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Abstract

Biometric systems have been widely considered as a synonym of security. However, in re-
cent years, malicious people are violating them by presenting forged traits, such as gelatin
fingers, to fool their capture sensors (spoofing attacks). To detect such frauds, methods
based on traditional image descriptors have been developed, aiming liveness detection
from the input data. However, due to their handcrafted approaches, most of them present
low accuracy rates in challenging scenarios. In this work, we propose a novel method for
fingerprint spoofing detection using the Deep Boltzmann Machines (DBM) for extraction
of high-level features from the images. Such deep features are very discriminative, thus
making complicated the task of forgery by attackers. Experiments show that the proposed
method outperforms other state-of-the-art techniques, presenting high accuracy regarding
attack detection.
Keywords: Restricted Boltzmann Machines, Deep Boltzmann Machines, Deep Learning,
Fingerprint Spoofing Detection, Biometrics.

1 Introduction

In the last years, biometric systems became
quite common in our activities due to their high se-
curity and availability of affordable sensors [1, 2].
However, criminals are already violating them by
presenting forged traits, such as gelatin fingers,
to fool their capture sensors, a process known as
spoofing attack [3]. In this sense, countermeasures
techniques must be integrated into the traditional
biometric systems to prevent such frauds.

Countermeasure methods proposed so far use,
in general, raw, i.e., handcrafted features extracted
at the moment of identification, e.g., the presence of
facial movement, skin sweat, etc., to detect whether
there is a life or a fake biometric trait being pre-
sented to the sensor. Such handcrafted methods,
however, are shown to be not good enough, espe-
cially in challenging scenarios [4].

In this work, we propose a novel approach for
spoofing detection in fingerprint recognition sys-
tems, an adaptation of the method we presented in
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[5], using deep features extracted from images by
a probabilistic deep learning architecture: the Deep
Boltzmann Machine (DBM) [6]. DBMs can deal
with complex patterns efficiently and accurately
since they extract and work with high-level features
from the original data, being suitable for tasks in
which the patterns should not be easily detected or
forged. Results on the Crossmatch [4] dataset show
that the proposed method outperforms other state-
of-the-art techniques, presenting high accuracy re-
garding attack detection.

2 Technical Background

In this Section, basic concepts regarding
spoofing attacks, Restricted Boltzmann Machines
(RBM) [7, 8] and Deep Boltzmann Machines
(DBM) [6] are presented.

2.1 Biometric Spoofing Detection

In attacks on biometric systems, criminals usu-
ally generate synthetic samples of biometric traits
of legal users, such as printed facial photographs
and gelatin or latex fingers, to fool the capture sen-
sors [9, 10]. Figure 1 shows examples of finger-
prints obtained from real and synthetic fingers. As
one can observe, even for humans, visually, it is dif-
ficult to differentiate between real and fake ones.

Figure 1. Fingerprints from the Crossmatch 2013
[4] dataset. The top fingerprints are real and the

bottom are fake, i.e., obtained from synthetic
fingers made of different materials.

Antispoofing methods have been proposed
based on different principles. Nevertheless, spoof-
ing detection is still an open question [11]. Most
of the techniques are based on simple rules (hand-
crafted features) to detect attacks, e.g., the pres-
ence of skin sweat. However, criminals can quickly

identify these rules and improve attacks: watering
the latex fingers. In this sense, algorithms able to
work with deep, i.e., high-level and non trivially
generated features, are necessary. Among them,
the deep learning-based methods simulate the deep
structures of neurons in the human brain and have
outperformed state-of-the-art techniques in many
areas.

2.2 Restricted Boltzmann Machines
(RBM)

The Restricted Boltzmann Machines (RBM)
[7, 8] are energy-based neural networks used to
compose probabilistic deep learning architectures.
The model of an RBM (see Figure 2) comprises
a visible layer v with m units and a hidden layer
h with n units. Additionally, a real-valued matrix
Wm×n models the weights between the visible and
hidden neurons, where wi j stands for the weight be-
tween the visible unit vi and the hidden unit h j.

Figure 2. Architecture of a Restricted Boltzmann
Machine [8]. Each neuron of a given layer is
connected with all the neurons in the opposite

layer.

Considering both layers, v and h, with binary-
valued units, i.e., v ∈ {0,1}m and h ∈ {0,1}n, we
have the so-called Bernoulli-Bernoulli Restricted
Boltzmann Machine (BB-RBM). The energy func-
tion of a BB-RBM is given by

E(v,h)=−
m

∑
i=1

aivi−
n

∑
j=1

b jh j−
m

∑
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n
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where a and b stand for the biases of visible and
hidden units, respectively.

