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Abstract

Deep learning has been successful in various domains including image recognition, speech
recognition and natural language processing. However, the research on its application in
graph mining is still in an early stage. Here we present Model R, a neural network model
created to provide a deep learning approach to the link weight prediction problem. This
model uses a node embedding technique that extracts node embeddings (knowledge of
nodes) from the known links’ weights (relations between nodes) and uses this knowledge
to predict the unknown links’ weights. We demonstrate the power of Model R through
experiments and compare it with the stochastic block model and its derivatives. Model R
shows that deep learning can be successfully applied to link weight prediction and it out-
performs stochastic block model and its derivatives by up to 73% in terms of prediction
accuracy. We analyze the node embeddings to confirm that closeness in embedding space
correlates with stronger relationships as measured by the link weight. We anticipate this
new approach will provide effective solutions to more graph mining tasks.
Keywords: Deep learning, Neural networks, Machine learning, Graph mining, Link
weight prediction, Predictive models, Node embeddings.

1 Introduction

Both science and industry have seen pervasive
adoption of deep learning techniques powered by
neural network models since the early 2010s, when
they began to outperform other machine learning
techniques in various application domains, e.g.,
speech recognition [1], image recognition [2], nat-
ural language processing [3], recommendation sys-
tems [4], and graph mining [5]. These neural net
models cannot only achieve higher prediction accu-
racy than traditional models, but also require much
less domain knowledge and engineering.

Among those domains, graph mining is a new
and active application area for deep learning. An
important task in graph mining is link prediction
[6, 7], i.e., link existence prediction: to predict the
existence of a link. A less well-known problem is
link weight prediction: to predict the weight of a
link. Link weight prediction is more informative
in many scenarios. For example, when describing
the connection of two users in a social network, a
description “Alice texts Bob 128 times per day” is
more informative than “Alice texts Bob”.

We want to create a technique to predict link
weights in a graph using a neural net model. The
estimator should learn to represent the graph in a
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meaningful way and learn to predict the target link
weights using the representation it learns.

The contribution of this paper is a first deep
learning approach to the link weight prediction
problem. We introduce Model R - the first deep
neural network model specifically designed to solve
the link weight prediction problem. We systemati-
cally study Model R’s node embedding technique
and illustrate its uniqueness compared to other em-
bedding techniques. We also show that Model R
significantly outperforms the state of the art non-
deep learning approach to the link weight prediction
problem - the stochastic block model.

The rest of the paper includes the following
Sections:

– Problem: a description of the link weight predic-
tion problem, including a social network mes-
sage volume prediction example and a formal
definition.

– Existing approaches: a review of the state of
the art approaches to the link weight predic-
tion problem, including Node Similarity Model,
Stochastic Block Model and models derived
from Stochastic Block Models.

– Deep learning and embeddings: a review of lat-
est deep learning embedding techniques includ-
ing content based techniques and relation based
techniques.

– Approach: an introduction to Model R, includ-
ing its neural network architecture, node embed-
ding technique, deep learning techniques, design
parameters and choices.

– Experiments: an experimental evaluation of the
performance of Model R, with the comparison
to 4 baseline approaches on 4 datasets.

– Node embedding analysis: an analysis of the
node embeddings Model R produces to confirm
that closeness of nodes in embedding space cor-
relates with a strength of node relations.

– Conclusion: Model R outperforming Stochastic
Block Model shows deep learning can be ap-
plied to the link weight prediction problem and
achieve better performance than the state of the
art non-deep learning approaches.

– Future work: a brief discussion of possible fu-
ture directions of this work.

2 Problem

We consider the problem of link weight predic-
tion in a weighted directed graph. We first show
an example of the problem, and then give the prob-
lem definition. An undirected graph can be reduced
to a directed graph by converting each weighted
undirected link to two directed links with the same
weight and opposite directions, so the prediction for
a weighted undirected graph is a special case of the
problem we consider.

2.1 Problem example

Let us look at an example of link weight pre-
diction, message volume prediction in a social net-
work, shown in Figure 1. In this example, there are
3 users in a social network: A, B, and C. Each user
can send any amount of text messages to every other
user. We know the number of messages transmitted
between A and C, B and C, but not A and B. We
want to predict the number of messages transmitted
between A and B.

Figure 1. An example of link weight prediction in
a weighted directed graph - message volume

prediction in a social network.

This is a simplified network similar to many real
social networks, where every user interacts with
other users by posting, sharing, following or lik-
ing them. There can not be any logical approach
to derive the unknown message volumes, as they
have randomness. But there can be statistical ap-
proaches to build models to predict them. The abil-
ity to predict these interactions potentially allows
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meaningful way and learn to predict the target link
weights using the representation it learns.

The contribution of this paper is a first deep
learning approach to the link weight prediction
problem. We introduce Model R - the first deep
neural network model specifically designed to solve
the link weight prediction problem. We systemati-
cally study Model R’s node embedding technique
and illustrate its uniqueness compared to other em-
bedding techniques. We also show that Model R
significantly outperforms the state of the art non-
deep learning approach to the link weight prediction
problem - the stochastic block model.

The rest of the paper includes the following
Sections:

– Problem: a description of the link weight predic-
tion problem, including a social network mes-
sage volume prediction example and a formal
definition.

– Existing approaches: a review of the state of
the art approaches to the link weight predic-
tion problem, including Node Similarity Model,
Stochastic Block Model and models derived
from Stochastic Block Models.

– Deep learning and embeddings: a review of lat-
est deep learning embedding techniques includ-
ing content based techniques and relation based
techniques.

– Approach: an introduction to Model R, includ-
ing its neural network architecture, node embed-
ding technique, deep learning techniques, design
parameters and choices.

– Experiments: an experimental evaluation of the
performance of Model R, with the comparison
to 4 baseline approaches on 4 datasets.

– Node embedding analysis: an analysis of the
node embeddings Model R produces to confirm
that closeness of nodes in embedding space cor-
relates with a strength of node relations.

– Conclusion: Model R outperforming Stochastic
Block Model shows deep learning can be ap-
plied to the link weight prediction problem and
achieve better performance than the state of the
art non-deep learning approaches.

– Future work: a brief discussion of possible fu-
ture directions of this work.

2 Problem

We consider the problem of link weight predic-
tion in a weighted directed graph. We first show
an example of the problem, and then give the prob-
lem definition. An undirected graph can be reduced
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prediction in a social network.

