduce any significant change
in the proof of the convergence theorem. It can be
proven in the same way as it was done for MLMVN
in [15] (with some adjustments presented in [20]).

3 Complex-valued network for the
parameter extraction

The main advantage of this kind of network is the
ability to directly work over a set of frequency re-
sponse values of the circuit, given in a complex
form (magnitude and phase, or real and imaginary
parts). As it will be shown below, employing a min-
imal amount of neurons and demonstrating a very
fast convergence, this network can be a great tool
to use in any kind of architecture that requires a
complex-valued input evaluation.

3.1 Testability and ambiguity groups

Any mathematical model aimed at representing a
real system relies on a set of parameters, specific for
this particular system. An accurate parameter esti-
mation is essential because it affects the model re-
liability, necessary for all activities associated with

analysis, design, maintenance and fault diagnosis.
However, it is not in general granted that all param-
eters of a system can be identified, hence a prerequi-
site to any parameter identification approach is the
verification of its feasibility. Knowing a priori that a
given parameter extraction method cannot success-
fully work allows saving time and resources, avoid-
ing attempts to estimate undistinguishable parame-
ters.

The solvability degree of the parameter iden-
tification problem can be determined by means of
testability analysis [21-26], that, even if specific of
parametric fault diagnosis of analog circuits, can
also be applied to the parameter extraction problem.
In order to understand the meaning of the testabil-
ity concept, we refer to the parametric faults, i.e.
the kind of faults in which the component param-
eters are out of their tolerance range. In this case,
a measure of the solvability degree of the fault di-
agnosis problem may be naturally identified with
the solvability degree of the fault diagnosis equa-
tions. These equations are obtained by comparing a
number of input-output relationships with the set of
corresponding measurements. In other words, af-
ter choosing some injection points and some test
points, the theoretical and measured outputs are
compared. The solvability measure quantifies the
circuit attitude to be tested and is called testabil-
ity. The parameter identification problem can take
advantage of this methodology. In fact, the solu-
tion of the fault diagnosis equations is essentially a
parameter extraction problem, in the sense that the
faulty components are identified by the real values
of their parameters. So, also in this case, the com-
parison of the input-output theoretical relationships
with the corresponding sets of measurements pro-
vides the parameter identification equations. There-
fore the fault diagnosis solvability degree, i.e. the
testability, becomes a parameter identification solv-
ability degree.

Much attention has been devoted to testability
concept and several testability definitions have been
given [12, 27-35]. However, the definition by Sen
and Saeks [12], based on multifrequency measure-
ments and linked to the rank of the Jacobian of
the network function vector, is the most popular,
due to its quantitative nature. It provides an upper
bound, independent of the component value and fre-
quency, to the performance of whatever algorithm
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employed for fault diagnosis. Of course, for what
stated above, this definition is perfectly applicable
to parameter identification. On the basis of this def-
inition, the problem of parameter extraction can be
formulated in the following way. Let us consider a
lumped model with nx inputs and ny outputs. Let p=
[p1, . . . , pnp] be the vector of the unknown circuit
parameters and n = nxny. The network functions

hr(s, p) =
∑N

k=0 a(r)k (p)sk

∑N
i=0 bi(p)si

,r = 1, ...,n, (9)

constitute the parameter extraction equations when
equated to their measures for arbitrary values of the
variable s. The unknowns of these nonlinear equa-
tions are the circuit parameters p. The rank of the
associated Jacobian matrix, evaluated for a given
value p* of the vector p, contains the information
about the solvability degree of the problem, i.e. the
testability. Since the Jacobian is a matrix consti-
tuted by rational functions, the computation of its
rank, and, hence, of testability, is not easy. In [25],
it has been demonstrated that the testability value is
the rank of the following numerical matrix Equation
10.

The testability T represents the maximum number
of simultaneously identifiable parameters in corre-
spondence to the given input-output sets and so it
gives the solvability degree of the parameter identi-
fication problem at a circuit level. In other words,
T allows to know a priori if a unique solution ex-
ists and, if it does not exist, T gives a quantitative
measure of how far we are from it, i.e. how many
parameters cannot be identified with the chosen set
of measurements. Although this is a fundamental
information, the knowledge of the solvability de-
gree at a circuit level is generally incomplete, unless
testability analysis is carried out also at a compo-
nent level. For understating the importance of the
component level analysis it can be observed that,
in general, T < np. As stated above, this means
that the parameter identification is not unique. The
problem can be solved by assuming that, among the
np parameters initially selected as unknown, np - T
can be fixed a priori. The choice of these a priori
known parameters can be based on heuristic con-
siderations. In addition, if a network function is
not very sensitive to a given parameter, this param-
eter can hardly be identified and it is worth assign-