The marginal probability of a visible configura-
tion (input vector) is given by

P(v) =
1
Z ∑

h
e−E(v,h), (2)

where Z corresponds to the so-called partition func-
tion.

Since the BB-RBM is a bipartite graph, the ac-
tivations of both visible and hidden units are mutu-
ally independent, thus leading to the following con-
ditional probabilities

P(vi = 1|h) = ϕ

(
n

∑
j=1

wi jh j +ai

)
, (3)

and

P(h j = 1|v) = ϕ

(
m

∑
i=1

wi jvi +b j

)
, (4)

where ϕ(·) stands for the sigmoid function.

Let θ = (W,a,b) be the set of parameters of a
BB-RBM. They are learned through a training al-
gorithm that aims at maximizing the probabilities
of occurence of all the available training data (input
vectors) V , as follows

argmax
θ ∏

v∈V
P(v). (5)

One of the most used approaches to solve
the above problem is the Contrastive Divergence
(CD) [7], which basically ends up performing
Gibbs sampling using the training data as the vis-
ible units.

In the presence of real-valued data (grayscale
images), one should use the so-called Gaussian-
Bernoulli RBM (GB-RBM) [12], which now mod-
els the input vector as composed of Gaussian units.
Therefore, Equation 1 can be reformulated as

E(v,h)=
1
2

m

∑
i=1

(vi −ai)
2

σ2
i

−
n

∑
j=1

b jh j−
m

∑
i=1

n

∑
j=1

vi

σi
h jwi j.

(6)

Since the visible units have been modified, one
needs to reformulate their conditional probability.
Based on this, Equation 3 can be rewritten as fol-
lows

P(vi|h) = N

(
vi

����
n

∑
j=1

wi jh j +ai,σ2
i

)
, (7)

where σ2 stands for the variance of the Gaussian
distribution N .

2.3 Deep Boltzmann Machines (DBM)

An RBM [7, 8] can be used for many tasks, such
as noise removal. However, to learn more complex
and robust representations of the data, a deep ar-
chitecture is required. A Deep Boltzmann Machine
(DBM) [6] consists of a stack of RBMs that learn
together. After finding the weights and biases con-
cerning all its layers, such deep neural network can
also be used to eliminate noise, pinpointing or to
extract deep, i.e., high-level features from data vec-
tors, much more accurately.

Figure 3. Inference by intermediate field. In
DBM, influences from the superior and inferior

layers are considered in order to update
intermediate layers of the network, forming an

undirected network model.

In DBMs, connections among adjacent lay-
ers form a complete undirected model: the learn-
ing process considers both directions of interaction
among adjacent layers, as shown in Figure 3. As
one can observe, when analyzing a given layer of
the network, its superior layer is considered as the
complementary inference, its inferior layer as the
initial inference, and the middle layer (layer being

Complementary Inference

Final Inference

Initial Inference
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analyzed at the moment) as the final inference at the
equilibrium stage.

After a bottom-up initialization of the DBM
(training one of the stacked RBMs per time, from
bottom to top), the learning of the whole DBM is
performed through the use of a variable inference
method called Mean-Field (MF) to enhance its per-
formance. Such method consists in minimizing the
total energy of the whole network according to the
parameters found through partial inferences made
through the mean-fields (that simplify such process
since there are two-way interactions between adja-
cent layers in the network) [13]. Roughly speaking,
the idea is to find an approximation QMF(h|v;µ)
that best represents the true distribution of the hid-
den layers, i.e., P(h|v;θ). This approximation is
computed through the following factored distribu-
tion

QMF(h|v;µ) =
L

∏
l=1

[
Fl

∏
k=1

q(hl
k)

]
, (8)

where L stands for the number of hidden layers, Fl
represents the number of nodes in the hidden layer
l, and q(hl

k = 1) = µl
k. The goal is to find the param-

eters of the mean-field µ =
{

µ1,µ2, ...,µL
}

.

3 Previous Work

In this Section, we briefly describe an approach
that we previously proposed in [5] for fingerprint
spoofing detection, also based on a DBM for deep
features extraction. Actually, in such previous work
and different from the actual one, after learning the
parameters of the DBM, a final layer was added at
the top of such a structure with two softmax units,
forming an MLP (Multilayer Perceptron) network,
i.e., a complete classifier, to identify normal (class
“0”) or attack fingerprint patterns (class “1”).

