
303JAISCR, 2018, Vol. 8, No. 4, pp.   

THE LEAST EIGENVALUE OF THE GRAPHS WHOSE
COMPLEMENTS ARE CONNECTED AND HAVE

PENDENT PATHS

Chen Wang1, Guidong Yu2, Wei Sun2, Jinde Cao3

1School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China

2School of Mathematics and Computation Sciences, Anqing Normal University,
Anqing 246133, China

3School of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China

Submitted: 27th January 2018; Accepted: 16th March 2018

Abstract

The adjacency matrix of a graph is a matrix which represents adjacent relation between
the vertices of the graph. Its minimum eigenvalue is defined as the least eigenvalue of
the graph. Let Gn be the set of the graphs of order n, whose complements are connected
and have pendent paths. This paper investigates the least eigenvalue of the graphs and
characterizes the unique graph which has the minimum least eigenvalue in Gn.
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1 Introduction

Let G := (V (G),E(G)) be a simple graph of
order n, where V (G) = {v1,v2, · · · ,vn} be vertex
set, E(G) = {e1,e2, · · · ,em} be the edge set. The
set of neighbours of a vertex vi ∈ V (G) be de-
noted by NG(vi) = {v j : v jvi ∈ E(G)}. If a path
P = v0e1v1e2 · · ·ekvk satisfies dG(v0) ≥ 3,dG(vi) =
2, i = 1,2, · · · ,k − 1,d(vk) = 1 and k ≥ 2, P is
called a pendent path of length k, where dG(vi) =|
NG(vi) |. For any vi,v j ∈ V (G), if there is a path
such that vi and v j are its ends, G is called a con-
nected graph. The complement of G is denoted
by Gc := (V (G),Ec(G)), where Ec(G) := {viv j :
vi,v j ∈V (G),vi ̸= v j,viv j ̸∈ E(G)}.

The degree matrix D(G) of G is diagonal square
matrix of order n, where di j = 0 when i ̸= j, dii =
dG(vi), di j be i j−entry of D(G). The adjacency
matrix A(G) of G is the square matrix of order n,
where ai j = 1 when viv j ∈ E(G), ai j = 0 when

viv j /∈ E(G), ai j be the i j−entry of A(G). The
signless Laplacian matrix of G is defined to be
Q(G) = D(G)+A(G). In addition, the Laplacian
matrix of G is defined by L(G) = D(G)− A(G).
Since A(G),Q(G),L(G) are real symmetric matrix,
their eigenvalues are real numbers and can be ar-
ranged. Let the eigenvalues of A(G) arrange as
: λ1(G)≥ λ2(G)≥ ·· · ≥ λn(G). The largest eigen-
value λ1(G) of A(G) is called the spectral radius of
G. The minimum eigenvalue λn(G) of A(G), sim-
ply denoted by λmin(G), is called the least eigen-
value of G. The corresponding unit eigenvectors of
λmin(G) are called the first eigenvectors of G. Sim-
ilarly, the largest eigenvalue of Q(G) be defined as
the signless Laplacian spectral radius of graph G,
and the minimum eigenvalue of Q(G) be defined as
the least signless Laplacian eigenvalue of graph G.

There are many research results with respect to
the (signless Laplacian) spectral radius of graphs.
However, relative to the (signless Laplacian) spec-
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tral radius, there are few results on the (signless
Laplacian) least eigenvalue. Especially, when the
structures of graphs are very complex, but the struc-
tures of their complements are simple, we naturally
think whether we can study the (signless Laplacian)
minimum eigenvalue of the graphs from structure of
their complements; see[1-16]. In this paper, we also
study the least eigenvalue of graphs from their com-
plements. Let Gn be the set of the graphs of order
n, whose complements are connected and have pen-
dent paths. This paper investigates the least eigen-
value of the graphs and characterizes the unique
graph which has the minimum least eigenvalue in
Gn.

2 Preliminaries

In the following, we will introduce some defini-
tions. Let G be a graph of order n, a vector x ∈ Rn

is defined on G.

