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Abstract

In this paper, a continuous-time distributed algorithm is presented to solve a class of de-
composable quadratic programming problems. In the quadratic programming, even if the
objective function is nonconvex, the algorithm can still perform well under an extra con-
dition combining with the objective, constraint and coupling matrices. Inspired by recent
advances in distributed optimization, the proposed continuous-time algorithm described
by multi-agent network with consensus is designed and analyzed. In the network, each
agent only accesses the local information of its own and from its neighbors, then all the
agents in a connected network cooperatively find the optimal solution with consensus.
Keywords: Decomposable nonconvex quadratic programming, multi-agent network, con-
sensus, Lyapunov method

1 Introduction

In the past years, the study on optimization
and applications has brought an increasing inter-
est in science and engineering and many optimiza-
tion methods have been investigated, such as inte-
rior point algorithm [1], gradient projection method
[2], neurodynamic method [3, 4, 5, 6], swarm in-
telligence method [7, 8, 9], and distributed algo-
rithms [10, 11, 12]. In contrast to centralized algo-
rithms, distributed algorithms give an efficient com-
puting method for large-scale optimization prob-
lems. Especially, the distributed algorithms based
on multi-agent networks can be analyzed by the
theories of dynamic systems and graph analysis
method. Multi-agent network is often described as

connected directed or undirected graphs [13, 14],
which dynamic behaviors are described as ordi-
nary differential equations or difference equations.
The connection properties can be analyzed using
the algebraic graph theory and the dynamic prop-
erties can be analyzed using the Lyapunov method
[15, 16, 17]. The goal of multi-agent networks for
distributed optimization is to minimize or maximize
a separable objective function with coupling or de-
coupling constraints. In the network, each agent
gets the information from its neighbors combining
with its own objective and constraints, then all the
agents synchronously update their states by these
information. At the same time, all the agents co-
operatively get optimal solutions with consensus or
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agreement. In general, the consensus is required for
distributed algorithms with primal variables, dual
variables or both of them. The applications of dis-
tributed optimization can be found in many real
problems, including sensor fusion [18], distributed
model predictive control and network flows [19],
distributed coordination in multi-vehicle coopera-
tive control [20], etc.

Many distributed algorithms have been de-
signed for different optimization problems. In
[13, 14, 21], based on the primal-dual method, the
distributed subgradient algorithms for constrained
convex optimization are presented and the average
consensus is analysis. Based on stochastic transi-
tion matrix, the distributed multi-agent optimiza-
tion with nonidentical constraints investigated in
[22, 23]. The robust distributed optimization is
presented in [24] based on the cutting-plane con-
sensus algorithm. The distributed random convex
programming with a large number of randomly ex-
tracted constraints is presented in [25]. Based on
directed graph method, the unconstrained convex
optimization based on multi-agent network with
weight-balanced digraphs is investigated in [16].
With the presence of external disturbances, the au-
thors in [26] investigates the multi-agent networks
for distributed optimization and the exact optimal
solutions can be guaranteed with rejecting distur-
bances. In [27] and [28], the multi-agent net-
works with delays are investigated for continuous-
time and discrete-time systems respectively. In
[17], a second-order multi-agent network is pro-
posed for solving distributed optimization problems
with bound constraints, which optimal solutions can
be exactly achieved for connected and undirected
graphs. In [29], a collective neurodynamic ap-
proach, which is also described as distributed neu-
rodynamic system, is presented for distributed opti-
mization with decoupling constraints.

This paper is concerned with continuous-time
distributed algorithm based on multi-agent network
for solving decomposable quadratic programming
problems. First, the distributed algorithm is de-
scribed as a continuous-time multi-agent system
based on the optimality conditions. Then, the con-
sensus on primal variables is investigated for the
multi-agent network to guarantee the optimal solu-
tions. It is noted that the distributed algorithm is
capable of solving a class of nonconvex quadratic

programming problems. Compared with other dis-
tributed algorithms, the coupling matrix plays an
important role in the nonconvex optimization.