Basically, given an initial training set of
grayscale fingerprint images, the first step consisted
in the extraction of their relevant regions [5]. After
that, resizing and database augmentation techniques
were also applied to improve the network perfor-
mance and avoid lack of data in training. As shown
in Figure 4, for each training fingerprint image, its
region of interest (ROI) with a fixed size (350×231
pixels) was cropped. After that, the ROI was resized
to 44×29 pixels and 10 different images (patches)

with size 36× 24 were obtained from it. The re-
sultant patches, in amount 10 times greater than the
original fingerprint images and with lower dimen-
sions, served as input to train the DBM.

Figure 4. Image normalization and database
augmentation process: given each initial

high-dimensional training fingerprint image, its
ROI was detected, cropped, resized, flipped and 10

different patches were obtained based on the
original and flipped ROI, by translating the

position of the red rectangle in their four corners
and central regions. This process was repeated for

all training images and at the end, the patches
generated from all of them served as an input to

train the DBM [5].

As mentioned in [5], after preprocessing the im-
ages from the dataset and before performing the
training of the DBM itself, given each grayscale fin-
gerprint patch, it was needed to previously train a
Gaussian-Bernoulli RBM (GB-RBM), that served
as the interface between such real-valued patches
and the Bernoulli-Bernoulli RBMs (BB-RBMs)
that constituted the DBM. This previous step with
the GB-RBM was called GB Preprocessing and is
shown in Figure 5.

After the GB Preprocessing, the DBM bottom-
up initialization properly began and the stacked
BB-RBMs were trained, in a greedy bottom-up
approach, in the same way as the GB-RBM, ex-
cept by the fact that we used a Bernoulli-Bernoulli
sampling approach in the Contrastive Divergence
method [7].

ROI

750 x 800

350 x 231

Flip

44 x 29

36 x 24
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Figure 5. Gaussian-Bernoulli preprocessing
followed by a Bernoulli-Bernoulli DBM training

based on a fingerprint patch of size 36×24 pixels.

Then, after the GB Preprocessing and the
bottom-up greedy initialization of the DBM, the
Mean-Field algorithm was performed, as in [14]),
updating the weights and the biases of the RBMs
stacked in the DBM in a more accurate way. Fi-
nally, an MLP neural network was constructed (see
Figure 6) using the same architecture as the DBM.
The initialization of the network weights was con-
ducted using the pretrained parameters, W and b,
of each individually trained RBM. We just added a

new top layer with two softmax units for classifica-
tion (working with a two-class problem, i.e., live or
fake images).

The two softmax units were responsible for
converting the inputs, coming from the top hidden
layer of the DBM into some normalized probabili-
ties, making possible to compare them with the de-
sired network output using the cross-entropy func-
tion, that measures the KL divergence [15] between
the network and the data probability distributions.

Figure 6. Adjusted parameters W and b were used
to initialize the MLP. This image shows the main

functionalities of each layer of the formed network.
It is possible to observe that there was a summation
and a nonlinear processing has been applied inside
each neuron, and it is also possible to observe the
softmax units represented in the output layer [5].

Given the formed MLP, the fine-tuning of the
network weights was then performed, comparing
desired and obtained probabilities by the softmax
units, given the training fingerprint patches, and
through the conjugate gradient method, making
possible to find a better configuration for the param-
eters W and b through gradient minimization, as in
[16, 17].
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In order to classify a test fingerprint image, its
10 patches were extracted, each of them was classi-
fied individually by the formed MLP and a votation
scheme was performed: after the classification of
the 10 patches originated from the test image, the
algorithm classified the whole fingerprint as real or
fake based on the classification of the majority of its
patches (in case of draw, the fingerprint was classi-
fied as fake).

4 Proposed Approach

Differently from the previous architecture [5],
briefly explained in Section 3, in this work we pro-
pose a novel approach for fingerprint spoofing de-
tection based on deep features extracted by a DBM
which presents the following training steps: (1) Im-
age Normalization and Database Augmentation; (2)
DBM Training; (3) Feature Extraction and SVM
(Support Vector Machine) Training. Despite the
fact that both methods represent ways of extracting
deep features from fingerprint images for spoofing
detection, the proposed approach differs from the
previous one by not forming an MLP classifier over
the DBM structure. Since the training of such clas-
sifier can become a complex and expensive task re-
garding time and processing, in this work, the DBM
is used to extract the deep features and, then, feed
a traditional SVM [18]. We also consider different
levels of abstraction in the DBM structure, i.e., we
consider the activation of the neurons in all hidden
layers of the DBM in the composition of the feature
vectors of the fingerprint images.