One can find that, for an arbitrary vector x ∈ Rn,

xT A(G)x = 2 ∑
uv∈E(G)

xuxv, (2.1)

and if x(̸= 0) is an eigenvector of A(G), which is
correspond to the eigenvalue λ of A(G), then

λxv = ∑
u∈NG(v)

xu, for each v ∈V (G); (2.2)

if x is unit vector, then

λmin(G)≤ xT A(G)x, (2.3)

with equality when and only when x is the first
eigenvector of G.

We can also find that A(Gc) = J − I − A(G),
where J, I denote the all-one square matrix and the
identity matrix of order n, respectively. Then for an
arbitrary vector x ∈ Rn,

xT A(Gc)x = xT (J− I)x−xT A(G)x. (2.4)

We introduce a special graph G(p,q) of order
n= p+q+2 (p≥ 0,q≥ 1), which is obtained from
two disjoint complete graphs Kp,Kq, and edge v4v5
by joining one vertex v1 of Kp and one vertex v2
of Kq, and joining one vertex v3 of Kq and v4; see
Figure 1. In particular, when q = 1,v2 = v3; when
p = 0,G(0,q) is obtained from complete graph Kq

and edge v4v5 by joining one vertex v3 of Kq and v4.

pK qK
1v 2v 3v 4v 5v

Figure 1. The graph G(p,q)

Lemma 2.1 Let A be a real symmetric square ma-
trix of order n, B be the principal submatrix of A of
order m, and µ1(A)≥ µ2(A)≥ ·· · ≥ µn(A),µ1(B)≥
µ2(B) ≥ ·· · ≥ µm(B) are respectively the eigenval-
ues of A and B, then µn−m+i(A)≤ µi(B)≤ µi(A) for
i = 1,2, · · · ,m.

Lemma 2.2 Given a positive integer n (n ≥ 21), if
n = p+q+2, p,q be integer, p ≥ 0, q ≥ 1, then

λmin(G(p,q)c)≥ λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c),

with equality when and only when p = ⌈n/2⌉ −
1,q = ⌊n/2⌋−1.

Proof: Let G(p,q) be as shown in Fig. 2.1. Be-
cause K2 ⊂G(p,q)c, λmin(K2) =−1, and according
to Lemma 2.1, we have

λmin(G(p,q)c)≤−1. (2.5)

Let x be a first eigenvector of G(p,q)c.

Case 1: p = 0. By equations (2.2) and (2.5), all
the vertices in V (Kq) except v3 have the same val-
ues, which are given by x, denoted by x1. Denote
xv3 = x2,xv4 = x3,xv5 = x4, and let λmin(G(0,n −
2)c) = λ. Also by equation(2.2), we obtain




λx1 = x3 + x4,
λx2 = x4,
λx3 = (n−3)x1,
λx4 = (n−3)x1 + x2.

The above equations are transformed into a matrix
equation (B−λI)x′

= 0, where x′
= (x1,x2,x3,x4)

T ,

B =




0 0 1 1
0 0 0 1

n−3 0 0 0
n−3 1 0 0


 .

We have

f1(x) = det(B− xI) = x4 − (2n−5)x2 +n−3,

then λ is the smallest root of f1(x) = 0, therefore

λ=−
√

(2n−5+
√

4n2 −24n+37)/2>−
√

2n−5.
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
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We have

f1(x) = det(B− xI) = x4 − (2n−5)x2 +n−3,

then λ is the smallest root of f1(x) = 0, therefore

λ=−
√
(2n−5+

√
4n2 −24n+37)/2>−

√
2n−5.

THE LEAST EIGENVALUE OF . . .

Case 2: p = 1. By equations (2.2) and (2.5),
all the vertices in V (Kq) except v2,v3 have the same
values, which are given by x, denoted by x1. De-
note xv1 = x2,xv2 = x3,xv3 = x4,xv4 = x5,xv5 = x6,
and λmin(G(1,n−3)c) = λ. Also by equation(2.2),
we have





λx1 = x2 + x5 + x6,
λx2 = (n−5)x1 + x4 + x5 + x6,
λx3 = x5 + x6,
λx4 = x2 + x6,
λx5 = (n−5)x1 + x2 + x3,
λx6 = (n−5)x1 + x2 + x3 + x4.

The above equations are transformed into a matrix
equation (B−λI)x′

= 0, where x′
= (x1,x2,x3,

x4,x5,x6)
T ,

B =




0 1 0 0 1 1
n−5 0 0 1 1 1

0 0 0 0 1 1
0 1 0 0 0 1

n−5 1 1 0 0 0
n−5 1 1 1 0 0



.