The remainder of the paper are listed as follows.
Section 2 introduces the problem formulation and
optimality conditions. In Section 3, the proposed
distributed algorithm is given and the consensus is
analyzed. Next, Section 4 provides an illustrative
example to show the performance of the distributed
algorithm. Finally, Section 5 is the conclusion of
the paper.

2 Distributed Optimization and
Optimality Condition

2.1 Problem Formulation

Consider the constrained decomposable
quadratic programming problem as

minimize
m
∑

i=1
fi(y),

subject to Ciy = di, i = 1,2, . . . ,m,

y ∈
m∩

i=1
Ωi,

(1)

where y ∈ Rn, fi : yT Qiy/2+ qT
i y with Qi ∈ Rn×n

to be symmetric but not necessarily to be positive
semi-definite, qi ∈Rn, Ci ∈Rsi×n, di ∈Rsi (0 ≤ si <
n), and Ωi ⊂Rn is nonempty and closed convex set.
Throughout the paper, we always assume that there
exists at least one finite solution to problem (1).

2.2 Equivalent Optimization Problem

Since the problem in (1) is divided into m sub-
problems with decomposed objective functions and
constraints, the optimization problem is required to
be solved using m agents under a connected and
undirected graph, which is denoted by G . In the net-
work, each agent has its own local objective func-
tion fi(y) and constraint Ciy = di with y ∈ Ωi.

Assume yi ∈ Rn to be the estimate of agent
i on the solution of problem (1), matrix Y =
(y1,y2, · · · ,ym) ∈Rn×m to be with column vector yi,
and column vector ỹ = vec(Y ) ∈ Rmn to be the vec-
torization of Y .

Lemma 1 [16] Assume Lm ∈ Rm×m to be the
Laplacian matrix of the graph and L = Lm ⊗ In ∈
Rmn×mn, in which In is n-dimensional identity ma-



285Yan Zhao, Qingshan Liu

agreement. In general, the consensus is required for
distributed algorithms with primal variables, dual
variables or both of them. The applications of dis-
tributed optimization can be found in many real
problems, including sensor fusion [18], distributed
model predictive control and network flows [19],
distributed coordination in multi-vehicle coopera-
tive control [20], etc.

Many distributed algorithms have been de-
signed for different optimization problems. In
[13, 14, 21], based on the primal-dual method, the
distributed subgradient algorithms for constrained
convex optimization are presented and the average
consensus is analysis. Based on stochastic transi-
tion matrix, the distributed multi-agent optimiza-
tion with nonidentical constraints investigated in
[22, 23]. The robust distributed optimization is
presented in [24] based on the cutting-plane con-
sensus algorithm. The distributed random convex
programming with a large number of randomly ex-
tracted constraints is presented in [25]. Based on
directed graph method, the unconstrained convex
optimization based on multi-agent network with
weight-balanced digraphs is investigated in [16].
With the presence of external disturbances, the au-
thors in [26] investigates the multi-agent networks
for distributed optimization and the exact optimal
solutions can be guaranteed with rejecting distur-
bances. In [27] and [28], the multi-agent net-
works with delays are investigated for continuous-
time and discrete-time systems respectively. In
[17], a second-order multi-agent network is pro-
posed for solving distributed optimization problems
with bound constraints, which optimal solutions can
be exactly achieved for connected and undirected
graphs. In [29], a collective neurodynamic ap-
proach, which is also described as distributed neu-
rodynamic system, is presented for distributed opti-
mization with decoupling constraints.

This paper is concerned with continuous-time
distributed algorithm based on multi-agent network
for solving decomposable quadratic programming
problems. First, the distributed algorithm is de-
scribed as a continuous-time multi-agent system
based on the optimality conditions. Then, the con-
sensus on primal variables is investigated for the
multi-agent network to guarantee the optimal solu-
tions. It is noted that the distributed algorithm is
capable of solving a class of nonconvex quadratic

programming problems. Compared with other dis-
tributed algorithms, the coupling matrix plays an
important role in the nonconvex optimization.

The remainder of the paper are listed as follows.
Section 2 introduces the problem formulation and
optimality conditions. In Section 3, the proposed
distributed algorithm is given and the consensus is
analyzed. Next, Section 4 provides an illustrative
example to show the performance of the distributed
algorithm. Finally, Section 5 is the conclusion of
the paper.