This is a simplified network similar to many real
social networks, where every user interacts with
other users by posting, sharing, following or lik-
ing them. There can not be any logical approach
to derive the unknown message volumes, as they
have randomness. But there can be statistical ap-
proaches to build models to predict them. The abil-
ity to predict these interactions potentially allows
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us to recommend new connections to users: if A is
predicted/expected to send a large number of mes-
sages to B by some model, and A is not connected
to B yet, we can recommend B as a new connection
to A.

2.2 Problem definition

Now we define the link weight prediction prob-
lem in a weighted directed graph.

– Given a weighted directed graph with the node
set V and link subset E

– Build a model w = f(x, y) where x and y are
nodes and w is the weight of link (x, y) that can
predict the weight of any link

For every possible link (1 out of n2, where n is the
number of nodes), if we know its weight, we know
it exists; if we do not know its weight, we do not
know if it exists. This is a very practical point when
we handle streaming graphs: for any possible link,
we either know it exists and know its weight (if it
has been streamed in), or we do not know if the link
will ever exist, nor know its weight.

3 Existing approaches

In our literature study on previous research in
the link weight prediction problem, we have found
some existing approaches, but none use deep learn-
ing. In this Section, we review these existing ap-
proaches.

3.1 Node Similarity Model

This approach is designed for undirected
graphs. It assumes the weight of a link between two
nodes is proportional to the similarity of those two
nodes. It employs a linear regression model [8]

wxy = k · sxy,

where k is the regression coefficient, wxy is the
weight of the link between node x and node y, and
sxy is the similarity of x and y, calculated based on
their common neighbors

sxy = ∑
z∈N(x)∩N(y)

F,

where N(x) is the set of neighbors of node x, z is
any common neighbor of x and y, and F is an in-
dex factor which has nine different forms, shown in
Table 1.

In Table 1, dz is the degree of node z and sz is
the strength of node z

sz = ∑
u∈N(z)

wzu,

These nine forms represent three groups of mea-
sures of 2-hop paths connecting those two nodes:

– Unweighted group [9]: this group is based on
path existence and ignore path weights.

– Weighted group [10]: this group is based on path
length, i.e., the sum of path weights.

– Reliable route weighted group [11]: this group
is based on path reliability, i.e., the product of
path weights.

And each group contains three forms:

– Common Neighbors: this form is based on paths
and ignores node degrees.

– Adamic-Adar: this form is similar to Com-
mon Neighbors, but depresses the contribution
of nodes with high degrees or high strengths.

– Resource Allocation: this form is similar to
Adamic-Adar, but depresses more than Adamic-
Adar does.

3.2 SBM (Stochastic Block Model)

This approach is designed for unweighted
graphs and uses only link existence information
[12]. The main idea is to partition nodes into L
groups and connect groups with bundles. In this
way, the graph has a 2-level structure:

– Lower level: each group consists of nodes which
were topologically similar in the original graph

– Upper level: groups are connected by bundles to
represent the original graph

Given a graph with adjacency matrix A, the SBM
has the following parameters:

– A: link existence matrix, where Ai j ∈ {0,1}
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Table 1. 9 different forms of index factor F.

Common Neighbors Adamic-Adar Resource Allocation
Unweighted F

1 1
log(dz)

1
dz

Weighted F
wxz +wzy

wxz +wzy

log(1+ sz)

wxz +wzy

sz

Reliable-route Weighted
F wxz ·wzy

wxz ·wzy

log(1+ sz)

wxz ·wzy

sz

– z: the group vector, where zi ∈ {1...L} is the
group label of node i

– θ: the bundle existence probability matrix,
where θziz j is the existence probability of bun-
dle (zi,z j)

So the existence of link (i, j) Ai j is a binary random
variable following the Bernoulli distribution

Ai j ∼ B(1,θziz j).

The SBM fits parameters z and θ to maximize the
probability of observation A

P(A|z,θ) = ∏
i j

θAi j
ziz j(1−θziz j)

1−Ai j .

We rewrite the log likelihood of observation A as an
exponential family

log(P(A|z,θ)) = ∑
i j
(T (Ai j)η(θziz j)),

where
T (Ai j) = (Ai j,1)

is the vector-valued function of sufficient statistics
of the Bernoulli random variable and

η(θ) = (log(
θ

1−θ
), log(1−θ))

is the vector-valued function of natural parameters
of the Bernoulli random variable.

3.3 pWSBM (pure Weighted Stochastic
Block Model)

The pWSBM is designed for weighted graphs
and uses only link weight information [13]. So it

differs from SBM in a few ways described below.
Here we choose model link weight with a normal
distribution. Adjacency matrix A becomes the link
weight matrix where the weight of link (i, j) Ai j is a
real random variable following the normal distribu-
tion

Ai j ∼ N(µziz j ,σ
2
ziz j

),

θziz j becomes the weight distribution parameter of
bundle (zi,z j)

θziz j = (µziz j ,σ
2
ziz j

),

T (Ai j) becomes the vector-valued function of suffi-
cient statistics of the normal random variable

T (Ai j) = (Ai j,A2
i j,1),

η(θ) becomes the vector-valued function of natural
parameters of the normal random variable

η(θ) = (
µ

σ2 ,−
1

2σ2 ,−
µ2

2σ2 ).

The pWSBM fits parameter z and θ to maximize the
log likelihood of observation A

log(P(A|z,θ)) = ∑
i j
(Ai j

µziz j

σ2
ziz j

−A2
i j

1
2σ2

ziz j

−
µ2

ziz j

σ2
ziz j

).

3.4 bWSBM (balanced Weighted Stochas-
tic Block Model)

The bWSBM is a hybrid of SBM and pWSBM
and uses both link existence information and link
weight information [13]. The hybrid log likelihood
becomes

log(P(A|z,θ)) =
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α∑i j∈E(Te(Ai j)ηe(θziz j))
+(1−α)∑i j∈W (Tw(Ai j)ηw(θziz j)),

where pair (Te,ηe) denotes the family of link ex-
istence distributions in SBM and pair (Tw,ηw) de-
notes the family of the link weight distributions in
pWSBM. and α ∈ [0,1] is a tuning parameter that
determines their relative importance, E is the set of
observed interactions, and W is the set of weighted
edges. In the following, we use α = 0.5 following
the practice in [13].

3.5 DCWBM (Degree Corrected Weighted
Stochastic Block Model)

The DCWBM is designed to incorporate node
degree by replacing pair (Te,ηe) in the bWSBM
with

Te(Ai j) = (Ai j,−did j),ηe(θ) = (logθ,θ),

where di is the degree of node i [13].