We have f2(x) = det(B− xI) = x6 − (3n− 9)x4 −
(4n−18)x3+(4n−16)x2+2(n−5)x−(n−5). Be-
cause n ≥ 21, we have

f2(−
√

2n−5) = (2n−5)(−2n2 +17n−36)

+
√

2n−5(8n2 −58n+100)

−(n−5)

< 0,

this implies λmin(G(1,n−3)c)<−
√

2n−5.

Case 3: q = 1. By equations (2.2) and (2.5),
all the vertices in V (Kp) except v1 have the same
values, which are given by x, denoted by x1. De-
note xv1 = x2,xv2(v3) = x3,xv4 = x4,xv5 = x5, and
λmin(G(n− 3,1)c) = λ. Also by equation(2.2), we
have 



λx1 = x3 + x4 + x5,
λx2 = x4 + x5,
λx3 = (n−4)x1 + x5,
λx4 = (n−4)x1 + x2,
λx5 = (n−4)x1 + x2 + x3.

The above equations are transformed into a matrix
equation (B−λI)x′

= 0, where x′
= (x1,x2,x3,

x4,x5)
T ,

B =




0 0 1 1 1
0 0 0 1 1

n−4 0 0 0 1
n−4 1 0 0 0
n−4 1 1 0 0



.

We have f3(x) = det(B − xI) = −x5 + (3n −
9)x3 + 2(n − 4)x2 − (3n − 11)x. When n ≥ 21
and x < −1, we have (−x) f3(x)− f2(x) = (n −
5)(2x3 − x2 − 2x+ 1) < 0. Then by λmin(G(1,n−
3)c) < −

√
2n−5, we have λmin(G(n − 3,1)c) <

λmin(G(1,n−3)c).

Case 4: p,q ≥ 2. By equations (2.2) and (2.5),
all the vertices in V (Kp) except v1 have the same
values, which are given by x, denoted by x1, all the
vertices in V (Kq) except v2,v3 have the same values
given by x, say x4. Denote xv1 = x2,xv2 = x3,xv3 =
x5,xv4 = x6,xv5 = x7, and λmin(G(p,q)c) = λ. Also
by equation(2.2), we have



λx1 = x3 +(q−2)x4 + x5 + x6 + x7,
λx2 = (q−2)x4 + x5 + x6 + x7,
λx3 = (p−1)x1 + x6 + x7,
λx4 = (p−1)x1 + x2 + x6 + x7,
λx5 = (p−1)x1 + x2 + x7,
λx6 = (p−1)x1 + x2 + x3 +(q−2)x4,
λx7 = (p−1)x1 + x2 + x3 +(q−2)x4 + x5.

The above equations are transformed into a
matrix equation (B − λI)x′

= 0, where x′
=

(x1,x2,x3,x4,x5,x6,x7)
T ,

B =




0 0 1 q−2 1 1 1
0 0 0 q−2 1 1 1

p−1 0 0 0 0 1 1
p−1 1 0 0 0 1 1
p−1 1 0 0 0 0 1
p−1 1 1 q−2 0 0 0
p−1 1 1 q−2 1 0 0



.

We have

f4(x; p,q) = det(B− xI) =

− x7 +(pq+2n−6)x5 +(4pq−2p−4)x4

− (2pq+q+n−7)x3 − (6pq−4n−4p+12)x2

+(pq− p−1)x+2(p−1)(q−2).

Since h(x) = x(n − 2− x) takes the minimum
value h(2) = 2(n − 4) when 2 ≤ x ≤ n − 4. So
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pq= p(n−2− p)≥ 2(n−4) when p,q≥ 2 and n=
p+ q+ 2. Then f (−7; p,q) = 911121− 32734n−
4944p−6816pq < 0 when p,q ≥ 2 and n = p+q+
2 ≥ 21, which implies λ <−7.

Case 4.1: p ≥ q+2. When x <−7, we have

f4(x; p,q)− f4(x; p−1,q+1)

=(q− p+1)x5 − (4p−4q−2)x4 +(2p−2q−1)x3

+(6p−6q−2)x2 − (p−q)x− (2p−2q)

>− x3((p−q−1)x2 +(4p−4q−2)x

− (2p−2q−1))

>0.