2 Distributed Optimization and
Optimality Condition

2.1 Problem Formulation

Consider the constrained decomposable
quadratic programming problem as

minimize
m
∑

i=1
fi(y),

subject to Ciy = di, i = 1,2, . . . ,m,

y ∈
m∩

i=1
Ωi,

(1)

where y ∈ Rn, fi : yT Qiy/2+ qT
i y with Qi ∈ Rn×n

to be symmetric but not necessarily to be positive
semi-definite, qi ∈Rn, Ci ∈Rsi×n, di ∈Rsi (0 ≤ si <
n), and Ωi ⊂Rn is nonempty and closed convex set.
Throughout the paper, we always assume that there
exists at least one finite solution to problem (1).

2.2 Equivalent Optimization Problem

Since the problem in (1) is divided into m sub-
problems with decomposed objective functions and
constraints, the optimization problem is required to
be solved using m agents under a connected and
undirected graph, which is denoted by G . In the net-
work, each agent has its own local objective func-
tion fi(y) and constraint Ciy = di with y ∈ Ωi.

Assume yi ∈ Rn to be the estimate of agent
i on the solution of problem (1), matrix Y =
(y1,y2, · · · ,ym) ∈Rn×m to be with column vector yi,
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trix and ⊗ is the Kronecker product. Then (1) is
equivalent to the following programming problem
if the graph is connected

minimize f (ỹ),
subject to Cỹ = d,

Lỹ = 0,
ỹ ∈ Ω,

(2)

where f (ỹ) = ∑m
i=1 fi(yi), C is the block

diagonal matrix of C1, C2 to Cm (i.e.,
C = blkdiag{C1,C2, . . . ,Cm} ∈ Rs×mn), d =
vec(d1,d2, . . . ,dm)∈Rs, and Ω = ∏m

i=1 Ωi, in which
s = s1 + s2 + · · ·+ sm.

2.3 Optimality Condition

To get the optimal solutions of (2), a necessary
condition is given in the following theorem.

Theorem 2 If ỹ∗ ∈ Rmn is an optimal solution to
(2), there exist ṽ∗ ∈ Rs and w̃∗ ∈ Rmn such that
(ỹ∗, ṽ∗, w̃∗) satisfies




ỹ∗ = ϕ(ỹ∗ −∇ f (ỹ∗)−CT ṽ∗ −Lw̃∗),
Cỹ∗ = d,
Lỹ∗ = 0,

(3)

where ϕ is a projection operator from Rmn to Ω de-
fined in Appendix.

Proof The Lagrange function of (2) is

Φ(ỹ, ṽ, w̃) = f (ỹ)+ ṽT (Cỹ−d)+ w̃T Lỹ,

where ṽ∗ ∈Rs and w̃∗ ∈Rmn are the Lagrange mul-
tipliers. From the Karush-Kuhn-Tucker (KKT) con-
ditions [30], if ỹ∗ is an optimal solution to (2), then
(ỹ∗, ṽ∗, w̃∗) satisfies

(ỹ− ỹ∗)T (∇ f (ỹ∗)+CT ṽ∗

+Lw̃∗)≥ 0, ∀ỹ ∈ Ω, (4)

Cỹ∗ = d, (5)

Lỹ∗ = 0, (6)

It is well known that ỹ∗ is a solution to the vari-
ational inequality (4) if and only if ỹ∗ satisfies [31]

ỹ∗ = ϕ(ỹ∗ −∇ f (ỹ∗)−CT ṽ∗ −Lw̃∗).

Thus the equations in (3) are satisfied. �

Remark 2.1 In (2), if f (ỹ) is convex,
which is equivalent to the matrix Q =
blkdiag{Q1,Q2, . . . ,Qm} being positive semi-
definite, the condition in (3) is also sufficient.

3 Continuous-time Distributed Al-
gorithm and Consensus Analysis

Next, based on the equations in (3), a
continuous-time multi-agent system is proposed to
solve (1) via distributed manner.