4 Deep Learning and Embeddings

As deep learning techniques become more pow-
erful and standardized, a key process of a domain-
specific deep learning application is converting en-
tities to points in an embedding space, or equiva-
lently, mapping entities to vectors in a vector space,
because a neural net needs vectors as inputs. These
vectors are called embeddings and this process is
called embedding. Embeddings are ubiquitous in
deep learning, appearing in natural language pro-
cessing (embeddings for words), recommender sys-
tems (embeddings for users and items), graph min-
ing (embeddings for nodes) and other applications.
In this Section, we review a few classical em-
bedding techniques and models for images, audio,
words, documents, items, and nodes. A common
goal of these techniques is to ensure that similar
entities are close to each other in the embedding
space. Observations about this process lead to the
deep learning approach to link weight prediction.

4.1 Entities and representations

First of all, we summarize how a neural net rep-
resents various types of entities in different domains
with different relations, as shown in Table 2. An im-
age in image recognition is represented as a 2D light

amplitude array with dimensions height and width.
An audio/spectrogram in speech recognition is rep-
resented as a 2D sound amplitude array with dimen-
sions time and frequency. The relation between two
images or two audio is not commonly used. Words
in natural languages, items in recommendation sys-
tems, and nodes in graphs can be represented by
vectors (1D numeric arrays). The relations between
two words, two items and two nodes are commonly
used to learn these vectors. It is clear that repre-
sentations for all the entities are numeric arrays, be-
cause neural nets rely on neurons’ activations and
communications, which are both numeric.

4.2 Mapping entities to vectors

The word2vec technique in natural language
processing is famous for using a neural net to learn
to map every entity (word in this case) in a vocab-
ulary to a vector without any domain knowledge
[14]. In a corpus, every word is described/defined
only by related words in its contexts, by implicit
relations between words in word co-occurrences.
Nonetheless, the neural net can learn from word co-
occurrences and map words to vectors accordingly.
It provides strong evidence that word embedding
with the Skip-gram model can extract knowledge
about words from the relations between words and
represent this knowledge in the word embedding
space [15]. In fact, most subsequent embedding
techniques in other domains use the same Skip-
gram model, such as doc2vec [16], item2vec [4],
node2vec [5] and deep walk [17]. All these tech-
niques have achieved high prediction accuracies in
their various applications including language mod-
eling, document classification, item rating predic-
tion, and node classification.

4.3 Content-based embedding techniques

Techniques in this group extract knowledge
about an entity from its content, i.e., the input of
the neural network is a vector produced from the
item’s content. For example, the content can be the
pixel values of an image, or the spectrogram of an
utterance. The similarity of these techniques is that
the content (the raw input to the neural network)
is already a vector. Therefore, the embedding pro-
cess is practically a dimensionality reduction pro-
cess that converts a high dimensional raw input vec-
tor to a low dimensional vector containing more ab-
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Table 2. A summary of various types of entities, their numeric representations and inter-entity relations in
different domains.

Domain Entity Relations Representation
image recognition image N/A 2D light amplitude ar-

ray[width, height]
speech recognition audio/spectrogram N/A 2D sound amplitude

array[time, frequency]
natural language
processing

word co-occurrences of words
in a context

1D array (i.e., word
vector)

recommendation
systems

item co-purchases of items in a
order

1D array (i.e., item
vector)

graph mining node connections of nods (i.e.,
links)

1D array (i.e., node
vector)

stract knowledge about the input entity.

4.3.1 Image embedding with auto-encoders

Figure 2. A small auto-encoder neural network
model with 1 input layer (red), 3 hidden layers
(green), and 1 output layer (blue), input size 8,

embedding size 2. Notice that the embedding layer
is the innermost hidden layer. The hidden layers
use rectified linear units. The output layer uses

linear units.

This is an unsupervised embedding technique
commonly used in image recognition [18]. A small
auto-encoder neural network model is shown in Fig-
ure 2. The model is a feed-forward neural network.

The output layer and the input layer have the same
size. The hidden layers closer to the input or output
layers have larger sizes. This technique is unique
because during training, the input activation and
the expected output activation are always the same
vector of pixel values of the image. From the in-
put layer to the embedding layer, the layer size de-
creases, compressing the information. It can effec-
tively reduce a high dimensional vector (the activa-
tion of a large number of input units with raw pixel
values) to a low dimensional vector (the activations
of a small number of hidden units with abstracted
meanings) [19]. This technique applies to not only
images for image recognition, but also audio spec-
trogram for speech recognition [20] and words for
natural language processing [21].

4.3.2 Audio embedding with convolutional
neural network

This is a supervised deep learning technique
commonly used in speech recognition [22]. A small
convolutional neural network model is shown in
Figure 3.

The model is a feed-forward neural network.
The input activation is the vector of pixel values of
the audio spectrogram. The output layer uses soft-
max units to predict the target label, such as the
genre of a song [23] or the word of an utterance
[22]. From the input layer upward, each convolu-
tional and pooling layer combo extracts more ab-
stract information than the previous layer. Eventu-
ally, the neural network converts the raw input data
to an embedding at the fully connected layer and
uses it to predict the target label. Most of the stud-
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This is a supervised deep learning technique
commonly used in speech recognition [22]. A small
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The model is a feed-forward neural network.
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the audio spectrogram. The output layer uses soft-
max units to predict the target label, such as the
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ies on convolutional neural networks focus on accu-
rately predicting the target attributes, and the con-
cept of entity embedding is under-explored. This
technique applies to not only audio spectrogram
for speech recognition, but also images for image
recognition [24], letter trigram for natural language
processing [25] and items for recommender sys-
tems [26].

Figure 3. A small convolutional neural network
model with 1 input layer (red), 5 hidden layers

(green), and 1 output layer (blue). Notice that the
embedding layer is the last hidden layer. The

hidden layers use rectified linear units. The output
layer uses softmax units. Only layers and the

connections between layers are shown, while the
units in each layer and the connections between

units are not shown.

4.4 Relation-based embedding techniques

Techniques in this group extract knowledge
about an entity from its relations with other enti-
ties, such as words, users, items, and nodes. The
input of the neural network is the one-hot encoding
vector of an entity. An example of this encoding is
shown in Table 3.

The similarity of these techniques is that each
entity does not contain any information about it-
self and therefore its one-hot encoding vector is
also a meaningless vector. In other words, each en-
tity is only defined by its relations with other enti-

ties. Therefore, in the embedding process, the neu-
ral network gradually forms an understanding of the
meaning of all entities by observing the relations
between all entities.

Table 3. One hot encoding example for a
dictionary of words.

Word One-hot encoding
w1 [1, 0, 0, 0, ... 0]
w2 [0, 1, 0, 0, ... 0]
w3 [0, 0, 1, 0, ... 0]
w4 [0, 0, 0, 1, ... 0]
... ...

