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Abstract

This paper is concerned with cluster consensus of linear multi-agent systems via a dis-
tributed event-triggered control scheme. Assume that agents can be split into several
clusters and a leader is associated with each cluster. Sufficient conditions are derived to
guarantee the realization of cluster consensus by a feasible event-triggered controller if
the network topology of each cluster has a directed spanning tree and the couplings within
each cluster are sufficiently strong. Further, positive inner-event time intervals are ensured
for the proposed event-triggered strategy to avoid Zeno behaviors. Finally, a numerical
example is given to illustrate the effectiveness of the theoretical results.
Keywords: cluster consensus, event-triggered scheme, leader-following consensus, multi-
agent systems

1 Introduction

The past decade has witnessed the dramatic
progress in the study of consensus [1-4]. The con-
sensus problem for multi-agent systems has at-
tracted intensive attention due to its potential ad-
vantages when compared with a single individual
include greater flexibility, adaptability, and perfor-
mance [5-7]. The main idea of consensus is to de-
sign some appropriate control protocols based on
local information guaranteeing all agents reach an
agreement on a common value. Leader-following
consensus [8-10] and leaderless consensus [11, 12]
have been well studied in the past decade.

For the common consensus problem, all the
agents converge into the same trajectory or track-
ing the same leader. However, in practice, some
complex networks may evolve into several clus-
ters or groups. The agents in the same cluster or

group reach consensus, while the consistent states
of different clusters may not coincide [13-17]. It has
many applications in civilian and military, such as
surveillance, reconnaissance, and battlefield assess-
ment. For example, the search and rescue scenario
by multiple robots in a disaster site, where victims
are required to be located and rescued. In this case,
a diverse group of robots with different capabili-
ties should be deployed to perform different tasks
[17]. If the eigenvalues of the Laplacian matrix had
nonnegative parts and the clusters were balanced
and balanced coupling, a linear consensus protocol
was designed to solve the group average-consensus
problem in [13]. In [14], the scaled group con-
sensus problems of first/second-order linear multi-
agent systems were studied. It was revealed that
under interaction topologies with acyclic partition,
cluster consensus was irrelevant to the magnitude
of the couplings among agents [15]. In [16], cluster
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synchronization of coupled network systems under
pinning control was investigated. a common feature
of the above-mentioned works is that each agent has
the continuous access to its neighbors. In some ap-
plications, continuous communication is impossible
or inefficient regarding the network and computa-
tion resources. The problem of cluster formation
control for a networked multi-agent system in the
simultaneous presence of aperiodic sampling and
communication delays was studied in [17].

In order to reduce the communication bur-
den caused by continuous communication between
agents, some event-triggered control schemes were
proposed in [18-27]. The control actuation is trig-
gered whenever a certain error becomes large
enough to violate the threshold. Refs. [18] and [19]
presented the centralized and decentralized con-
sensus protocols for first and second order multi-
agent systems under event-triggered schemes re-
spectively. In [20], three different types of event-
triggered strategies, namely distributed, centralized
and clustered event-triggered strategies, was stud-
ied under different network topologies. It was noted
that the event-triggered schemes derived in [21, 22]
were based on the combinational measurements,
which needed continuous monitoring of measure-
ment errors. In the even-triggered scheme design,
it is known that the minimal time distance between
two consecutive event time instants must be strictly
than zero, otherwise, infinite events occur when a fi-
nite time interval named as Zeno behavior will hap-
pen. Thus, Refs. [23, 25] and [26] conducted stud-
ies on sampling-data-based event-triggered control
for multi-agent systems, in which the trigger in-
stants only happened at the sampling instants, thus
Zeno behaviour can be excluded. Furthermore, an
overview of multi-agent event-triggered consensus
control has been provided in [27].

Recently, event-triggered control has attracted
tremendous attention [28-31]. The strategies in
[28] and [29] were based on the sampling data for
complex networks and formation control of multi-
agent systems, respectively. However, sufficient
conditions of these sampling-data-based strategies
were expressed in LMIs, which were not easy to be
solved when the number of agents was large. Ref.
[30] proposed an impulsive framework to analyse
the clustered event-triggered consensus. But clus-
ters considered in [30] had no coupling between

two clusters and the whole system had only one
leader, thus complete consensus was achieved for
multi-agent systems. Moreover, cluster synchro-
nization of coupling neural networks under pinning
control via event-triggered mechanism was studied
in [31]. However, the coupling matrix was needed
to be constructed, which was not suitable for the
fixed topology.