3.1 Model Description

From (3), the dynamic system of the
continuous-time multi-agent network is described
as




dỹ
dt

= 2[−ỹ+ϕ(ỹ−∇ f (ỹ)

−CT (ṽ+Cỹ−d)− z̃−Lỹ)],
dṽ
dt

=Cỹ−d,

dz̃
dt

= Lỹ.

(7)

It is obvious that if (ỹ∗, ṽ∗, w̃∗) satisfies the
equations in (3), it is also an equilibrium point of
system (7) with z̃∗ = Lw̃∗ and vice versa.

For i = 1,2, . . . ,m, the component form of sys-
tem (7) can be written as




dyi

dt
= 2[−yi +ϕi(yi −∇ fi(yi)

−CT
i (v

i +Ciyi −di)− zi

−
m
∑

j=1, j ̸=i
ai j(yi − y j))],

dvi

dt
=Ciyi −di,

dzi

dt
=

m
∑

j=1, j ̸=i
ai j(yi − y j),

(8)

where ai j is the connection weight between agents i
and j in the network.

From system (8), we can see that each agent is
designed to solve a local problem with objective and
constraints. Meanwhile, each agent exchanges its
information on yi with its neighbors. Then all the
agents synchronously update their information and
cooperatively solve the problem with consensus.
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3.2 Consensus Analysis for Indefinite Q

To prove the convergence of the system in (7),
another system is introduced as follows




dỹ
dt

= 2[−ỹ+ϕ(ỹ−∇ f (ỹ)

−CT (ṽ+Cỹ−d)−L(ỹ+ w̃))],
dṽ
dt

=Cỹ−d,

dw̃
dt

= ỹ.

(9)

We say that the systems in (7) and (9) are equivalent
according to the following lemma.

Lemma 3 [32] The systems in (7) and (9) are
equivalent if the initial conditions satisfy z̃(0) =
Lw̃(0) for any w̃(0) ∈ Rmn.

In the following, the convergence of system (9)
will be proved. Thus the results are also true for the
system in (7).

Theorem 4 The state vectors yi(t) (i = 1,2, . . . ,m)
of system (9) reach consensus at the unique optimal
solution of (1) if 2Q+CTC+L is positive definite
and the graph of the multi-agent network is con-
nected and undirected.

Proof Assume ỹ∗ ∈ Rmn to be an optimal solution
of (2). From Theorem 2, there exist ṽ∗ ∈ Rs and
w̃∗ ∈ Rmn such that the formulas in (3) hold.

We construct the candidate Lyapunov function
as

V (ỹ, ṽ, w̃)

= φ(ỹ, ṽ, w̃)−φ(ỹ∗, ṽ∗, w̃∗)− (ỹ− ỹ∗)T (∇ f (ỹ∗)

+CT ṽ∗+Lw̃∗)− (ṽ− ṽ∗)T ṽ∗

−(w̃− w̃∗)T Lw̃∗+
1
2
(
∥ỹ− ỹ∗∥2

+∥ṽ− ṽ∗∥2 +(w̃− w̃∗)T L(w̃− w̃∗)
)
, (10)

where

φ(ỹ, ṽ, w̃) = f (ỹ)+
1
2
(
∥ṽ+Cỹ−d∥2

+(ỹ+ w̃)T L(ỹ+ w̃)
)
.

We have

∇φ(ỹ, ṽ, w̃)

=




∇ f (ỹ)+CT (ṽ+Cỹ−d)+L(ỹ+ w̃)
ṽ+Cỹ−d
L(ỹ+ w̃)


 ,

The gradient of V (ỹ, ṽ, w̃) is shown as

∇V (ỹ, ṽ, w̃)

=







∇ f (ỹ)+CT (ṽ+Cỹ−d)
+L(ỹ+ w̃)−∇ f (ỹ∗)

−CT ṽ∗ −Lw̃∗+ ỹ− ỹ∗




2(ṽ− ṽ∗)+Cỹ−d
2L(w̃− w̃∗)+Lỹ



. (11)

Then the derivative of V (ỹ, ṽ, w̃) along the solu-
tion of (9) is

V̇ (ỹ(t), ṽ(t), w̃(t))

=∇ỹV (ỹ, ṽ, w̃)T
(

dỹ
dt

)
+∇ṽV (ỹ, ṽ, w̃)T

(
dṽ
dt

)

+∇w̃V (ỹ, ṽ, w̃)T
(

dw̃
dt

)
.