4.4.1 Word embedding with skip-gram model

This is an unsupervised embedding technique
commonly used in natural language processing
[15]. A small skip-gram neural network model is
shown in Figure 4.

Figure 4. A small skip-gram neural network model
with 1 input layer (red), 1 hidden layer (green), and

1 output layer (blue), vocabulary size 4 and
embedding size 2. Notice that the embedding layer

is the hidden layer. The hidden layer uses linear
units. The output layer uses softmax units.

The model is a feed-forward neural network.
The definition of context is the set of words close to
the given word. For example, given the natural lan-
guage vocabulary {the, quick, brown, fox, jumps,
over, lazy, dog}, the sentence “the quick brown fox
jumps over the lazy dog”, a context radius of 2, and
the word “fox”, we have the context of fox {quick,
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brown, jumps, over}. A natural language corpus
has many sentences, therefore, from these sentences
we can produce a dataset where each example is a
(word, context-word) pair, as shown in Table 4.

Table 4. The words dataset for a natural language
corpus.

Input = word Output = context-word
... ...

brown fox
brown jumps

fox quick
fox brown
fox jumps
fox over

jumps brown
jumps fox

... ...

Given a word fox, its context word is a random
variable with a probability distribution

P(context word = x|given word = f ox),

where
x ∈ vocabulary

and the context-word probability distribution sums
to 1 over the vocabulary

∑
x∈vocabulary

P(context word = x|given word = f ox)= 1.

(1)
During each training step, one training example - a
(word, context-word) pair - is used. The input layer
is activated by the one-hot encoding of the given
word. The output layer is expected to predict the
one-hot encoding of the context-word. However, as
each word can have many possible context-words,
there is always a difference between the expected
output and the actual output. After substantial train-
ing, a skip-gram neural network model will even-
tually output the context-word probability distribu-
tion. The embeddings for all words are technically
the weights in the embedding layer. For any natu-
ral language corpus and any two words X and Y in
this corpus, we have the following equivalent state-
ments:

– X and Y have the similar meanings

– X and Y have the similar context-word probabil-
ity distributions

– X and Y have the similar embeddings

The final outcome is similar words have similar em-
beddings. Acquiring these embeddings is often the
first step in many natural language processing tasks
such as paraphrasing detection [27], constituency
parsing [28], sentiment analysis [29], and informa-
tion retrieval [30].

4.4.2 Item embedding with skip-gram model

This is an embedding technique similar to word
embedding, commonly used in recommender sys-
tems [4]. This technique reduces the item embed-
ding problem to the word embedding problem and
then applies the word embedding technique. For ex-
ample, given a purchase order {monitor, keyboard,
mouse, printer, scanner}, we have the context of
mouse {monitor, keyboard, printer, scanner}. An
e-commerce platform has many purchase orders,
which can produce a dataset where each example
is an (item, context-item) pair as shown in Table 5.

Table 5. The items dataset for a collection of
orders.

Input = item Output = context-item
... ...

keyboard mouse
keyboard printer

mouse monitor
mouse keyboard
mouse printer
mouse scanner
printer keyboard
printer mouse

... ...

By reducing purchase orders to natural lan-
guage sentences and items to words, this technique
reduces the item embedding problem to the word
embedding problem. Applying the word embed-
ding technique will produce the desired item em-
beddings. The final outcome is similar items have
similar embeddings.

4.4.3 Node embedding with skip-gram model

This is an embedding technique similar to item
embedding, commonly used in graph mining [17,
5]. This technique reduces the node embedding
problem to the word embedding problem and then
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ments:

– X and Y have the similar meanings
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ity distributions

– X and Y have the similar embeddings

The final outcome is similar words have similar em-
beddings. Acquiring these embeddings is often the
first step in many natural language processing tasks
such as paraphrasing detection [27], constituency
parsing [28], sentiment analysis [29], and informa-
tion retrieval [30].

4.4.2 Item embedding with skip-gram model

This is an embedding technique similar to word
embedding, commonly used in recommender sys-
tems [4]. This technique reduces the item embed-
ding problem to the word embedding problem and
then applies the word embedding technique. For ex-
ample, given a purchase order {monitor, keyboard,
mouse, printer, scanner}, we have the context of
mouse {monitor, keyboard, printer, scanner}. An
e-commerce platform has many purchase orders,
which can produce a dataset where each example
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Table 5. The items dataset for a collection of
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... ...

keyboard mouse
keyboard printer

mouse monitor
mouse keyboard
mouse printer
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printer keyboard
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By reducing purchase orders to natural lan-
guage sentences and items to words, this technique
reduces the item embedding problem to the word
embedding problem. Applying the word embed-
ding technique will produce the desired item em-
beddings. The final outcome is similar items have
similar embeddings.

4.4.3 Node embedding with skip-gram model

This is an embedding technique similar to item
embedding, commonly used in graph mining [17,
5]. This technique reduces the node embedding
problem to the word embedding problem and then
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applies the word embedding technique. For exam-
ple, given a walk in a social network of users {John,
Mary, James, Alice, Bob}, we have the context of
James {John, Mary, Alice, Bob}. A graph has many
walks, which can produce a dataset where each ex-
ample is a (node, context-node) pair. By reducing
walks to natural language sentences and nodes to
words, this technique reduces the node embedding
problem to the word embedding problem. The final
outcome is similar nodes have similar embeddings.

4.5 The weakness of skip-gram model in
node embedding

The relation between nodes is quite different
from that between words:

– The weight of a link from one node to another
specifically tells us how strong one node con-
nects to the other; this type of relation has regu-
lar and explicit form: entity - relation - entity.

– On the other hand, the co-occurrences of words
(e.g., in the context “The quick brown fox jumps
over the lazy dog”) implicitly tell us these words
are related but do not tell us any specific rela-
tions (e.g., Are “quick” and “brown” related?
What is the relation between “fox” and “jumps”?
Is “over” a relation or entity?).

Natural languages do not have the notion that all
information can be described as entities and their
relations, as in graphs. For a neural net, words
can simply show up in sequences from day-to-day
conversations, in many flexible and unpredictable
ways, with little structure or regularity. Therefore,
the skip-gram model, designed to handle natural
languages, can not take advantage of highly struc-
tured data in graphs. This suggests that a neural net,
if correctly designed to handle graphs, should be
able to learn a node-to-vector mapping supervised
by the link weight, in a more specific, direct and
simply way than it learns word-to-vector mappings
supervised by word co-occurrences.