Motivated by the above discussion, cluster con-
sensus is studied for leader-following linear multi-
agent systems. The agents are split into several
clusters and each cluster has a leader. A distributed
event-triggered scheme is proposed in this paper,
which is related to the measurement error and the
relative errors between agents and their neighbours.
A novel controller is designed only related to dis-
crete states at triggered instants. Sufficient con-
ditions are derived to guarantee the realization of
cluster consensus if the network topology of each
cluster has a directed spanning tree and the cou-
plings within each cluster are sufficiently large.

The major contributions are threefold. 1) Com-
pared with the control protocol considered in [18,
19, 21] and [22], the dynamic control protocol con-
sidered in this paper is based on the model, which
could reduce the number of event-trigger times ob-
viously. 2) The distributed event-triggered scheme
designed excludes Zeno behavior and the continu-
ous event detection is not required under the event-
triggered condition. 3) An algorithm is presented to
find appropriate coupling strengths.

The rest of this paper is organized as fol-
lows. Section 2 gives some basic theory on graphs.
The mathematical model and the event-triggered
scheme are also presented. Section 3 gives some
sufficient conditions on reaching cluster consensus.
A simulation example is given in Section 4. Finally,
the conclusion of this paper is given.

Notations: Rn denotes the n-dimensional Eu-
clidean space. ∥ · ∥ stands for either the Euclidean
vector norm or its induced matrix 2-norm. For
real symmetric matrix X , the notation X > 0 means
X is positive definite, and similarly definition for
X < 0, X ≥ 0 and X ≤ 0. In is the identity ma-
trix of order n. If not explicitly stated, matri-
ces are assumed to have compatible dimensions.
λmin(M) and λmax(M) denote the smallest and
largest eigenvalues of the symmetric matrix M,
respectively.σmin(N) and σmax(N) denote respec-
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tively the minimum and maximum singular values
of the matrix N.

2 Preliminaries and problem state-
ment

The interaction between N agents can be de-
scribed as a directed graph G = {V ,E ,A} consist-
ing of a set of vertices V = {v1,v2, · · · ,vN}, a set
of directed edges E ⊆ V ×V , and a weighted ad-
jacency matrix A = (ai j) with nonnegative entries.
An edge ei j is denoted by an ordered pair of vertices
(v j,vi), where v j and vi are called the parent and
child vertices, respectively, and ei j ∈ E if and only
if ai j > 0. A path from node vi to node v j is a se-
quence of edges (v j,vi1), (vi1 ,vi2), . . . ,(vip ,vi), with
distinct nodes ik, k = 1,2, . . . , p. The Laplacian ma-
trix L = (li j)N×N associated with an adjacency ma-
trix A is defined as lii = ∑N

j=1, j ̸=i ai j, li j = −ai j for
i ̸= j. Further, D = diag{d1,d2, . . . ,dN} is a non-
negative diagonal matrix, which is defined accord-
ing to the following roles: there is an edge from
the leader to the node i ∈ 1,2, . . . ,N if and only if
di > 0; otherwise di = 0.

2.1 The model of multi-agent system

Cluster consensus of multi-agent systems is
studied in this paper. Consider a multi-agent sys-
tem consisting of N followers and p leaders where
N followers will finally achieve p-cluster states. Let
G = {G1,G2, . . . ,Gp} be a disjoint partition of the
agent set {1,2, . . . ,N}, i.e. Gl ∩ Gr = /0 for l ̸= r,
l,r = 1,2, . . . , p,

∪p
l=1 Gl = {1,2, . . . ,N}. For i∈V ,

let î denote the cluster to which the ith agent be-
longs, i.e. i ∈ Gî. One can say that agents i and j
are in the same cluster if î = ĵ.

Suppose that the linear dynamic of the ith agent
can be described by

ẋi(t) = Axi(t)+Bui(t), i = 1,2, . . . ,N, (1)

and the dynamic of the lth leader is given by

ṡl(t) = Asl(t), l = 1,2, . . . , p, (2)

where xi(t) ∈ Rn and sl(t) ∈ Rn are the states of
agent i and the state of the lth leader, respectively,
A ∈ Rn×n and B ∈ Rn×m are constant matrices.
ui(t) ∈ Rm is the control input of agent i. One can
say î = l if the ith agent belongs to the lth cluster.