ing to it a fixed value. However, a more rigorous
approach consists in the identification of testable
groups (TGs) [23], i.e. the groups of T parameters
that, if considered as simultaneously unknown, can
be unambiguously identified. Now, since each pa-
rameter is univocally associated to a column of the
matrix C(p∗) , a group of parameters is testable if
and only if the pertaining columns of C(p∗) con-
stitutes a maximal linearly independent set. Fur-
thermore it is equally important to individuate the
canonical ambiguity groups (CAGs) [23], i.e. those
minimal groups of parameters that, if assumed as si-
multaneously unknown, cannot be univocally iden-
tified. A group of parameters constitute a CAG
if and only if the corresponding columns of C(p∗)
constitute a minimal linearly dependent set. Testa-
bility analysis at a component level consists in the
determination of the CAGs and the TGs. Its results
can be then used for refining the parameter estima-
tion strategy, in terms of I/O selection and choice
of the set of parameters to be identified. In fact,
since the solvability degree is linked with the se-
lected network functions, the testability can be used
to find the network functions of the model, i.e. the
input and output sets, ensuring the maximum solv-
ability. Furthermore, the knowledge of testability
and ambiguity groups allows to determine the pa-
rameters that can be considered as unknowns. This
is important for obtaining a unique solution [23].

Testability analysis at both circuit and compo-
nent level can be carried out in a fully automated
form using a computer program named TALIC
(Testability Analysis for Linear Time-Invariant Cir-
cuits). It implements the algorithm proposed in [25]
in such a way that, starting from the model under
analysis, it can predict how many and which pa-
rameters can be unambiguously identified. TALIC
uses symbolic techniques which help to easily de-
termine the network function coefficients and their
derivatives, necessary for the building of the matrix
C(p*). The steps followed by the program can be
summarized as follows:

STEP 1: Chosen nx input points and ny out-
put points, evaluate the corresponding n = nx×ny

network functions in fully symbolic form by
means of SapWin [36].

STEP 2: From the SapWin output file, extract all
the coefficients of the network functions.
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STEP 3: Assign any value p* to p .

STEP 4: Construct the testability matrix C(p∗).

STEP 5: Carry on a Singular Value Decomposi-
tion of C(p∗) as in [24].

STEP 6: Calculate:

a) Testability T = rank [C(p∗)]

b) TGs

c) CAGs

The circuit is first drawn by using the SapWin
schematic capture tool: in this phase, the in-
put/output points are selected together with the pa-
rameters to be assumed as unknowns, whereas the
remaining ones are fixed at an arbitrary value. Then
the simulation is run, producing a file with the net-
work functions. TALIC reads this file and carries
out testability analysis according to the above out-
lined algorithm, thereby providing (for the selected
sets of inputs, outputs and unknown parameters) the
Testability T, the TGs, and the CAGs.

3.2 Parameter extraction procedure

When a lumped model has to be identified,
matching the measurements carried out on a dis-
tributed structure, a MLMVN-ACVI is used to as-
sociate a measured output to a given equivalent cir-
cuit of the structure. Its block diagram is shown in
Figure 2.

Figure 2. General scheme of the identification
system.

Once the architecture is chosen, the net-
work function and the unknown parameters are
fixed, then the unknown parameters become the
MLMVN-ACVI outputs. In other words, the pa-
rameter values are determined without solving any
system, and the network function is used for deter-
mining testability and ambiguity groups, necessary

to identify the unknown parameters giving a unique
solution.

The parameter extraction procedure can be
summarized as follows:

1 establish the lumped model equivalent circuit of
the device;

2 calculate the testability and ambiguity groups
and then evaluate which parameters should be
assumed as unknowns;

3 if necessary, evaluate the sensitivity of the net-
work response with respect to the electrical pa-
rameters, in order to tune the choice of the pa-
rameters left as variable;

4 generate an adequate number of samples to be
used in the training phase;

5 train the MLMVN-ACVI part of the correspond-
ing neural model (see Figure 2);

6 extract the parameters, as the output of the
MLMVN-ACVI part of the whole system;

7 evaluate the quality of identification, by com-
paring the measured frequency response with
the one calculated with extracted parameters.