Since λ is the smallest root of f4(x; p,q) = 0,
i.e. f4(λ; p,q) = 0, then f4(λ; p−1,q+1)< 0, this
implies λmin(G(p,q)c) > λmin(G(p − 1,q + 1)c).
So λmin(G(n− 4,2)c) > λmin(G(n− 5,3)c) > · · · >
λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c).

Case 4.2: q ≥ p+ 1. When x < −7 and q ≥
p+2, we have

f4(x; p,q)− f4(x; p+1,q−1)

=− (q− p−1)x5 − (4q−4p−6)x4 +(2q−2p−3)x3

+(6q−6p−10)x2 − (q− p−2)x− (2q−2p−4)

>− x3((q− p−1)x2 +(4q−4p−6)x− (2q−2p−3))

>0.

When x < −7 and q = p + 1, we have
f4(x; p,q)− f4(x; p+ 1,q− 1) = 2x4 − x3 − 4x2 +
x+2 > 0.

Since λ is the smallest root of f4(x; p,q) = 0,
i.e. f4(λ; p,q) = 0, then f4(λ; p+1,q−1)< 0, this
implies λmin(G(p,q)c) > λmin(G(p + 1,q − 1)c).
So λmin(G(2,n− 4)c) > λmin(G(3,n− 5)c) > · · · >
λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c).

Next we will compare λmin(G(n − 3,1)c) and
λmin(G(n−4,2)c).

When n ≥ 21 and x <−
√

37, we have

(−x)2 f3(x)− f4(x;n−4,2)

=(−n+5)x5 +(−4n+20)x4 +(2n−10)x3

+(4n−20)x2 − (n−5)x

>(−n+5)x5 +(−4n+20)x4 +(2n−10)x3

>− x3(n−5)(x2 +4x−2)

>0.

Since λmin(G(n−3,1)c)<−
√

2n−5 <−
√

37,
then

λmin(G(n−4,2)c < λmin(G(n−3,1)c).

Then combining with Cases 1,2,3,4, the result
follows.

3 Main Results

Theorem 3.1 Let G be a connected graph of order
n(n ≥ 21), which has pendent paths, then

λmin(Gc)≥ λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c),

with equality when and only when G = G(⌈n/2⌉−
1,⌊n/2⌋−1).

Proof: Because of K2 ⊂ Gc,λmin(K2) = −1. By
Lemma 2.1, there is λmin(Gc) ≤ −1. Let x be a
first eigenvector of G. Denote V+ = {v : xv ≥ 0}
and V− = {v : xv < 0}. By equation (2.2), we know
that |V+| ≥ 1, |V−| ≥ 1. Let |V+|= m, |V−|= t, we
have m, t ≥ 1 and m+ t = n, where m, t are positive
integers.

Denote G[U ] a subgraph of G, which induced
on U ⊆V (G); E(V+,V−) the set edges of G, every
edge in which joins one vertex of V+ and one ver-
tex of V−. Since G is a connected graph, there is
at least one edge connecting G[V+] and G[V−]. By
equation (2.1), in order to make xT A(G)x as large
as possible, E(G) must satisfy the following:

(i) |E(V+,V−)| should be as small as possible;

(ii) |E(G[V+])|, |E(G[V−])| should be as large
as possible;

(iii) If uv ∈ E(V+,V−), |xu| and |xv| should be
as small as possible;

(iv) If uv ∈ E(G[V+]) or uv ∈ E(G[V−]), |xu|
and |xv| should be as large as possible.

By above discussions, the structure of G, and
equations (2.3),(2.4), we get the following results:

(1) When m = 1 or t = 1, λmin(Gc) =
xT A(Gc)x ≥ xT A(G(0,n − 2)c)x ≥ λmin(G(0,n −
2)c).

(2) When m = 2 or t = 2, λmin(Gc) =
xT A(Gc)x ≥ xT A(G(0,n − 2)c)x ≥ λmin(G(0,n −
2)c).