Remark 1. The homogeneous system ṡl(t) =Asl(t)
is considered in this paper. If one requires that
there are no consensus between two different clus-
ters, i.e. limt→∞ ∥sl(t)− sk(t)∥ ̸= 0 for any l,k =
1,2, . . . , p, k ̸= l, it can be realized by choosing dif-
ferent initial values since s(t) = eAts(0) if A is not
a Hurwitz matrix. Note that the states of all the lin-
ear systems approach zeros asymptotically if A is a
Hurwitz matrix.

Some definitions, assumptions and useful lem-
mas are presented as follows.

Definition 1. For any given initial states x(0) =
[xT

1 (0),x
T
1 (0), . . . ,x

T
N(0)]

T , cluster consensus for the
interacting p clusters of agents is said to be achieved
if

lim
t→∞

∥xi(t)− sî(t)∥= 0, i = 1,2, . . . ,N.

Assumption 1. The elements of the Laplacian ma-
trix L ∈ RN×N can be divided into p clusters as
defined above, then one can assume the following
form holds

L =




L11 L12 . . . L1p

L21 L22 . . . L2p

. . . . . . . . . . . .
Lp1 Lp2 . . . Lpp


,

with Llk, l,k = 1,2, . . . ,d are zero-row-sum matri-
ces, i.e. ∑ j∈Gk

ai j = 0 for all i ∈ Gl . Each Lll is the
Laplacian matrix if the digraph Gl , l = 1,2, . . . , p.

Remark 2. Assumption 1 indicates that the inter-
cluster coupling strengths may be either positive
and negative, which describe the cooperative or
competitive scheme between agents. It means that
a coupling balance among a cluster with other clus-
ters are needed.

Assumption 2. The matrix pair (A,B) is stabiliz-
able.

Lemma 1. [30] If (A,B) is stabilizable, then for any
α > 0, there exists a positive definite matrix P > 0
that satisfies the Riccati inequality

PA+AT P−αPBBT P+αIn < 0. (3)

Lemma 2. [16] Let L and D be the Laplacian matrix
and the pinning matrix. If G has a directed span-
ning tree, then there exists a positive diagonal ma-
trix Ξ > 0 such that

Ξ(L+D)+(L+D)T Ξ > 0. (4)



296 Bin Xu, Wangli He

2.2 Distributed event-triggered control
over the directed topology

In this Section, a distributed event-triggered
condition is proposed.

First, the measurement error for each agent is
defined as

ei(t) = x̂i(t)− xi(t), t ∈ [ti
k, t

i
k+1) (5)

where x̂i(t) = eA(t−ti
k)xi(ti

k), ti
k is the kth event-

triggered instant for agent i. The distributed event-
triggered consensus protocol is proposed as

ui(t) =Kzi(t)

=K
[

∑
j∈Gî

cîai j(x̂ j(t)− x̂i(t))

+ ∑
j/∈Gî

ai j(x̂ j(t)− x̂i(t))

+ cîdi(ŝî(t)− x̂i(t))
]
, t ∈ [ti

k, t
i
k+1) (6)

where K =BT P and P is a positive definite matrix to
be designed later. cî > 0 measures the intra-cluster
coupling strength in cluster Gl if î = l.

The triggering time sequence ti
k for the agent i

is determined by

ti
k+1 =ti

k +∆i
k

=ti
k +max{τi

k,bi} (7)

where ∆i
k is the triggering time interval between

event-triggered instant ti
k and ti

k+1 for agent i. bi

and βi are positive constants to be designed, and τi
k

is defined as

τi
k = inf

t>ti
k

{t − ti
k| ∥ei(t)∥> βi∥zi(t)∥}. (8)

Remark 3. Comparing with the consensus static
control protocol in [18], [19], [21] and [22], a dy-
namic controller in (6) is considered. The dy-
namic consensus law depends on the estimating
state x̂i(t) = eA(t−ti

k)xi(ti
k) instead of x̂i(t) = xi(ti

k) in
[18], [19], [21] and [22]. In this paper, the matrix
A in (1) and (2) is not Hurwitz, which even allows
to have roots with positive real parts. It means that
the system could be unstable or even divergent. The
static control protocol may lead to a greater increase
speed of ∥ei(t)∥ to reach the threshold value. Thus
the number of event-trigger times under the control

scheme (6) is smaller.
Remark 4. To reduce the communication cost
and energy between different agents, a distributed
event-triggered is proposed in this paper. Note that
the distributed event-triggered scheme designed
not only guarantees the achievement of leader-
following cluster consensus, but also excludes Zeno
behavior due to bi > 0 in the event-triggered condi-
tion. According to (7), the event detection is not
required during the time interval (ti

k, ti
k + bi), and

the agent i only need to receive it’s neighbors’ in-
formation.