The lumped model equivalent circuit is estab-
lished on the base of the collected data (measured
or simulated) representing the relation H(p,ω). The
number of samples used in the training phase de-
pends on the problem to be analyzed.

It is worth pointing out that the testability anal-
ysis, i.e. the testability evaluation and ambiguity
group determination, is very efficiently performed
by means of symbolic techniques [25, 36] without
significantly increasing the computational cost of
the whole parameter extraction system.

4 Simulation results

Three application examples are given in the follow-
ing paragraphs.

4.1 Antenna Balun Circuit

As a first example, let us consider the pa-
rameter identification of a balun (balanced to the
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unbalanced circuit) in a Schwarzbeck half-wave
dipole antenna shown in Fig. 3 [37]. An equiva-
lent electrical lumped circuit of the balun is intro-
duced by physical considerations, integrated by the
imposition of the symmetry between the two con-
ductors. Each parameter of the circuit model has
a straightforward physical interpretation, Lk repre-
sents the self-inductance of each winding, Cp and
Rp are the winding parasitic capacitance and resis-
tance, respectively. The coupling factor of the two
windings is k=Mk/Lk, so that Mk is the mutual in-
ductance. Rs and Ls are the parasitic resistance and
inductance of the connection, running from the coil
to the isolated terminals, while C0 represents the ca-
pacitance between each terminal and the ground.

Figure 3. Balun construction details (a) and
equivalent circuit (b).

Figure 4. Phase-sensitivity versus frequency of the
parameters Rs (a) and Ls (b) of the Balun circuit.

The reference values are used as initial values
of the components and are obtained using an empir-
ical approach over the physical model. The neural
architecture is therefore used to extract and tune the

component values, which give a frequency response
as close as possible to the measured one. To utilize
that, the following steps shall be made:

1 the circuit testability is evaluated (its value is
maximum and equal to 7); all the elements can
be potentially calculated;

2 a set of 2000 samples is generated using the
circuit simulator SapWin [36], letting the com-
ponent values randomly varying in a range of
±10% with respect to their reference values;

3 MLMVN-ACVI is trained over the set of gen-
erated samples, using a part of that (1400 sam-
ples) for the training and the remaining part of
600 samples for the validation.

4 the measurements are finally used for extracting
the identified components of the model and to
test the quality of the global approximation.

As for the step i), it should be mentioned that, since
we use the testability maximum in our experiment,
no ambiguity groups appear there. Because of that,
all the components should be simultaneously var-
ied in order to “cover” all the possible behaviors
of the circuit response. This procedure has some
drawbacks, the network becomes bulkier, slower
and subjected to a higher identification error (recall
that during the training, the error is evaluated just
over the component values). In order to address
this issue, a selection of the components through
the sensitivity of the transfer function with respect
to them is made. In the specific case, the curves
of sensitivity (reported in Fig. 4) show the prepon-
derant importance of the Rs and Ls parameters in
the identification process. Based on this consider-
ation, the resistive parameters keep their nominal
values, while the reactive parameters are adjusted
in the model via MLMVN-ACVI. The experimen-
tal results are reported in Table 1.

Table 1. Values of weights for Bonnor-Ebert gas
sphere equation

Lk M Rp Rs Ls Cp co

(µH) (nH) (kΩ) (mΩ) ( nH) (pF) (pF)
1.00 0.139 1.9 30.0 17.1 4.73 5.12

Figure 5 provides the comparison for the scat-
tering parameter s31 (relevant to Magnitude and
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Phase), showing the values calculated with the
lumped parameter model and the values measured
by instrumentation. The correspon-ding curves are
almost perfectly overlapped, with a final mean error
under 1%.

In order to give a deeper evaluation of the
proposed solution, which we got using MLMVN-
ACVI, we compared it with the ones gotten using
classical MLP and standard MLMVN described in
[14, 15], with no extended complex inputs and no
QR-modified learning rule. The results are shown
in Table 2. The comparison is provided in terms
of the number of required learning epochs to reach
the desired error, RMSE averaged over all the var-
ied components, and RMSE calculated over the fre-
quency response of the corresponding set of values
in the given frequency range.

This kind of application of the proposed struc-
ture can be of particular interest in electromagnetic
compatibility (EMC) measurements, given that an
accurate identification of the circuit model of the
balun permits to get insight into the limits of reli-
able operation of the network.

Figure 5. Frequency response amplitude and phase
of the Balun circuit simulated by lumped

parameter model (dashed curve) compared with
the measured ones (solid curve).