Then

V̇ (ỹ(t), ṽ(t), w̃(t))

= 2(∇ f (ỹ)+CT (ṽ+Cỹ−d)+L(ỹ+ w̃)

−∇ f (ỹ∗)−CT ṽ∗ −Lw̃∗+ ỹ− ỹ∗)T (−ỹ+ ϕ̃)
+(2(ṽ− ṽ∗)+Cỹ−d)T (Cỹ−d)

+(2L(w̃− w̃∗)+Lỹ)T ỹ, (12)

where ϕ̃ = ϕ(ỹ−∇ f (ỹ)−CT (ṽ+Cỹ− d)− L(ỹ+
w̃)).

For the right hand side of (12), we have

2(∇ f (ỹ)+CT (ṽ+Cỹ−d)+L(ỹ+ w̃)

−∇ f (ỹ∗)−CT ṽ∗ −Lw̃∗+ ỹ− ỹ∗)T (−ỹ+ ϕ̃)
+(2(ṽ− ṽ∗)+Cỹ−d)T (Cỹ−d)

+(2L(w̃− w̃∗)+Lỹ)T ỹ

= 2(∇ f (ỹ)+CT (ṽ+Cỹ−d)+L(ỹ+ w̃)

−∇ f (ỹ∗)−CT ṽ∗ −Lw̃∗+ ỹ− ỹ∗)T (ϕ̃− ỹ∗)

+2(∇ f (ỹ)+CT (ṽ+Cỹ−d)+L(ỹ+ w̃)

−∇ f (ỹ∗)−CT ṽ∗ −Lw̃∗+ ỹ− ỹ∗)T (ỹ∗ − ỹ)

+(2(ṽ− ṽ∗)+Cỹ−d)T (Cỹ−d)

+2(L(w̃− w̃∗))T ỹ+ ỹT Lỹ.

Let

J1 = 2(∇ f (ỹ)+CT (ṽ+Cỹ−d)

+L(ỹ+ w̃)−∇ f (ỹ∗)−CT ṽ∗

−Lw̃∗+ ỹ− ỹ∗)T (ϕ̃− ỹ∗),
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dṽ
dt

=Cỹ−d,
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ṽ+Cỹ−d
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+L(ỹ+ w̃)−∇ f (ỹ∗)−CT ṽ∗
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J2 = 2(∇ f (ỹ)+L(ỹ+ w̃)−∇ f (ỹ∗)−Lw̃∗+ ỹ

−ỹ∗)T (ỹ∗ − ỹ)+2(L(w̃− w̃∗))T ỹ+ ỹT Lỹ,

and

J3 = 2(CT (ṽ+Cỹ−d)−CT ṽ∗)T (ỹ∗ − ỹ)

+(2(ṽ− ṽ∗)+Cỹ−d)T (Cỹ−d).

Then

V̇ (ỹ(t), ṽ(t), w̃(t)) = J1 + J2 + J3. (13)

For J1, we have

J1 =−2(ỹ−∇ f (ỹ)−CT (ṽ+Cỹ−d)

−L(ỹ+ w̃)− ϕ̃)T (ϕ̃− ỹ∗)

−2(∇ f (ỹ∗)+CT ṽ∗+Lw̃∗)T (ϕ̃− ỹ∗)

+2(ỹ− ϕ̃+ ỹ− ỹ∗)T (ϕ̃− ỹ+ ỹ− ỹ∗)

=−2(ỹ−∇ f (ỹ)−CT (ṽ+Cỹ−d)

−L(ỹ+ w̃)− ϕ̃)T (ϕ̃− ỹ∗)

−2(∇ f (ỹ∗)+CT ṽ∗+Lw̃∗)T (ϕ̃− ỹ∗)

−2∥ỹ− ϕ̃∥2 +2∥ỹ− ỹ∗∥2.