5 Approach

Following the above observations, we build an
estimator with a neural net model using a node pair
as its input and the weight of the link connecting the
nodes as its output. Given a weighted graph, from

its adjacency list we can produce a dataset where
each example is a (source node, destination node,
link weight) triplet. For example, given a social net-
work where nodes are users and link weights, are
numbers of messages users send to other users, we
have its adjacency list dataset as shown in Table 6.

Table 6. The adjacency list dataset for a social
network.

Input = (source, destination) Output = weight
... ...

(Mary, John) 8645
(John, Mary) 9346
(John, Alice) 2357
(John, Bob) 9753
(Alic, Bob) 1238

... ...

5.1 Model R

We design the model in the estimator as a fully
connected neural network model which we call
Model R (R as in relation), shown in Figure 5. We
have considered a convolutional neural net as an al-
ternative, but we decided it would not be a good
fit for this application. The reason is that these
node vectors do not have any spacial property for a
convolutional neural network to take advantage of,
compared to the 2D array of an image where the
spacial location of each pixel has significant mean-
ing (e.g., relative distances of pixels). These node
vectors do not have any of the invariance properties
of an image either, such as translation invariance,
rotation invariance, size invariance and illumination
invariance. In this Section, we describe the archi-
tecture of Model R and the node embedding tech-
nique based on this model.

The model contains the following layers:

– An input layer directly activated by the one-hot
encodings of a (source node, destination node)
pair.

– A hidden embedding layer of linear units. This
layer maps each node from its one-hot encoding
to the corresponding node vector.

– Multiple fully connected hidden layers of rec-
tified linear units (only two layers are shown
in the figure). These units employ the rectifier
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Figure 5. A simplified version of Model R with 1 input layer (red), 3 hidden layers (green), and 1 output
layer (blue). Notice that the embedding layer is the first hidden layer. The embedding layer and the input
layer each has two channels: one channel for the source node and one channel for the destination node.

The embedding layer uses linear units while other hidden layers use rectified linear units. The output layer
uses linear units. Only layers and their connections are shown, while the units in each layer and their

connections are not shown.

( f (x) = max(0,x)) as their activation function.
These layers learn to extract more and more ab-
stract weight-relevant information.

– An output layer with a linear regression unit.
This unit employs linear regression ( f (x) = kx)
as its activation function. It learns to predict the
link weight as a real-number using abstracted
weight-relevant information.

5.2 Model R node embedding technique

The Model R based node embedding technique
is different from the skip-gram based techniques.
One advantage of the Model R based node em-
bedding technique is that it takes advantage of the
highly organized, regular and repeated structure in
the relational dataset representing a graph, i.e., a
source node connects to a destination node through
one and only one weighted link. The skip-gram
model does not exploit this structure in natural lan-
guage processing because this structure does not
exist. Link weights provide the information about
nodes. We fully take this property into account and
design this model to learn complex and unobserv-
able node information (i.e., node vectors) super-
vised by a simple and observable relation between

nodes (i.e., link weight).

5.3 Model R learning techniques

The estimator uses the above model and a num-
ber of popular deep learning techniques:

– Backpropagation: propagation of the error gra-
dients from output layer back to each earlier
layer [31]

– Stochastic gradient descent: the optimization
that minimizes the error (descending against the
error gradient in weight space) for a random
sample in each gradient descent step [32]

– Mini-batch: the modification to stochastic gra-
dient descent to accelerate and smooth the de-
scent by minimizing the error for a small ran-
dom batch of samples in each gradient descent
step [33]

– Early stopping: the regularization used to reduce
over-fitting during the iterative learning process
by stopping the learning when validation error
stops decreasing [34]
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as its activation function. It learns to predict the
link weight as a real-number using abstracted
weight-relevant information.

5.2 Model R node embedding technique

The Model R based node embedding technique
is different from the skip-gram based techniques.
One advantage of the Model R based node em-
bedding technique is that it takes advantage of the
highly organized, regular and repeated structure in
the relational dataset representing a graph, i.e., a
source node connects to a destination node through
one and only one weighted link. The skip-gram
model does not exploit this structure in natural lan-
guage processing because this structure does not
exist. Link weights provide the information about
nodes. We fully take this property into account and
design this model to learn complex and unobserv-
able node information (i.e., node vectors) super-
vised by a simple and observable relation between

nodes (i.e., link weight).

5.3 Model R learning techniques

The estimator uses the above model and a num-
ber of popular deep learning techniques:

– Backpropagation: propagation of the error gra-
dients from output layer back to each earlier
layer [31]

– Stochastic gradient descent: the optimization
that minimizes the error (descending against the
error gradient in weight space) for a random
sample in each gradient descent step [32]

– Mini-batch: the modification to stochastic gra-
dient descent to accelerate and smooth the de-
scent by minimizing the error for a small ran-
dom batch of samples in each gradient descent
step [33]

– Early stopping: the regularization used to reduce
over-fitting during the iterative learning process
by stopping the learning when validation error
stops decreasing [34]
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5.4 Model R design parameters and
choices

Now we briefly discuss different options for our
design parameters and choices, and also some justi-
fications for our choices.

– The choice of rectifier as the activation function
is a relatively easy one. Compared to earlier
popular activation functions like sigmoid func-
tion ( f (x) = (1+exp(−x))−1), rectifier not only
simplifies and accelerates computation, but also
eliminates vanishing gradient problems, and has
become the most popular activation function for
deep neural networks [35].

– The choice of layer size is related to the num-
ber of examples in the dataset. Naturally, the
larger the dataset is, the more discriminative the
model should be, and consequently higher de-
grees of freedom, higher dimensions of vectors
and larger layer sizes. Empirically, we usually
set the layer size as a logarithm function of the
dataset size

d = log2(n),

where d (as in dimension) is the layer size and n
is the dataset size.

– The choice of number of hidden layers is related
to the complexity of the relation between the in-
put and the output of the model. As a trivial
example, if the input and the output have a lin-
ear relation, no hidden layer is necessary and the
model is simply a linear model. If the input and
the output have a non-linear relation, the more
complex the relation is, the more layers are nec-
essary. Empirically, we usually set the number
of hidden layers to 4, as a good compromise of
learning speed and prediction accuracy.

We naturally assume the most optimum design pa-
rameters are dataset dependent. However, we do not
know any theoretical way to calculate the most op-
timum parameters based on the statistic signatures
of a specific dataset. Therefore, in this work, we
evaluate different parameter choices through a few
experiments. We will work on design parameter op-
timization in our future research.

6 Experiments

We evaluate Model R experimentally with
SBM, pWSBM, bWSBM, and DCWBM as base-
lines, and compare their prediction errors on several
datasets. We use the same datasets and experiment
process used in a recent study of these baselines
[13]. The results show that Model R can achieve
much lower prediction error than the baseline mod-
els.