3 Main results

In this Section, some cluster consensus condi-
tions of multi-agent systems (1) and the leader (2)
under the control protocol (6) via the event-trigger
strategy (7) will be derived.

3.1 Model transformation

Based on Assumption 1, let D =
diag{D1, . . . ,Dp} = diag{d1,d2, . . . ,dN}, where
Dl ∈ Rnl×nl , l = 1,2, . . . , p. Obviously, nl means
the number of agents in the lth cluster, and ma-
trix Dl describes the topology between leaders and
followers. Besides, let

L̄ =




L̄11 L12 . . . L1p

L21 L̄22 . . . L2p

. . . . . . . . . . . .
Lp1 Lp2 . . . L̄pp


 ,

where L̄ = Lll +Dl . Let Ḡl , l = 1,2, . . . , p repre-
sents the digraph consisting of the digraph of the
lth cluster, its virtual leader sl(t), and the edges con-
necting the following agents to the leader. Define

L̃ =




c1L̄11 L12 . . . L1p

L21 c2L̄22 . . . L2p

. . . . . . . . . . . .
Lp1 Lp2 . . . cpL̄pp


 , (9)

where cl is the intra-cluster coupling strength in
cluster Gl defined above.

Define the error signal between the leader and
the follower i, i = 1,2, . . . ,N,

δi(t) = xi(t)− sî(t). (10)
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Substituting the controller (6) into (1), one has
the closed-loop multi-agent system

ẋi(t) =Axi(t)+K
[

∑
j∈Gî

cîai j(x̂ j(t)− x̂i(t))

+ ∑
j/∈Gî

ai j(x̂ j(t)− x̂i(t))

+ cîdi(ŝî(t)− x̂i(t))
]
. (11)

Then, the closed-loop multi-agent error system
can be described by

δ̇i(t) = Aδi(t)+K
[

∑
j∈Gî

cîai j(x̂ j(t)− x̂i(t))

+ ∑
j/∈Gî

ai j(x̂ j(t)− x̂i(t))

+ cîdi(ŝî(t)− x̂i(t))
]

= Aδi(t)+K
[

∑
j∈Gî

cîai j(e j(t)+ x j(t)

− ei(t)− xi(t))

+ ∑
j/∈Gî

ai j(e j(t)+ x j(t)− ei(t)− xi(t))

+ cîdi(sî(t)− xi(t)− ei(t))
]
.

Additionally, one has

N

∑
j=1

ai j(x j(t)− xi(t))

=−
N

∑
j=1

li jx j(t)

=−
p

∑
k=1

∑
j∈Gk

li jx j(t)

=−
p

∑
k=1

∑
j∈Gk

li j[(x j(t)− sk(t))+ sk(t)]

=−
N

∑
j=1

li jδ j(t)−
p

∑
k=1

(
∑

j∈Gk

li j

)
sk(t)

Now, according to Assumption 1, ∑ j∈Gc li j = 0.
Therefore, ∑ j∈Ni ai j(x j(t)−xi(t)) =−∑N

j=1 li jδ j(t).
Consequently, the error system (10) for t ∈ [ti

k, t
i
k+1)

can be rewritten as

δ̇i(t) = Aδi(t)+K
[

∑
j∈Gî

cîai j(e j(t)− ei(t)

+δ j(t)−δi(t))

+ ∑
j/∈Gî

ai j(e j(t)− ei(t)+δ j(t)−δi(t))

+ cîdi(sî(t)− xi(t)− ei(t))
]
. (12)

Further, denote δ(t)= [δT
1 (t),δT

2 (t), . . . ,δT
N(t)]

T ∈
RNn, e(t) = [eT

1 (t),e
T
2 (t), . . . ,e

T
N(t)]

T ∈ RNn, then
one has the following compact form

δ̇(t) = (IN ⊗A)δ(t)− (L̃⊗BK)(δ(t)+ e(t)),
(13)

where L̃ is defined in (9).