4.1 Image Normalization and Database
Augmentation

In this first step, as in the previous approach and
as shown in Figure 4, for each training fingerprint
image from the Crossmatch [4] dataset, its region of
interest (ROI) with a fixed size (350×231 pixels) is
cropped by finding the center of mass of the finger-
print pixels. After that, the ROI is resized to 44×29
pixels and 10 different images (patches) with size
36×24 are obtained from it. Such a process is per-
formed for all the training fingerprint images, and
the resultant patches will serve as input to train the
DBM.

In order to find the original ROI, the image is
binarized and a closing operation with a squared
structure of size 21× 21, adequate to the database,
is applied in order to eliminate eventual noise from
the sensor and to make the fingerprint a single con-
nected region. After that, to find the position of
the fingerprint in the image (that may vary since the
users may position their fingers in different parts of
the sensor area), the center of mass of the resulting
binary image is calculated. Then, based on the cen-
ter of mass, the 350×231-sized window is cropped
from the original image, and its ten final patches are
generated and used in the DBM training step.

4.2 DBM Training

Before performing the training of the DBM it-
self, which will be used for the deep features ex-
traction, given each grayscale fingerprint patch, a
Gaussian-Bernoulli RBM (GB-RBM) [12] is also
trained in this new approach in order to convert
the real-valued patches to posterior probabilities of
activation, which will feed the Bernoulli-Bernoulli
RBMs (BB-RBM) of the DBM. This previous step
with the GB-RBM, called GB Preprocessing, can
be observed in Figure 5. The input data (fingerprint
patches) are normalized to have zero-mean and uni-
tary variance, allowing to get rid of the σ2 term from
Equations 6 and 7, is not necessary to learn such
parameter during training and simplifying such pro-
cess.

After the GB Preprocessing, the DBM bottom-
up initialization properly begins: each training
patch is presented to the Gaussian-Bernoulli RBM,
and its posterior probabilities values feed the visi-
ble layer of the first stacked BB-RBM. After train-
ing each BB-RBM of the DBM stack, one per time
from bottom to top, the Mean-Field algorithm is
also applied, updating the weights and the biases
of the DBM in a whole and accurate way.

4.3 Feature Extraction and SVM Training

After learning the parameters of the GB-RBM
and the DBM, each training fingerprint patch is
presented again to such structures, and a forward
pass through all these layers is performed. The fea-
ture vector of the given patch is composed by con-
catenating all activation probabilities of the neurons
in all the hidden layers. These values incorporate
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traction, given each grayscale fingerprint patch, a
Gaussian-Bernoulli RBM (GB-RBM) [12] is also
trained in this new approach in order to convert
the real-valued patches to posterior probabilities of
activation, which will feed the Bernoulli-Bernoulli
RBMs (BB-RBM) of the DBM. This previous step
with the GB-RBM, called GB Preprocessing, can
be observed in Figure 5. The input data (fingerprint
patches) are normalized to have zero-mean and uni-
tary variance, allowing to get rid of the σ2 term from
Equations 6 and 7, is not necessary to learn such
parameter during training and simplifying such pro-
cess.

After the GB Preprocessing, the DBM bottom-
up initialization properly begins: each training
patch is presented to the Gaussian-Bernoulli RBM,
and its posterior probabilities values feed the visi-
ble layer of the first stacked BB-RBM. After train-
ing each BB-RBM of the DBM stack, one per time
from bottom to top, the Mean-Field algorithm is
also applied, updating the weights and the biases
of the DBM in a whole and accurate way.

4.3 Feature Extraction and SVM Training

After learning the parameters of the GB-RBM
and the DBM, each training fingerprint patch is
presented again to such structures, and a forward
pass through all these layers is performed. The fea-
ture vector of the given patch is composed by con-
catenating all activation probabilities of the neurons
in all the hidden layers. These values incorporate
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high-level statistical features from the original im-
age.

After finding the feature vectors of all training
samples, a dimensionality reduction is performed
through PCA [19] (Principal Component Analy-
sis) preserving almost 98% of original information
while reducing their length to 140 positions. Given
all reduced training feature vectors, an SVM clas-
sifier with radial basis function kernel is trained to
identify attempts of spoofing. As an observation,
in the grid search of SVM, only 25% of the train-
ing feature vectors (randomly selected), in a 10-fold
cross-validation scheme, were considered for effi-
ciency. Figure 7 shows the proposed architecture.

Figure 7. Proposed architecture for fingerprint
spoofing detection. After Gaussian-Bernoulli
Preprocessing, Bernoulli-Bernoulli DBM and
SVM training, test fingerprint patches can be

classified based on the activation of the neurons of
the trained network.