(3) When m = 3 or t = 3, λmin(Gc) =
xT A(Gc)x ≥ xT A(G(n − 3,1)c)x ≥ λmin(G(n −
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implies λmin(G(p,q)c) > λmin(G(p + 1,q − 1)c).
So λmin(G(2,n− 4)c) > λmin(G(3,n− 5)c) > · · · >
λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c).

Next we will compare λmin(G(n − 3,1)c) and
λmin(G(n−4,2)c).

When n ≥ 21 and x <−
√

37, we have

(−x)2 f3(x)− f4(x;n−4,2)

=(−n+5)x5 +(−4n+20)x4 +(2n−10)x3

+(4n−20)x2 − (n−5)x

>(−n+5)x5 +(−4n+20)x4 +(2n−10)x3

>− x3(n−5)(x2 +4x−2)

>0.

Since λmin(G(n−3,1)c)<−
√

2n−5<−
√

37,
then

λmin(G(n−4,2)c < λmin(G(n−3,1)c).

Then combining with Cases 1,2,3,4, the result
follows.

3 Main Results

Theorem 3.1 Let G be a connected graph of order
n(n ≥ 21), which has pendent paths, then

λmin(Gc)≥ λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c),

with equality when and only when G = G(⌈n/2⌉−
1,⌊n/2⌋−1).

Proof: Because of K2 ⊂ Gc,λmin(K2) = −1. By
Lemma 2.1, there is λmin(Gc) ≤ −1. Let x be a
first eigenvector of G. Denote V+ = {v : xv ≥ 0}
and V− = {v : xv < 0}. By equation (2.2), we know
that |V+| ≥ 1, |V−| ≥ 1. Let |V+|= m, |V−|= t, we
have m, t ≥ 1 and m+ t = n, where m, t are positive
integers.

Denote G[U ] a subgraph of G, which induced
on U ⊆V (G); E(V+,V−) the set edges of G, every
edge in which joins one vertex of V+ and one ver-
tex of V−. Since G is a connected graph, there is
at least one edge connecting G[V+] and G[V−]. By
equation (2.1), in order to make xT A(G)x as large
as possible, E(G) must satisfy the following:

(i) |E(V+,V−)| should be as small as possible;

(ii) |E(G[V+])|, |E(G[V−])| should be as large
as possible;

(iii) If uv ∈ E(V+,V−), |xu| and |xv| should be
as small as possible;

(iv) If uv ∈ E(G[V+]) or uv ∈ E(G[V−]), |xu|
and |xv| should be as large as possible.

By above discussions, the structure of G, and
equations (2.3),(2.4), we get the following results:

(1) When m = 1 or t = 1, λmin(Gc) =
xT A(Gc)x ≥ xT A(G(0,n − 2)c)x ≥ λmin(G(0,n −
2)c).

(2) When m = 2 or t = 2, λmin(Gc) =
xT A(Gc)x ≥ xT A(G(0,n − 2)c)x ≥ λmin(G(0,n −
2)c).

(3) When m = 3 or t = 3, λmin(Gc) =
xT A(Gc)x ≥ xT A(G(n − 3,1)c)x ≥ λmin(G(n −
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3,1)c). or λmin(Gc) = xT A(Gc)x ≥ xT A(G(3,n −
5)c)x ≥ λmin(G(3,n−5)c).

(4) When m, t ≥ 4, let G3 = G(m, t −
2) or G(t,m − 2), λmin(Gc) = xT A(Gc)x ≥
xT A(Gc

3)x ≥ λmin(Gc
3).

By(1) (2) (3) (4) and Lemma 2.2, the conclusion
is established.

Corollary Let Gn be the set of the graphs of order
n(n ≥ 21), whose complements are connected and
have pendent paths. If G ∈ Gn, then

λmin(G)≥ λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c),

with equality when and only when G = G((⌈n/2⌉−
1,⌊n/2⌋−1)c).

Conclusion

Let Gn be the set of the graphs of order n,
whose complements are connected and have pen-
dent paths. This paper investigates the least eigen-
value of the graphs and characterizes the unique
graph which has the minimum least eigenvalue in
Gn. Because relative to the results about spectral ra-
dius, there are few one on the least eigenvalue, and
the method in this paper which studies the eigen-
value of the graphs from structure of their com-
plements is a relatively new method, this paper is
meaningful.
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graphs for which the least eigenvalue is minimum.
Linear Algebra Appl., 430, 2009, 1328-1335.