Proposition 1. Suppose Assumption 1 and As-
sumption 2 hold. Under the event-triggering con-
dition (7), leader-following multi-agent system (1)
and (2) with control protocol (6) can realize p-
cluster consensus, if and only if the multi-agent er-
ror system (13) is asymptotically stable.

Proposition 1 implies that the p-cluster consen-
sus of leader-follower multi-agent system (1) and
(2) can be now converted into the stability of the
corresponding multi-agent error system (13).

3.2 Stability condition

Theorem 1. Suppose Assumptions 1 and 2 are sat-
isfied. If there exists a positive diagonal matrix Ξ,
γ1 > 0, γ2 > 0, ρ, η, βi, bi > 0 such that

ΞL̃+ L̃T Ξ > 0 (14)

0 < γ1 + γ2 < 1 (15)

β2
i ≤

ω2 −ω4/ρ
ω3 +ω4ρ

< γ1 (16)

ρ > ω4/ω2 > 0 (17)

bi < b, (18)

where

b =
1
q1

ln(
q1

q2

√
γ2

N
+1), (19)

ω1 = ηλmin(Ξ ⊗ In) = ω1
1 + ω2

1, ω2 =
ω2

1σmin(HT H), ω3 = λmin(Ω⊗PBBT P)−ω2
1, H =

L̃−1⊗ In, ω4 = σmax(
1
2(L̃

−1T Ω)⊗PBBT P−ω2
1HT ),
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q1 = 2∥A∥ and q2 = ∥BK∥. Then the leader-
following multi-agent system (1) and (2) under
the the control protocol (6) and the event-triggered
strategy (7) achieve cluster consensus.

Proof. Consider the time interval [ti
k, t

i
k+1) over

which the event-triggered condition ∥ei(t)∥ ≤
βi∥zi(t)∥ holds. Choose the following nonnegative
Lyapunov function

V (t) = δT (t)(Ξ⊗P)δ(t),

where P is a positive definite matrix, satisfying (3)
in Lemma 1, and Ξ satisfying (14). Calculating the
time derivative of V (t) along with (13) yields

V̇ (t) =2δT (t)(Ξ⊗P)δ̇(t)
=δT (t)[Ξ⊗ (AT P+PA)−Ω⊗PBK]δ(t)
−δT (t)[(ΞL̃+ L̃T Ξ)⊗PBK]e(t), (20)

where K = BT P. According to (14), ΞL̃+ L̃T Ξ > 0.
Then there exists a small positive constant η > 0
such as

ΞL̃+ L̃T Ξ ≥ ηΞ. (21)

Then applying Lemma 1 and inequality (21) into
(20) yields

V̇ (t)≤δT (t)
[
Ξ⊗ [(AT P+PA)−ηPBBT P]

]
δ(t)

−δT (t)[(ΞL̃+ L̃T Ξ)⊗PBBT P]e(t)

≤−ηδT (t)(Ξ⊗ In)δ(t)−δT (t)[Ω⊗PBBT P]e(t)

≤ω1δT (t)δ(t)−δT (t)[Ω⊗PBBT P]e(t).
(22)

Further, one obtains that δ(t) = x(t)− s(t) = x̂(t)−
s(t)−e(t), and z(t) =−(L̃⊗ In)(δ(t)+e(t)) = (L̃⊗
In)(s(t)− x̂(t)), then

δ(t) =−Hz(t)− e(t), (23)

where H = L̃−1 ⊗ In. Substituting (23) into (22),
and let ω1 = ω1

1+ω2
1, by Young’s inequality: xT y ≤

ρ
2 x2 + 1

2ρ y2, it is obtained that

V̇ (t)≤−ω1
1δT (t)δ(t)−ω2

1δT (t)δ(t)
−δT (t)[Ω⊗PBBT P]e(t)

≤−ω1
1δT (t)δ(t)

−ω2
1(Hz(t)+ e(t))T (Hz(t)+ e(t))

+(Hz(t)+ e(t))T [Ω⊗PBBT P]e(t)

≤−ω1
1δT (t)δ(t)−ω2

1zT (t)(HT H)z(t)

−2ω2
1zT (t)HT e(t)+ eT (t)(Ω⊗PBBT P)e(t)

+ zT (t)(L̃−1T
Ω⊗PBBT P)e(t)−ω2

1eT (t)e(t)

≤−ω1
1δT (t)δ(t)+ω3eT (t)e(t)−ω2zT (t)e(t)

+ω4[ρeT (t)e(t)+
1
ρ

zT (t)z(t)]

≤−ω1
1δT (t)δ(t)−

N

∑
i=1

[(ω2 −
ω4

ρ
)

−β2
i (ω3 +ω4ρ)]zT

i (t)zi(t)

≤−ω1
1δT (t)δ(t)

<0, (24)

where ω2, ω3, ω4 are defined in Theorem 1. Next,
the minimal inter-event interval of each agent will
be presented in the rest part of this subsection.