6.1 Datasets

The experiments use four datasets:

– Airport [36]. Nodes represent the busiest air-
ports in the United States, and each of the di-
rected edges is weighted by the number of pas-
sengers traveling from one airport to another.

– Collaboration [37]. Nodes represent nations on
Earth, and each of the edges is weighted by a
zed count of academic papers whose author lists
include that pair of nations.

– Congress [38]. Nodes represent the committees
in the 102nd United States Congress, and each
of the edges is weighted by the number of shared
members.

– Forum [39]. Nodes represent users of a student
social network at UC Irvine, and each of the di-
rected edges is weighted by the number of mes-
sages sent between users.

The statistics of these datasets are summarized in
Table 7.

Table 7. The statistics of the graph datasets used in
experiments.

Dataset Node # Link # Degree
Airport 500 5960 11.92

Collaboration 226 20616 91.22
Congress 163 26569 163

Forum 1899 20291 10.68

6.2 Experiment process

We do the same experiment for each dataset.
All the link weights are normalized to the range [-1,
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1] after applying a logarithm function. Each experi-
ment consists of 25 independent trials. In each trial,
we split the dataset randomly into 3 subsets:

– 70% into the training set

– 10% into the validation set

– 20% into the testing set

We use mean squared error as the prediction
accuracy metric. For each trial we learn using
the training set until error on the validation set in-
creases. We then evaluate the error of the learned
model on the testing set. For each experiment, we
report the mean and standard deviation of the errors
from 25 trials.

6.3 Experiment results

In our experiments, Model R’s error is lower
than all other models on all datasets, as shown in
Figure 6 and Table 8.

In this Section we compare Model R with the
baseline models on every dataset. Given the dataset,
we regard ModelRError (as well as BaselineError)
as a random variable so each trial generates an ex-
ample of it. We can do a t-test to justify the signif-
icance of the difference between the means of vari-
ables ModelRError and BaselineError. The mean
of a variable is not the same as the mean of a sam-
ple of the variable. More specifically, a variable can
generate two samples with different sample means,
therefore two samples with different means do not
imply the two variables generating them have dif-
ferent means. For each dataset, we do a t-test for
the two variables where the null hypothesis is that
the two variables have the same mean

X1 == X2,

where X1 and X2 are ModelRError and Baseli-
neError and where X is the mean of variable X.
Welch’s t-test defines its p-value as the Student’s
t-distribution cumulative density function

p = 2
∫ −|t|

−∞
f (x)dx. (2)

The smaller p is, the more confidently we can reject
the null hypothesis, i.e., accept that

ModelRError ̸= BaselineError (3)

Typically there is a domain-specific threshold for p,
e.g., 0.1 or 0.01. If p is smaller than the thresh-
old we reject the null hypothesis. We calculate the
p-value and also error reduction from baseline to
Model R as

Reduction =
BaselineError−ModelRError

BaselineError
.

(4)
The p-value is almost 0 for all datasets and error re-
duction is significant, shown in Table 8. Model R
has the lower error than every other model on ev-
ery dataset, reducing error by 25% to 73% from the
best baseline model - pWSBM. The number in ev-
ery parenthesis is the standard deviation of the er-
rors in 25 trials in the last digit. The very low p-
values strongly indicate the error reduction is sig-
nificant. These results show that Model R outper-
forms pWSBM on all these datasets.

6.4 Model robustness

In our experiments, we have not observed any
significant (more than 5%) prediction error increase
or decrease when we change parameters around the
values we typically choose. Overall, Model R has
demonstrated a very high level of model robustness.

6.5 Reproducibility

In order to ensure the reproducibility of the ex-
periment, we specify the implementation details in
this Section:

– Programming language: Python 3

– Python implementation: CPython 3.5

– Deep learning package: TensorFlow [40]

– Operating system: Ubuntu 16.10 64-bit

– Memory: 16 GB

– Processor: Intel Core i7-4770 CPU @ 3.40GHz

The program uses all 8 threads of the processor.
Each experiment takes about one hour to finish, de-
pending on the dataset and parameters in the learn-
ing algorithm. The program is open-source under
MIT license hosted on Github 1 so that everyone
can use it without any restriction.

1https://github.com/yuchenhou/elephant
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Figure 6. The mean squared errors of 5 models on 4 datasets: Model R has the lower error than every other
model on every dataset. Every error value shown here is the mean error for the 25 trials in the experiment.

7 Node embedding analysis

The purpose of this Section is to find out what
knowledge Model R learns during training. Our hy-
pothesis is that the knowledge it learns consists of
meaningful node embeddings where similar nodes
(according to our own (human) semantics associ-
ated with the domain’s entities) are close to each
other in the node embedding space. We make this
hypothesis based on the following observations that
Model R and the skip-gram model have similar
architecture in their one-hot encoding input layer
and linear embedding layer, and that the skip-gram
model produces word embeddings where similar
words are close to each other in the word embed-
ding space. Our goal is to verify this hypothesis
by analyzing and visualizing the node embeddings
produced by Model R in real-world datasets from
well-understood domains to make the results obvi-
ous to most readers.

7.1 Motivation

Seeing the good performance of Model R, we
are interested in this question: what exactly does
Model R learn? Even though Model R outperforms
some of the latest link weight prediction techniques
by a large margin, the knowledge it learns is not ap-
parent. We claim that Model R learns knowledge

of nodes in the form of node embeddings from the
known link weights and uses that knowledge to pre-
dict unknown link weights. This claim is plausible
and similar to the claim in the original word2vec
paper [15]. There have been several studies on
word2vec focusing on the analysis and visualiza-
tion of the word embeddings [14, 15]. These studies
have provided strong evidences that the word em-
beddings learned by the skip-gram model represent
meaningful knowledge about words. However, we
need to provide evidence that the node embeddings
learned by Model R represent knowledge consis-
tent with our understanding of the domain. If we
can have more in-depth study on those node embed-
dings similar to the studies on word embeddings,
we can have a much better understanding of what
Model R learns and why it performs well.

7.2 Methods

In order to perform node embedding analysis,
the experiment needs additional embedding logging
and visualization methods. The model trains on the
datasets and produces node embeddings. The visu-
alizer reduces the dimension of the embeddings, at-
taches domain metadata to the embeddings and pro-
duces the final visualization. The visualization is
then analyzed to confirm closeness of semantically-
similar nodes.
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7.2.1 Datasets

In order to verify the knowledge of nodes
learned by the model is meaningful (agrees with our
domain knowledge), the experiments use real-world
datasets from two well-known domains:

– Collaboration [37]. Nodes represent 226 na-
tions on Earth, and each of the 20616 edges
is weighted by the number of academic papers
whose author lists include that pair of nations.
This is the same dataset used in Section 6 to
evaluate the prediction error of Model R.