From Lemma 6 in Appendix, let ω = ỹ −
∇ f (ỹ)−CT (ṽ+Cỹ−d)−L(ỹ+ w̃) and ν = ỹ∗, then

(ỹ−∇ f (ỹ)−CT (ṽ+Cỹ−d)

−L(ỹ+ w̃)− ϕ̃)T (ϕ̃− ỹ∗)≥ 0.

Since ỹ∗ is a solution of (2), the inequality in (4)
holds. It follows that (∇ f (ỹ∗)+CT ṽ∗+Lw̃∗)T (ϕ̃−
ỹ∗)≥ 0 due to ϕ̃ ∈ Ω.

Then

J1 ≤−2∥ỹ− ϕ̃∥2 +2∥ỹ− ỹ∗∥2.

For J2, we have

J2 = 2(∇ f (ỹ)+L(ỹ+ w̃)−∇ f (ỹ∗)

−Lw̃∗+ ỹ− ỹ∗)T (ỹ∗ − ỹ)

+2(L(w̃− w̃∗))T ỹ+ ỹT Lỹ

= 2(∇ f (ỹ)−∇ f (ỹ∗))T (ỹ∗ − ỹ)

+2(L(ỹ+ w̃)−Lw̃∗)T (ỹ∗ − ỹ)

+2(ỹ− ỹ∗)T (ỹ∗ − ỹ)

+2(L(w̃− w̃∗))T ỹ+ ỹT Lỹ

= 2(∇ f (ỹ)−∇ f (ỹ∗))T (ỹ∗ − ỹ)

+2(ỹ− ỹ∗)T (ỹ∗ − ỹ)− ỹT Lỹ,

in which the last equality holds due to Lỹ∗ = 0.

Since

f (ỹ) =
m

∑
i=1

fi(yi)

=
m

∑
i=1

(
1
2
(yi)T Qiyi +qT

i yi
)
,

we have

(ỹ− ỹ∗)T (∇ f (ỹ)−∇ f (ỹ∗))

=
m

∑
i=1

(yi − (yi)∗)T Qi(yi − (yi)∗)

= (ỹ− ỹ∗)T Q(ỹ− ỹ∗).

Then

J2 =−2(ỹ− ỹ∗)T Q(ỹ− ỹ∗)

−2∥ỹ− ỹ∗∥2 − ỹT Lỹ.

For J3, since Cỹ∗ = d, we have

J3 = 2(ṽ− ṽ∗+Cỹ−d)T (d −Cỹ)

+(2(ṽ− ṽ∗)+Cỹ−d)T (Cỹ−d)

=−∥Cỹ−d∥2.

Consequently, combining with (13) follows

V̇ (ỹ(t), ṽ(t), w̃(t))

= J1 + J2 + J3

≤−2∥ỹ− ϕ̃∥2 −2(ỹ− ỹ∗)T Q(ỹ− ỹ∗)

−∥Cỹ−d∥2 − ỹT Lỹ

≤−2(ỹ− ỹ∗)T Q(ỹ− ỹ∗)

−∥Cỹ−d∥2 − ỹT Lỹ. (14)

Furthermore, since Cỹ∗ = d and Lỹ∗ = 0, it re-
sults in

V̇ (ỹ(t), ṽ(t), w̃(t))

≤−(ỹ− ỹ∗)T (2Q+CTC+L)(ỹ− ỹ∗). (15)

From the LaSalle invariance principle [33], ỹ(t)
is convergent to a set E as t → ∞, where E is the
largest invariant set of

Θ = {ỹ ∈ Rmn : V̇ (ỹ(t), ṽ(t), w̃(t)) = 0}.

Since the matrix 2Q +CTC + L is positive defi-
nite, the set Θ has a unique element ỹ∗. Then ỹ is
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globally convergent to the unique optimal solution
ỹ∗; i.e., the state vectors yi(t) of the system reach
consensus at the unique optimal solution of (1) if
2Q +CTC + L is positive definite and the graph
of the multi-agent network is connected and undi-
rected. �

3.3 Consensus Analysis for Positive Semi-
definite Q

If the objective function in (1) is convex, the
KKT condition in (3) is also sufficient. Then the
distributed algorithm is always capable of solving
the quadratic programming problems with convex
objective functions.