Firstly, denote the agent sets M1(t) and M2(t)
consisting of agents which are triggered by τi

k or
bi in the last event instant, respectively. Then,
M1(t)∪M2(t) = {1,2, . . . ,N} and M1(t)∩M2(t) =
/0. To ensure the asymptotically stability of the p-
cluster multi-agent systems, one can choose that

∑
i∈M1

∥ei(t)∥2 ≤ γ1 ∑
i∈M1

∥zi(t)∥2 ≤ γ1

N

∑
i=1

∥zi(t)∥2,

(25)

∑
i∈M2

∥ei(t)∥2 ≤ γ2 ∑
i∈M2

∥zi(t)∥2 ≤ γ2

N

∑
i=1

∥zi(t)∥2,

(26)

for γ1 + γ2 = γ < 1. For the agents in M1(t), a
sufficient condition for (25) is given by ∥ei(t)∥ ≤
βi∥zi(t)∥ with β2

i ≤ γ1. Then, a sufficient condition
for (26) is ∥ei(t)∥2 ≤ γ2

N ∥z(t)∥2. The evolution time

of ∥ei(t)∥/∥z(t)∥ from 0 to
√

γ2
N is lower bounded

by that of ∥e(t)∥/∥z(t)∥ from 0 to
√

γ2
N . The one
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q1 = 2∥A∥ and q2 = ∥BK∥. Then the leader-
following multi-agent system (1) and (2) under
the the control protocol (6) and the event-triggered
strategy (7) achieve cluster consensus.

Proof. Consider the time interval [ti
k, t

i
k+1) over

which the event-triggered condition ∥ei(t)∥ ≤
βi∥zi(t)∥ holds. Choose the following nonnegative
Lyapunov function

V (t) = δT (t)(Ξ⊗P)δ(t),

where P is a positive definite matrix, satisfying (3)
in Lemma 1, and Ξ satisfying (14). Calculating the
time derivative of V (t) along with (13) yields

V̇ (t) =2δT (t)(Ξ⊗P)δ̇(t)
=δT (t)[Ξ⊗ (AT P+PA)−Ω⊗PBK]δ(t)
−δT (t)[(ΞL̃+ L̃T Ξ)⊗PBK]e(t), (20)

where K = BT P. According to (14), ΞL̃+ L̃T Ξ > 0.
Then there exists a small positive constant η > 0
such as

ΞL̃+ L̃T Ξ ≥ ηΞ. (21)

Then applying Lemma 1 and inequality (21) into
(20) yields

V̇ (t)≤δT (t)
[
Ξ⊗ [(AT P+PA)−ηPBBT P]

]
δ(t)

−δT (t)[(ΞL̃+ L̃T Ξ)⊗PBBT P]e(t)

≤−ηδT (t)(Ξ⊗ In)δ(t)−δT (t)[Ω⊗PBBT P]e(t)

≤ω1δT (t)δ(t)−δT (t)[Ω⊗PBBT P]e(t).
(22)

Further, one obtains that δ(t) = x(t)− s(t) = x̂(t)−
s(t)−e(t), and z(t) =−(L̃⊗ In)(δ(t)+e(t)) = (L̃⊗
In)(s(t)− x̂(t)), then

δ(t) =−Hz(t)− e(t), (23)

where H = L̃−1 ⊗ In. Substituting (23) into (22),
and let ω1 = ω1

1+ω2
1, by Young’s inequality: xT y ≤

ρ
2 x2 + 1

2ρ y2, it is obtained that

V̇ (t)≤−ω1
1δT (t)δ(t)−ω2

1δT (t)δ(t)
−δT (t)[Ω⊗PBBT P]e(t)

≤−ω1
1δT (t)δ(t)

−ω2
1(Hz(t)+ e(t))T (Hz(t)+ e(t))

+(Hz(t)+ e(t))T [Ω⊗PBBT P]e(t)

≤−ω1
1δT (t)δ(t)−ω2

1zT (t)(HT H)z(t)