[10] Y. Tan, Y. Fan, The vertex(edge) independence
number, vertex(edge) cover number and the least
eigenvalue of a graph, Linear Algebra Appl., 433,
2010, 790-795.

[11] Y. Wang, Y. Fan, The least eigenvalue of a graph
with cut vertices. Linear Algebra Appl., 433, 2010,
19-27.

[12] Y. Wang, Y. Fan, X. Li, et al. The least eigen-
value of graphs whose complements are unicyclic,
Discussiones Mathematicae Graph Theory, 35(2),
2013, 1375-1379.

[13] M. Ye, Y. Fan, D. Liang. The least eigenvalue
of graphs with given connectivity. Linear Algebra
Appl., 430, 2009, 1375-1379.

[14] G. Yu, Y. Fan, Y. Wang, Quadratic forms on graphs
with application to minimizing the least eigenvalue
of signless Laplacian over bicyclic graphs, Elec-
tronic J. Linear Algebra, 27, 2014, 213-236.

[15] G. Yu, Y. Fan. The least eigenvalue of graphs.
Math. Res. Expo., 32(6), 2012, 659-665.

[16] G.Yu, Y.Fan, The least eigenvalue of graphs whose
complements are 2-vertex or 2-edge connected,
Operations Research Transactions, 17(2), 2013,
81-88.



308

Chen Wang received the Engineer di-
ploma in the Automation from Shen-
yang Institute of Technology, China in 
2014. Currently, he is doing his mas-
ter’s degree at  Guizhou University. 
His research interests include opti-
mal control, econometrics and graph 
theory.

Guidong Yu is a Professor of Anqing 
Normal University. She received the 
Research Master Degree in Graph 
Theory from Anhui Normal Univer-
sity in 2006, and the Ph.D. Degree in 
Algebraic Graph Theory from the An-
hui University in 2012. Her research 
interests include graph theory, alge-
braic graph theory and combinatorial 
matrix theory.

Wei Sun received the bachelor of sci-
ence in the Mathematics from Huain-
an Normal University, China in 2014. 
Currently, he is doing his master’s 
degree at Anqing Normal University. 
His research interests include alge-
braic graph theory and combinatorial 
matrix theory.

Jinde Cao is an Endowed Chair Pro-
fessor, the Dean of School of Math-
ematics and the Director of the Re-
search Center for Complex Systems 
and Network Sciences at Southeast 
University. From March 1989 to May 
2000, he was with the Yunnan Univer-
sity. In May 2000, he joined the School 
of Mathematics, Southeast Univer-

sity, Nanjing, China. From July 2001 to June 2002, he was a 
Postdoctoral Research Fellow at Chinese University of Hong 
Kong, Hong Kong. Professor Cao was an Associate Editor of 
the IEEE Transactions on Neural Networks, and Neurocom-
puting. He is an Associate Editor of the IEEE Transactions on 
Cybernetics, IEEE Transactions on Cognitive and Develop-
mental Systems, Journal of the Franklin Institute, Mathemat-
ics, and Computers in Simulation, Cognitive Neurodynam-
ics, and Neural Networks. He is a Fellow of IEEE, a Member 
of the Academy of Europe, a Member of European Academy 
of Sciences and Arts, and a Foreign Fellow of Pakistan Acad-
emy of Sciences. He has been named as Highly-Cited Re-
searcher in Engineering, Computer Science, and Mathemat-
ics  by Thomson Reuters/Clarivate Analytics. He received the 
National Innovation Award of China (2017).

Chen Wang, Guidong Yu, Wei Sun, Jinde Cao

pq= p(n−2− p)≥ 2(n−4) when p,q≥ 2 and n=
p+ q+ 2. Then f (−7; p,q) = 911121− 32734n−
4944p−6816pq < 0 when p,q ≥ 2 and n = p+q+
2 ≥ 21, which implies λ <−7.

Case 4.1: p ≥ q+2. When x <−7, we have

f4(x; p,q)− f4(x; p−1,q+1)

=(q− p+1)x5 − (4p−4q−2)x4 +(2p−2q−1)x3

+(6p−6q−2)x2 − (p−q)x− (2p−2q)

>− x3((p−q−1)x2 +(4p−4q−2)x

− (2p−2q−1))

>0.