Theorem 5 The state vectors yi(t) (i = 1,2, . . . ,m)
of system (9) reach consensus at an optimal solution
of (1) if Q is positive semi-definite and the graph
of the multi-agent network is connected and undi-
rected.

Proof From (14), if Q is positive semi-definite, we
have

V̇ (ỹ(t), ṽ(t), w̃(t))

≤−2∥ỹ− ϕ̃∥2 −∥Cỹ−d∥2 − ỹT Lỹ.

The remainder of the proof is similar to the
proof of Theorem 2 in [17], so we omit it here. �

Remark 3.1 From the results in Theorem 4, we can
see that if the matrix Q or 2Q+CTC is not positive
definite, the matrix 2Q+CTC +L may be positive
definite after coupling the decomposable nonconvex
quadratic programming. Moreover, since KKT con-
ditions are necessary for non-convex programming,
the optimal solution can be guaranteed if the KKT
point is unique. One of the conditions is of the pos-
itive definite matrix 2Q+CTC+L.

4 Illustrative Example

Consider the decomposable quadratic program-
ming problem (1) with

Q1 =




2 0.5 0
0.5 0.5 0
0 0 −0.5


 , Q2 =




1 0 0
0 2 0.5
0 0.5 −0.5


 ,

Q3 =




1.5 0 0
0 1 0.5
0 0.5 −0.5


 ,

q1 =




1
1
1


 , q2 =




1
−1
1


 , q3 =




1
1
0


 ,

C1 =C2 =C3 =

(
1 −1 1
1 1 1

)
,

d1 = d2 = d3 =

(
1
−1

)
,

and
Ω1 = Ω2 = Ω3 = [−1,1]3.

Since Q1+Q2+Q3 is not positive semi-definite, the
quadratic programming problem is not convex. In
the simulations, we use a three-agents network with
a circle connected graph to solve this problem. The
connection weight is 1 between any two agents. The
agent i is allocated the objective function with Qi

and qi and the constraints of all the agents are same.
The output transient behaviors of the three agents
on y are shown in Fig. 1, from which we can see that
the state variables of the network reach a consensus
at the optimal solution y∗ = (−0.5,−1,0.5)T .
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Figure 1. Consensus of the output vector y of the
multi-agent network.

5 Conclusion

This paper presented a distributed algorithm
for a class of decomposable nonconvex quadratic
programming. The distributed algorithm was re-
alized by the multi-agent network with connected
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,

and
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Since Q1+Q2+Q3 is not positive semi-definite, the
quadratic programming problem is not convex. In
the simulations, we use a three-agents network with
a circle connected graph to solve this problem. The
connection weight is 1 between any two agents. The
agent i is allocated the objective function with Qi

and qi and the constraints of all the agents are same.
The output transient behaviors of the three agents
on y are shown in Fig. 1, from which we can see that
the state variables of the network reach a consensus
at the optimal solution y∗ = (−0.5,−1,0.5)T .
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Figure 1. Consensus of the output vector y of the
multi-agent network.

5 Conclusion

This paper presented a distributed algorithm
for a class of decomposable nonconvex quadratic
programming. The distributed algorithm was re-
alized by the multi-agent network with connected
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topology. The algorithm was proved to be conver-
gent to optimal solution with consensus under con-
nected graph. Compared with existing algorithms
for quadratic programming, the proposed algorithm
was suitable for solving more general distributed
quadratic programming problems with nonconvex
objective functions. Moreover, a numerical exam-
ple was presented to show the algorithm’s perfor-
mance.