– MovieLens100K [41]. This dataset is a recom-
mendation dataset, and also a bipartite graph
dataset. Nodes represent 1000 users and 1700
movies, and each of the 100000 edges is
weighted by the rating score a user has given to
a movie.

A snippet of MovieLens100K dataset is shown in
Table 9 as an example.

Table 9. A snippet of MovieLens100K dataset.

User ID Item ID rating
196 272 3
186 302 3
22 377 1

244 51 2
166 346 1
... ... ...

7.2.2 Embeddings

The embeddings are the vectors the model maps
the nodes to, and the vectors these experiments pro-
duce for us to visualize and analyze. Technically,
these embeddings are the weights of the embedding
layer of Model R shown in Figure 5.

7.2.3 Metadata

The metadata provides domain-specific infor-
mation about the datasets necessary to verify the
embeddings match our understanding about the
specific domain. A snippet of MovieLens100K
dataset metadata is shown in Table 10 as an exam-
ple.

7.2.4 Model training

The model training process is the same as the
previous experiment, with an extra step to log em-
bedding layer weights.

Table 10. A snippet of MovieLens100K dataset
metadata.

Item ID Title Release date
1 Toy Story 01-Jan-1995
2 GoldenEye 01-Jan-1995
3 Four Rooms 01-Jan-1995
4 Shanghai Triad 01-Jan-1995
5 Twelve Monkeys 01-Jan-1995
... ... ...

7.2.5 Embedding visualization

The embedding visualization process plays an
important role in the final knowledge representa-
tion. This embedding visualization process has the
following steps:

1 Join the metadata and the embeddings on the
node ID to attach the related information pro-
vided by the metadata to each node.

2 Calculate the Euclidean distances between pairs
of nodes.

3 Dimensionality reduction through PCA (princi-
pal component analysis) on the embeddings to
project these points from the high dimensional
embedding space to a 2-dimensional space so
that we can visualize them.

4 Display all embeddings in an image, e.g., Figure
7 and Figure 8.

7.3 Data analysis and visualization

The experiment results meet our expectation -
nodes more similar to each other (based on their se-
mantics associated with the specific domain) have
their corresponding points closer to each other in
the embedding space. The experiment process runs
once for each of the two datasets: MovieLens100K
and Collaboration. We present the data analyses on
a few well-known cases and visualizations on the
entire datasets as well. The analysis for each dataset
has the following steps:
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learned by the model is meaningful (agrees with our
domain knowledge), the experiments use real-world
datasets from two well-known domains:

– Collaboration [37]. Nodes represent 226 na-
tions on Earth, and each of the 20616 edges
is weighted by the number of academic papers
whose author lists include that pair of nations.
This is the same dataset used in Section 6 to
evaluate the prediction error of Model R.

– MovieLens100K [41]. This dataset is a recom-
mendation dataset, and also a bipartite graph
dataset. Nodes represent 1000 users and 1700
movies, and each of the 100000 edges is
weighted by the rating score a user has given to
a movie.

A snippet of MovieLens100K dataset is shown in
Table 9 as an example.

Table 9. A snippet of MovieLens100K dataset.

User ID Item ID rating
196 272 3
186 302 3
22 377 1

244 51 2
166 346 1
... ... ...

7.2.2 Embeddings

The embeddings are the vectors the model maps
the nodes to, and the vectors these experiments pro-
duce for us to visualize and analyze. Technically,
these embeddings are the weights of the embedding
layer of Model R shown in Figure 5.

7.2.3 Metadata

The metadata provides domain-specific infor-
mation about the datasets necessary to verify the
embeddings match our understanding about the
specific domain. A snippet of MovieLens100K
dataset metadata is shown in Table 10 as an exam-
ple.

7.2.4 Model training

The model training process is the same as the
previous experiment, with an extra step to log em-
bedding layer weights.

Table 10. A snippet of MovieLens100K dataset
metadata.

Item ID Title Release date
1 Toy Story 01-Jan-1995
2 GoldenEye 01-Jan-1995
3 Four Rooms 01-Jan-1995
4 Shanghai Triad 01-Jan-1995
5 Twelve Monkeys 01-Jan-1995
... ... ...

7.2.5 Embedding visualization

The embedding visualization process plays an
important role in the final knowledge representa-
tion. This embedding visualization process has the
following steps:

1 Join the metadata and the embeddings on the
node ID to attach the related information pro-
vided by the metadata to each node.

2 Calculate the Euclidean distances between pairs
of nodes.

3 Dimensionality reduction through PCA (princi-
pal component analysis) on the embeddings to
project these points from the high dimensional
embedding space to a 2-dimensional space so
that we can visualize them.

4 Display all embeddings in an image, e.g., Figure
7 and Figure 8.

7.3 Data analysis and visualization

The experiment results meet our expectation -
nodes more similar to each other (based on their se-
mantics associated with the specific domain) have
their corresponding points closer to each other in
the embedding space. The experiment process runs
once for each of the two datasets: MovieLens100K
and Collaboration. We present the data analyses on
a few well-known cases and visualizations on the
entire datasets as well. The analysis for each dataset
has the following steps:
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Table 8. The mean squared errors with standard deviations of 5 models on 4 datasets. Welch’s t-test
defines its p-value as the Student’s t-distribution cumulative density function p = 2

∫ −|t|
−∞ f (x)dx.

Dataset pWSBM bWSBM SBM DCWBM Model R Reduction p
Airport 0.0486 ± 0.0543 ± 0.0632 ± 0.0746 ± 0.013 ± 73% 4.2e-66

0.0006 0.0005 0.0008 0.0009 0.001
Collaboration 0.0407 ± 0.0462 ± 0.0497 ± 0.0500 ± 0.030 ± 25% 9.1e-44

0.0001 0.0001 0.0003 0.0002 0.001
Congress 0.0571 ± 0.0594 ± 0.0634 ± 0.0653 ± 0.036 ± 35% 7.1e-35

0.0004 0.0004 0.0006 0.0004 0.003
Forum 0.0726 ± 0.0845 ± 0.0851 ± 0.0882 ± 0.037 ± 48% 4.2e-68

0.0003 0.0003 0.0004 0.0004 0.001

– Select a well-known reference node in the do-
main with two similar nodes that are easy to
identify.

– Sort all nodes with respect to their distances to
the reference.

– Verify that the distances from the two similar
nodes to the reference node are much shorter
than that of the median point.

In this Section, we perform data analysis on the ex-
periment results for both datasets.