Table 2. Comparison among the MLMVN-ACVI
extraction procedure and others two networks for

the balun circuit
.

N0 of
epochs

RMSE
over
comp.
value

RMSE
over
freq.
resp.

MLMVN-ACVI 16 0.00251 0.0170
MLPNN 324 0.0570 0.1462
MLMVN 2038 0.00526 0.0545

Moreover, as it has been shown, MLMVN-ACVI
introduced in this paper shows its superiority when
compared to the traditional techniques. A great
advantage of MLMVN-ACVI is its ability to di-
rectly elaborate the complex-valued frequency re-
sponse. Finally, MLMVN-ACVI requires a drasti-
cally lower number of learning epochs to train it.

4.2 Lumped model of a microwave BP fil-
ter

Let us present the lumped parameter model of
a two-post microwave filter, like that represented in
Fig. 6, as a second example. The corresponding
equivalent circuit is shown in Fig. 7.

The filter behaves like a bandpass in microwave
range, with a very narrow band. In particular, the
center frequency is around 13 GHz and the band-
width is in the MHz range. As reported in [38], a
very small variation in the geometric dimensions of
the filter causes a consistent variation in the posi-
tion of the center frequency. Therefore, to obtain
a good resolution of the filter response, it is neces-
sary to keep the frequency step small enough. A
uniform sampling step is used in this case, obtain-
ing 500 sampled data over the range from 12.5 to
13.5 GHz. These data are constituted by two values
(magnitude and phase of the signal) and are taken
as the complex input of any input MVN neuron.
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4.2 Lumped model of a microwave BP fil-
ter

Let us present the lumped parameter model of
a two-post microwave filter, like that represented in
Fig. 6, as a second example. The corresponding
equivalent circuit is shown in Fig. 7.

The filter behaves like a bandpass in microwave
range, with a very narrow band. In particular, the
center frequency is around 13 GHz and the band-
width is in the MHz range. As reported in [38], a
very small variation in the geometric dimensions of
the filter causes a consistent variation in the posi-
tion of the center frequency. Therefore, to obtain
a good resolution of the filter response, it is neces-
sary to keep the frequency step small enough. A
uniform sampling step is used in this case, obtain-
ing 500 sampled data over the range from 12.5 to
13.5 GHz. These data are constituted by two values
(magnitude and phase of the signal) and are taken
as the complex input of any input MVN neuron.

A MLMVN WITH ARBITRARY COMPLEX-VALUED INPUTS . . .

Figure 6. Geometry of the two-post microwave
filter.

A hybrid finite-element–modal-expansion
(FEM-ME) technique is used for the computation
of the Generalized Scattering Matrix (GSM) of the
device [39]. The geometry of the filter is completely
represented by the three geometrical parameters in-
dicated in Fig. 6: x, r and d. The equivalent lumped
model is derived from the filter response, which is
well represented by a 4th order transfer function.

Figure 7. Equivalent lumped circuit of the
microwave filter.

Table 3. Values of the circuit model parameters of
mw filter as obtained from the MLMVN-ACVI

extraction procedure
.

R1(Ω) R2 (Ω) R3 (Ω) R4(Ω) R5(Ω)

208.13 0.1217 0.1217 4.372 1.0
R6(Ω) R7(Ω) R8(Ω) R9(Ω) Ra(Ω)

1.007 0.2175 0.0773 0.2173 1.0
Rb(Ω) C1(pF) C2(pF) C3(pF) C4(pF)

4.537 0.9898 0.9908 0.9987 1.0

The testability analysis of the model is more
complicated in this case. In fact, TALIC testabil-
ity analyzer described before now gives a testabil-
ity value T = 6, 272 ambiguity groups and 1306
testable groups.

Given that, only one among all the possible
testable groups (each one including a combination
of 6 elements) has been chosen: TG = {C1, C2,
C3, R1, R6, R9}. The dataset is generated using
again the SapWin simulator [36], in order to obtain
a dataset of 2000 learning examples (1500 are then
used for training and 500 for validation). During
the simulations the six components are randomly
variated within a range ±20% with respect to the
nominal value. The network is then trained follow-
ing the procedure outlined in Section 3.2. In Fig. 8,
a single output is reported in the frequency domain,
relating to the values reported in Table 3. The best
performing MLMVN-ACVI contains just 5 neurons
in a single hidden layer and six output neurons (one
per each adjusted parameter in the model). In Table
4, a comparison is reported, analogous to the previ-
ous example, with the other two paradigms.