Since λ is the smallest root of f4(x; p,q) = 0,
i.e. f4(λ; p,q) = 0, then f4(λ; p−1,q+1)< 0, this
implies λmin(G(p,q)c) > λmin(G(p − 1,q + 1)c).
So λmin(G(n− 4,2)c) > λmin(G(n− 5,3)c) > · · · >
λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c).

Case 4.2: q ≥ p+ 1. When x < −7 and q ≥
p+2, we have

f4(x; p,q)− f4(x; p+1,q−1)

=− (q− p−1)x5 − (4q−4p−6)x4 +(2q−2p−3)x3

+(6q−6p−10)x2 − (q− p−2)x− (2q−2p−4)

>− x3((q− p−1)x2 +(4q−4p−6)x− (2q−2p−3))

>0.

When x < −7 and q = p + 1, we have
f4(x; p,q)− f4(x; p+ 1,q− 1) = 2x4 − x3 − 4x2 +
x+2 > 0.

Since λ is the smallest root of f4(x; p,q) = 0,
i.e. f4(λ; p,q) = 0, then f4(λ; p+1,q−1)< 0, this
implies λmin(G(p,q)c) > λmin(G(p + 1,q − 1)c).
So λmin(G(2,n− 4)c) > λmin(G(3,n− 5)c) > · · · >
λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c).

Next we will compare λmin(G(n − 3,1)c) and
λmin(G(n−4,2)c).

When n ≥ 21 and x <−
√

37, we have

(−x)2 f3(x)− f4(x;n−4,2)

=(−n+5)x5 +(−4n+20)x4 +(2n−10)x3

+(4n−20)x2 − (n−5)x

>(−n+5)x5 +(−4n+20)x4 +(2n−10)x3

>− x3(n−5)(x2 +4x−2)

>0.

Since λmin(G(n−3,1)c)<−
√

2n−5<−
√

37,
then

λmin(G(n−4,2)c < λmin(G(n−3,1)c).

Then combining with Cases 1,2,3,4, the result
follows.

3 Main Results

Theorem 3.1 Let G be a connected graph of order
n(n ≥ 21), which has pendent paths, then

λmin(Gc)≥ λmin(G(⌈n/2⌉−1,⌊n/2⌋−1)c),

with equality when and only when G = G(⌈n/2⌉−
1,⌊n/2⌋−1).

Proof: Because of K2 ⊂ Gc,λmin(K2) = −1. By
Lemma 2.1, there is λmin(Gc) ≤ −1. Let x be a
first eigenvector of G. Denote V+ = {v : xv ≥ 0}
and V− = {v : xv < 0}. By equation (2.2), we know
that |V+| ≥ 1, |V−| ≥ 1. Let |V+|= m, |V−|= t, we
have m, t ≥ 1 and m+ t = n, where m, t are positive
integers.

Denote G[U ] a subgraph of G, which induced
on U ⊆V (G); E(V+,V−) the set edges of G, every
edge in which joins one vertex of V+ and one ver-
tex of V−. Since G is a connected graph, there is
at least one edge connecting G[V+] and G[V−]. By
equation (2.1), in order to make xT A(G)x as large
as possible, E(G) must satisfy the following:

(i) |E(V+,V−)| should be as small as possible;

(ii) |E(G[V+])|, |E(G[V−])| should be as large
as possible;

(iii) If uv ∈ E(V+,V−), |xu| and |xv| should be
as small as possible;

(iv) If uv ∈ E(G[V+]) or uv ∈ E(G[V−]), |xu|
and |xv| should be as large as possible.

By above discussions, the structure of G, and
equations (2.3),(2.4), we get the following results:

(1) When m = 1 or t = 1, λmin(Gc) =
xT A(Gc)x ≥ xT A(G(0,n − 2)c)x ≥ λmin(G(0,n −
2)c).

(2) When m = 2 or t = 2, λmin(Gc) =
xT A(Gc)x ≥ xT A(G(0,n − 2)c)x ≥ λmin(G(0,n −
2)c).

(3) When m = 3 or t = 3, λmin(Gc) =
xT A(Gc)x ≥ xT A(G(n − 3,1)c)x ≥ λmin(G(n −