7.3.1 MovieLens100K

For this dataset, we select the movie “Star Wars:
The Empire Strikes Back” as the reference movie
and the other two movies in the original Star Wars
trilogy as the two similar movies, i.e., “Star Wars:
A New Hope” and “Star Wars: Return of the Jedi”.
Notice that we do not need to assume which at-
tributes of a movie have the most influence in users’
preferences for movies, because these two movies
are similar to the reference movie in many attributes
such as genre, actors, screenwriter, distributor and
storyline. The distances of a number of closest
movies to the reference movie are shown in Table
11.

The data indicate that the distances from simi-
lar movies to the reference movie are much shorter
than that from the median point. The embeddings
of all movies are shown in Figure 7.

7.3.2 Collaboration

For this dataset, we select the country United
States as the reference country and two other coun-

tries with similar economy, education and culture
backgrounds as the two similar countries: United
Kingdom and Germany. Notice that we assume
economy, education and culture background have
the most influence in international collaboration
patterns. The distances of a number of all countries
to the reference country are shown in Table 7.3.2.

Table 12. The distances of countries to the
reference country for Collaboration dataset.

Country Distance Similarity
United States 0 self (reference)

China 0.216 most similar
... ... ...

United Kingdom 0.411 more similar
Germany 0.483 more similar

... ... ...
Jamaica 29.531 median point

... ... ...
Senegal 31.018 less similar

Peru 31.259 less similar
... ... ...

Zimbabwe 32.283 least similar

The data indicate that the distances from similar
countries to the reference country are much shorter
than that from the median point. The embeddings
of all countries are shown in Figure 8.

8 Conclusion

Model R shows that deep learning can be suc-
cessfully applied to the link weight prediction prob-
lem. It effectively learns complex and unobservable
node information (i.e., node vectors) from simple
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Table 11. The distances of movies to the reference movie for MovieLens100K dataset.

Movie Distance Similarity
The Empire Strikes Back (1980) 0 self (reference)
Raiders of the Lost Ark (1981) 0.012 most similar

... ... ...
Star Wars (1977) 0.047 more similar

Return of the Jedi (1983) 0.063 more similar
... ... ...

Children of the Revolution (1996) 0.256 median point
... ... ...

Tomorrow Never Dies (1997) 0.295 less similar
Ayn Rand: A Sense of Life(1997) 0.296 less similar

... ... ...
101 Dalmatians (1996) 0.335 least similar

Figure 7. The embeddings of all movies in MovieLens100K dataset: “The Empire Strikes Back” is the
reference movie, shown as a red node with bold font name. “Raiders of the Lost Ark” is the closest movie

to the reference movie, shown as a purple node with purple name. A few other close movies are also shown
as purple nodes. The image does not display names for many movies to avoid overlapping of the text. This
embedding shows the overall distribution of movies where similar movies are closer to the reference movie.
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Figure 8. The embeddings of countries in Collaboration dataset: The United States is the reference
country, shown as a red node with bold font name. China is the closest country to the reference country,

shown as a purple node with purple name. A few other close countries are also shown as purple nodes. The
image does not display names for many countries to avoid overlapping of the text. This embedding shows

the overall distribution of countries where similar countries are closer to the reference country.

and observable relations between nodes (i.e., link
weights), and uses that information to predict un-
known link weights. Compared to SBM based ap-
proaches, Model R is much more accurate. A few
possible reasons are:

– Higher level of discrimination for nodes: SBM
based approaches do not differentiate nodes
within the same group, and assume the weights
of all links connecting two nodes from two
groups follow the same distribution. Model R
does not assume that, but gives every node a
unique description - the node vector - so that it
can have a more accurate description for every
single node.

– Higher level of model flexibility: SBM based
approaches assume the weight of every link fol-
lows a normal distribution. Model R does not as-
sume that, but takes advantage of high flexibility
of layers of non-linear neural network units, so
that it can model very complex weight distribu-
tions.

Model R learns meaningful node embeddings
where similar nodes (based on their semantics as-
sociated with the specific domain) are close to each
other in the node embedding space. This work pro-

vides direct evidences that deep learning based em-
bedding techniques are effective in two application
domains beside natural language processing: rec-
ommender systems and graph mining. We antici-
pate this new approach will provide effective solu-
tions to more graph mining tasks.

9 Future work

There are a few directions we would like to
study in our future work on this model.

9.1 Node embedding metrics

An important direction for this work is to iden-
tify metrics for evaluating the learned node embed-
dings. As embeddings are ubiquitous and valuable
in deep learning and the popularity of deep learning
is on the rise, we believe an important question is:
what are good embeddings? A direct answer can
be: embeddings that match humans’ perceptions of
the nodes are good embeddings. But humans’ per-
ceptions are, by nature, very complicated and sub-
jective.

As similar nodes should have their embeddings
close to each other, a possible metric is the distances
of the embeddings of similar nodes. This is an ob-
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vious metric and also the one we tried to use in-
tuitively for this work. The distance measurement
for embeddings is relatively easy but the similar-
ity measurement for nodes is relatively hard. One
possible way to measure similarity is some type of
statistical measurement of the behaviors of nodes.
For example, in recommender systems, it is natural
to assume two users are very similar if they always
give the same ratings to each one of the movies. The
challenge is this metric is not easy to measure if
there are few movies rated by both users. Another
possible way to measure similarity is some type of
measurement of the distance of their attribute vec-
tors. For example, the attribute vector of a user can
be [age, gender, occupation, location] as exposed by
the metadata. In order for this measure to be useful,
we need to know what attributes are the most rele-
vant to users’ movie preferences.

Good embeddings should produce good predic-
tion accuracy, despite the type of node targeted for
prediction. This one is very obvious because even-
tually some other machine learning system should
use these embeddings to do valuable predictions.
Therefore, good metrics should have positive cor-
relation with prediction accuracy of the later stages
of the deep learning system whose inputs are the
embeddings. This does not require any work with
respect to the actual nodes but it is still hard to mea-
sure: some embeddings might work well on some
models but not on other models, so it is hard to de-
cide which model should be used as the evaluation
reference.

9.2 Complex graphs

This direction is especially appealing for social
network applications. In particular, we want to han-
dle graphs with node attributes. Users can have la-
bels like “nationality”, and real attributes like “age”.
One feasible approach is to append one unit for each
of these attributes to the node vector.

9.3 Large dynamic graphs

A social network can have a large volume of
links collected continuously by a distributed sys-
tem. A potential approach is to deploy an estimator
to each computing node of the distributed system
and analyze a link stream there, and let these esti-
mators exchange their knowledge periodically.
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