−2ω2
1zT (t)HT e(t)+ eT (t)(Ω⊗PBBT P)e(t)

+ zT (t)(L̃−1T
Ω⊗PBBT P)e(t)−ω2

1eT (t)e(t)

≤−ω1
1δT (t)δ(t)+ω3eT (t)e(t)−ω2zT (t)e(t)

+ω4[ρeT (t)e(t)+
1
ρ

zT (t)z(t)]

≤−ω1
1δT (t)δ(t)−

N

∑
i=1

[(ω2 −
ω4

ρ
)

−β2
i (ω3 +ω4ρ)]zT

i (t)zi(t)

≤−ω1
1δT (t)δ(t)

<0, (24)

where ω2, ω3, ω4 are defined in Theorem 1. Next,
the minimal inter-event interval of each agent will
be presented in the rest part of this subsection.

Firstly, denote the agent sets M1(t) and M2(t)
consisting of agents which are triggered by τi

k or
bi in the last event instant, respectively. Then,
M1(t)∪M2(t) = {1,2, . . . ,N} and M1(t)∩M2(t) =
/0. To ensure the asymptotically stability of the p-
cluster multi-agent systems, one can choose that

∑
i∈M1

∥ei(t)∥2 ≤ γ1 ∑
i∈M1

∥zi(t)∥2 ≤ γ1

N

∑
i=1

∥zi(t)∥2,

(25)

∑
i∈M2

∥ei(t)∥2 ≤ γ2 ∑
i∈M2

∥zi(t)∥2 ≤ γ2

N

∑
i=1

∥zi(t)∥2,

(26)

for γ1 + γ2 = γ < 1. For the agents in M1(t), a
sufficient condition for (25) is given by ∥ei(t)∥ ≤
βi∥zi(t)∥ with β2

i ≤ γ1. Then, a sufficient condition
for (26) is ∥ei(t)∥2 ≤ γ2

N ∥z(t)∥2. The evolution time

of ∥ei(t)∥/∥z(t)∥ from 0 to
√

γ2
N is lower bounded

by that of ∥e(t)∥/∥z(t)∥ from 0 to
√

γ2
N . The one
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has

d
dt

∥e(t)∥
∥z(t)∥

=
eT (t)ė(t)

∥e(t)∥∥z(t)∥
− ∥e(t)∥zT (t)ż(t)

∥z(t)∥3

≤ ė(t)
∥z(t)∥

+
e(t)
∥z(t)∥

ż(t)
∥z(t)∥

. (27)

Since ė(t)= (IN ⊗A)e(t)−(IN ⊗BK)z(t) and ż(t)=
(IN ⊗A)z(t), thus (27) can be expressed as

d
dt

∥e(t)∥
∥z(t)∥

≤ q1
e(t)
∥z(t)∥

+q2, (28)

where q1 = 2∥A∥ and q2 = ∥BK∥. Hence,
∥e(t)∥/∥z(t)∥ ≤ ψ(t,φ0) which is the solution of
the following equation

ψ̇(t) = q1ψ(t)+q2, ψ(0) = 0.

The evolution time of ∥e(t)∥/∥z(t)∥ from 0 to
√

γ2
N

is lower bounded by b = 1
q1

ln(q1
q2

√
γ2
N + 1). Thus,

for the agents in M2(t), one can select the inter-
event time bi ≤ b to guarantee (26).

Hence, it can be concluded that V̇ (t)< 0, which
implies all followers xi(t)→ sî(t), i = 1,2, . . . ,N as
t goes to infinity. Therefore, the cluster consensus
can be achieved. The proof is completed.

To make Theorem 1 more applicable, the intra-
cluster coupling strength construction method is
given in Algorithm 1. It gives a convenient method
to choose appropriate values of coupling strengths
to ensure ΞL̃+ L̃T Ξ > 0.

Algorithm 1.

Step 1: Construct the matrix L̃ defined in (9);
Step 2: According to Lemma 2, if the topol-
ogy of each cluster Ḡl has a directed spanning
tree, then there exists a positive diagonal matrix
Ξl > 0 such that Ξl L̄ll + L̄T

llΞl > 0, l = 1,2, . . . , p.
Let L0 = L − diag{L11,L22, . . . ,Lpp}, and Ξ =
diag{Ξ1,Ξ2, . . . ,Ξp};
Step 3:
If λmin(ΞL0 +LT

0 Ξ)≥ 0
then cl > 0 is allowed;
else one can choose

cl >
−λmin(ΞL0 +LT

0 Ξ)
λmin(Ξl L̄ll + L̄T

llΞl)
, l = 1,2, . . . , p. (29)

Then, the constructed coupling strengths satisfy the
requirement in Theorem 1.