After finding the weights for the DBM and
training the SVM, such models can be used for the
spoofing detection task. Given an unknown finger-
print image, its ten patches are extracted and clas-
sified as in training phase. Given the classification
of its ten patches, the majority of votes determines
the final class of the test fingerprint: from the real

or synthetic finger (in case of a draw, the fingerprint
is taken as synthetic).

5 Experiments, Results, and Dis-
cussion

In our experiments, we used an architecture and
training parameters similar to [5] to allow a fair
comparison of the methods. We used a GB-RBM
with 864 (patch of size 36× 24) visible units and
1,000 hidden ones. Over it, we stacked a DBM
composed by two BB-RBMs with 1,000 visible and
1,000 hidden units each. The GB-RBM was trained
over 500 epochs and the BB-RBMs over 200 epochs
each, from bottom to top. After that, 200 epochs
were applied in the Mean-Field algorithm (30 it-
erations per epoch). For the GB-RBM, we used a
learning rate of 0.001, a momentum of 0.5 (and 0.9
after the fifth epoch), and weight-decay of 0.0002.
In the case of BB-RBMs, we used a learning rate of
0.01, the same momentum and weight-decay val-
ues. Sucha a lower learning rate for the GB-RBM
is required by the fact that the activation function of
the neurons of its visible layer is not bounded as in
binary neurons. The Mean-Field learning rate was
also 0.001.

The training and testing algorithms were im-
plemented in C and Matlab, using CUDA and the
libraries BLAS and OpenCV. To accomplish this
work, we used an Intel-i7 laptop with eight cores
and 8 GB of RAM. The graphic hardware used was
a Geforce GT650M board having 385 cores, 2 GB
of dedicated memory and two streaming processors.
We also applied LIBSVM to train the SVM clas-
sifier, which supports multiprocessing, making the
training even faster.

We evaluated the proposed approach on the
Crossmatch [4] database from the LivDet 2013
competition, considered by the own authors the
most challenging dataset of the event. There are
2,250 images of fingerprints for training and 2,250
images for testing, 1,250 from real fingers and
1,000 from fake ones, in each set. Figure 1, in Sec.
2.1, shows examples of fingerprints from the Cross-
match database.

The results regarding Accuracy (ACC), False
Acceptance Rate (FAR) and False Rejection Rate
(FRR) of the proposed approach and the other state-
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of-the-art methods are shown in Table 1. The pro-
posed method outperformed all other techniques
concerning FRR, including our previous work, re-
cently proposed in [5], which also uses a DBM as its
main learning structure. Such a method, briefly ex-
plained in Section 3, presents a much more complex
algorithm due to the fine tuning step of the formed
MLP, which requires backpropagation. In the pro-
posed approach, no fine-tuning step on the network
is performed.

The proposed method also presented a close
ACC value to the one obtained by such previous
method, and much better than all other evaluated
techniques, as well as it also presented a low FAR.
Additionally, it is important to note that the meth-
ods that presented FAR as of 0.00% also presented
almost 100.00% of FRR, i.e., they rejected all the
fingerprints, which means they may be not suitable
for real situations.

Table 1. Results (%) in different metrics of the
proposed method, our previous work [5] and other
state-of-the-art techniques (obtained from [4]). The

FAR and FRR rates are the ones when the
threshold of the system is at 0.5. The best value in

each metric is highlighted.

Method FAR FRR ACC
Proposed Approach 20.70 8.96 85.82

Previous Work 19.40 9.76 85.96
Dermalog 0.00 99.84 44.53
Anonym1 2.40 86.96 50.53

ATVS 10.30 90.40 45.20
Anonym2 0.30 98.40 45.20
UniNap1 31.10 31.28 68.80
UniNap2 48.30 55.20 47.87
UniNap3 48.30 55.20 47.87
Anonym3 0.10 95.52 46.89
HZ-JLW 0.00 100.00 44.44
Itautec 13.90 64.96 57.73
CAoS 54.20 41.92 52.62

6 Conclusion

In this work, we presented a novel approach for
fingerprint spoofing detection based on the Deep
Boltzmann Machine, which deals with complex
patterns in an accurate way due to its probabilis-
tic multilayer architecture. In the proposed method,

after training a DBM, such structure can be used to
extract deep (high-level) features of the images. An
SVM classifier is fed with the feature vectors of the
images generated by the DBM to identify spoofing
attacks. The proposed approach, due to its deep ar-
chitecture, is very robust, outperforming the state-
of-the-art techniques assessed on the Crossmatch
dataset. Besides, DBMs can be trained in a non-
supervised way to extract high-level features of an
input data, a very suitable model for real applica-
tions (only the classifier, e.g., an SVM, needs some
labeled samples).
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