Table 4. Comparison among the MLMVN-ACVI
extraction procedure and others two networks for

the mw filter circuit
.

N0 of
epochs

RMSE
over
comp.
value

Err% over
freq. resp.
(f0,BW )

MLMVN-
ACVI

36 0.0752 0.86, 3.75

MLPNN 514 0.1270 1.36, 8.20
MLMVN 3012 0.0926 0.98, 4.43
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Figure 8. Frequency response amplitude of the
microwave circuit simulated by lumped parameter

model (dashed curve) compared with the one
generated by simulator (solid curve).

In this case the curves are not perfectly overlapped
because the band is very narrow, but the error over
the central frequency and the one over the 3 dB
bandwidth remain the best one with respect to other
systems.

4.3 Lumped model of a transformer core

As a third example, the lumped parameter circuit
of a laminated core of a three-phase transformer
has been considered, which is modeled according
to the principle of duality [40]. In this case, the
neural identifier has been used to obtain the electri-
cal/magnetic parameters µr (permeability), σ (con-
ductivity) and the capacitance, relating to the equiv-
alent circuit of Fig. 9. These parameters are related
to the lumped components of the LRC equivalent
circuit, by means of the geometrical characteristic
of the windings and of the core of the transformer
(cross-sectional area of the core, thicknesses of sin-
gle lamination sheet, thickness of insulation layer
of the sheet, height of the core, width of the core,
length of the winding turn, diameter of the wire,
thickness of insulation layer of the wire).

Figure 9. Three-phase transformer section and
equivalent circuit of the transformer core.

Figure 10. Comparison of the magnitude of the
input impedance frequency responses in

transformer core.

Also in this case the initial values of the components
are obtained using an empirical approach. The neu-
ral architecture has been used to extract the values,
and to give a frequency response as close as possi-
ble to the measured one. In similar way, the steps
are:

1 the circuit testability is evaluated (its value is
maximum and equal to 9); all the elements can
be potentially calculated;

2 a set of 1200 samples is used, relating the elec-
trical parameters L and R to the parameters µr

and σ via analytical relations, reported, for in-
stance, in [41], and letting the component values
randomly varying in a range of ±10% with re-
spect to their reference values; the set is gener-
ated in the frequency range 100-300 Hz, evalu-
ating as output the input impedance of the equiv-
alent model, that is H = ZA = VA/IA;

3 MLMVN-ACVI is trained over the set of gener-
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Also in this case the initial values of the components
are obtained using an empirical approach. The neu-
ral architecture has been used to extract the values,
and to give a frequency response as close as possi-
ble to the measured one. In similar way, the steps
are:

1 the circuit testability is evaluated (its value is
maximum and equal to 9); all the elements can
be potentially calculated;

2 a set of 1200 samples is used, relating the elec-
trical parameters L and R to the parameters µr

and σ via analytical relations, reported, for in-
stance, in [41], and letting the component values
randomly varying in a range of ±10% with re-
spect to their reference values; the set is gener-
ated in the frequency range 100-300 Hz, evalu-
ating as output the input impedance of the equiv-
alent model, that is H = ZA = VA/IA;

3 MLMVN-ACVI is trained over the set of gener-

A MLMVN WITH ARBITRARY COMPLEX-VALUED INPUTS . . .

ated samples, using 1000 samples for the train-
ing and 200 samples for the validation.

The measurements are finally used for extracting
the identified components of the model and for test-
ing the quality of the global approximation (as re-
ported in the Fig. 10).

The Table 5 summarizes the performance over pa-
rameter values and over frequency response in the
same way of previous cases.

Table 5. Comparison among the MLMVN-ACVI
extraction procedure and others two networks for

the transformer core equivalent circuit.

N0 of epochs RMSE
over
comp.
value

RMSE
over
freq.
resp.

MLMVN-
ACVI

11 0.099 0.032

MLPNN 370 0.132 0.081
MLMVN 2830 0.097 0.031

5 Conclusion

The technique described in this paper is particu-
larly suitable for the elaboration of data which come
from a FRA approach of an electromagnetic system
modeled by means of a lumped circuit. The com-
bined use of different concepts developed by the
authors (testability, symbolic analysis and represen-
tation, MVN-based neural networks with complex
inputs) allows a rigorous and straightforward ap-
proach to an intricate issue. The results confirm the
validity of the procedure.
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