Appendix

A. Graph Theory

Generally, a weighted graph G = (V ,E ,A)
with order m is composed of three parts: a vertex
set V = {1,2, . . . ,m}, an edge set E ⊆ V ×V and
an adjacency matrix A = {ai j}m×m with nonnega-
tive elements ai j > 0 if and only if (i, j) ∈ E , oth-
erwise ai j = 0. The graph is undirected if ai j =
a ji. If the nodes i and j can exchange informa-
tion with each other, we say that an undirected edge
ei j is in the graph, denoted by an unordered pair of
nodes (i, j). If the graph is undirected, it indicates
that the communications among agents are bidirec-
tional. It is noted that aii = 0 which indicates no
self-connection in the graph. A graph is connected
if there exists a path between any pair of distinct
nodes i and j. The degree of node i is defined by
di = ∑m

j=1, j ̸=i ai j (i = 1,2, . . . ,m). The Laplacian
matrix of graph is defined as Lm = D−A , in which
D is diagonal with D = diag{d1,d2, . . . ,dm}.

B. Projection Operator

In general, a projection operator from Rn to
Ω ⊆ Rn can be defined as

ϕ(α) = argmin
β∈Ω

∥β−α∥,

where Ω is a closed convex set.

As two special cases, if Ω is a box set as Ω =
{α ∈ Rn : li ≤ αi ≤ hi, i = 1,2, . . . ,n},

ϕ(αi) =




hi, αi > hi,

ui, li ≤ αi ≤ hi,

li, αi < li.

Or if Ω is a sphere set Ω = {α ∈ Rn : ∥α− s∥ ≤

r,s ∈ Rn,r > 0},

ϕ(α) =

{
α, ∥α− s∥ ≤ r,
s+ r(α−s)

∥α−s∥ , ∥α− s∥> r.

Lemma 6 [31] The projection operator always
satisfies the following inequality

(ω−ϕ(ω))T (ϕ(ω)−ν)≥ 0, ∀ ω ∈ Rn,ν ∈ Ω.
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topology. The algorithm was proved to be conver-
gent to optimal solution with consensus under con-
nected graph. Compared with existing algorithms
for quadratic programming, the proposed algorithm
was suitable for solving more general distributed
quadratic programming problems with nonconvex
objective functions. Moreover, a numerical exam-
ple was presented to show the algorithm’s perfor-
mance.

Appendix

A. Graph Theory

Generally, a weighted graph G = (V ,E ,A)
with order m is composed of three parts: a vertex
set V = {1,2, . . . ,m}, an edge set E ⊆ V ×V and
an adjacency matrix A = {ai j}m×m with nonnega-
tive elements ai j > 0 if and only if (i, j) ∈ E , oth-
erwise ai j = 0. The graph is undirected if ai j =
a ji. If the nodes i and j can exchange informa-
tion with each other, we say that an undirected edge
ei j is in the graph, denoted by an unordered pair of
nodes (i, j). If the graph is undirected, it indicates
that the communications among agents are bidirec-
tional. It is noted that aii = 0 which indicates no
self-connection in the graph. A graph is connected
if there exists a path between any pair of distinct
nodes i and j. The degree of node i is defined by
di = ∑m

j=1, j ̸=i ai j (i = 1,2, . . . ,m). The Laplacian
matrix of graph is defined as Lm = D−A , in which
D is diagonal with D = diag{d1,d2, . . . ,dm}.

B. Projection Operator

In general, a projection operator from Rn to
Ω ⊆ Rn can be defined as

ϕ(α) = argmin
β∈Ω

∥β−α∥,

where Ω is a closed convex set.

As two special cases, if Ω is a box set as Ω =
{α ∈ Rn : li ≤ αi ≤ hi, i = 1,2, . . . ,n},

ϕ(αi) =




hi, αi > hi,

ui, li ≤ αi ≤ hi,

li, αi < li.

Or if Ω is a sphere set Ω = {α ∈ Rn : ∥α− s∥ ≤

r,s ∈ Rn,r > 0},

ϕ(α) =

{
α, ∥α− s∥ ≤ r,
s+ r(α−s)

∥α−s∥ , ∥α− s∥> r.

Lemma 6 [31] The projection operator always
satisfies the following inequality

(ω−ϕ(ω))T (ϕ(ω)−ν)≥ 0, ∀ ω ∈ Rn,ν ∈ Ω.
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