It is obvious that ΞL̃+ L̃T Ξ > 0 can be ensured
if λmin(ΞL0 +LT

0 Ξ) ≥ 0. If λmin(ΞL0 +LT
0 Ξ) < 0,

it suffices to choose appropriate c1,c2, . . . ,cp such
that λmin(Ld)+λmin(ΞL0 +LT

0 Ξ) > 0, where Ld =
diag{c1(Ξ1L̄11 + L̄T

11Ξ1), . . . ,cp(ΞpL̄pp + L̄T
ppΞp)}.

This can be guaranteed if for each l = 1, . . . , p, the
(29) holds.
Remark 5. According to Algorithm 1, it is ob-
vious that ΞL̃ + L̃T Ξ > 0 will be more possible
to achieved if the coupling strengths of the intra-
cluster are stronger. If the interaction topology G
is a graph with acyclic partition, which was studied
in [15]. Algorithm 1 could be omitted due to the
fact that the Laplacian matrix is a lower triangular
matrix, there exists a positive matrix Ξ satisfying
ΞL̃+ L̃T Ξ > 0.

4 Numerical simulations

In order to show the effectiveness of the de-
rived results, we consider a network of N =
7 agents with 3 clusters G1 = 1,2, G2 =
3,4,5 and G3 = 6,7. The topology of each
cluster with a leader is shown in Figure 1.

Figure 1. Network topology of the clustered
multi-agent systems.

Let A = [−2,1,1;1,−1,0;0,1,−1] and B =
[0;1;0]. Thus (A,B) is stabilizable. The initial
states of seven agents are chosen from [−50,50]3 ⊂
R3 randomly. Initial states of s1(t), s2(t) and
s3(t) are chosen as (−25,15,0)T , (0,−10,−30)T

and (25,0,30)T to guarantee that limt→∞ ∥sl(t)−
sk(t)∥ ≠ 0 for any l,k = 1,2, . . . , p,k ̸= l.
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Figure 2. States trajectory of 7 followers under the
distributed event-triggered scheme.
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Figure 3. Event-triggered time instants and release
intervals for the ith agent (i = 2,3,6).
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Figure 4. Evolution of E1(t), E2(t) and E3(t).

According to Algorithm 1, one can choose c1 =
3, c2 = 4, c3 = 3 ensuring (29) holds. Solving Ric-
cati inequality (3) with α = η = 0.8, one has

P =




0.3492 0.4488 0.2378
0.4488 0.9789 0.4697
0.2378 0.4697 0.4827




and K = BT P = [0.4488,0.9789,0.4697]. Accord-
ing to Theorem 1, choose βi = 0.2 and bi = 0.2
since b = 0.2603 with γ2 = 0.9. From Figure 2,
the trajectories of 7 followers under the distributed
event-triggered scheme (8) achieves cluster consen-
sus with 3 clusters. Figure 3 shows event-triggered
time instants and release intervals for the ith agent
(i = 2,3,6).blue The trigger times of agent 2,3,6
are 28,35,44 during [0,15]s, respectively. It is
obvious that the numbers of the trigger times un-
der the event-triggered schemes considered in this
paper are smaller, which indicates that the com-
munication cost could be saved. It Let E1(t) =
1
2 ∑2

i=1 ∥xi(t)−s1(t)∥, E2(t) = 1
3 ∑5

i=3 ∥xi(t)−s2(t)∥
and E3(t) = 1

2 ∑7
i=6 ∥xi(t)− s1(t)∥. It can be seen

from Figure 4 that the cluster consensus is achieved.

Conclusion

Cluster consensus of linear multi-agent systems
via a distributed event-triggered control scheme is
considered in this paper. By associating each agent
within a cluster and a leader, a novel event-triggered
condition is proposed and the corresponding con-
trol protocol is designed. If the network topology
of each cluster has a directed spanning tree and
the couplings within each cluster are sufficiently
strong, sufficient conditions are derived to ensure
cluster consensus. As Assumption 1 is a little bit
conservative for general topologies, it is possible to
relax the condition on the inter-cluster couplings to
achieve cluster consensus, which is our future work.
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