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Abstract

This paper investigates the global exponential synchronization and quasi-synchronization
of inertial memristive neural networks with time-varying delays. By using a variable
transmission, the original second-order system can be transformed into first-order differ-
ential system. Then, two types of drive-response systems of inertial memristive neural
networks are studied, one is the system with parameter mismatch, the other is the system
with matched parameters. By constructing Lyapunov functional and designing feedback
controllers, several sufficient conditions are derived respectively for the synchronization
of these two types of drive-response systems. Finally, corresponding simulation results
are given to show the effectiveness of the proposed method derived in this paper.
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1 Introduction

The memristor is considered to be the fourth ba-
sic circuit element besides resistor, capacitor, and
inductor, originally predicted by Chua in 1971 [1].
However, the first practical memristor device was
realized by HP laboratory until 2008 [2]. The mem-
ristor has the property of memorizing the history of
the applied voltage, which is similar to the operat-
ing principle of synapsis in human brain. Therefore,
modelling the synapsis has become an important
application of memristor. Recently, more and more
attention has been paid to the memristor because of
its potential application in next generation comput-
ers and powerful brain-link neural computers. By
replacing resistor in traditional neural network with
memristor, the memristive neural network is then
constructed. The main character of memristive neu-
ral network is that the right-hand side of its dynamic
equation switches according to state. Recently,

there has been many interesting results concerning
the dynamics of memristive neural networks [3-5].
In [4], the lag synchronization of memristor-based
coupled neural networks with or without parame-
ter mismatch was studied; The global exponential
synchronization of drive-response memristive neu-
ral networks with heterogeneous time-varying delay
was investigated in [5].

The neural network with second-order term is
called inertial neural network, of which the dynamic
behavior is much more complex than first-order
neural networks. Physically, the second-order term
represents inductance in circuit systems. There is
strong biological background for the introduction
of an inductance term in neural system [6-8]. In
semicircular canals of some animals, the membrane
of a hair cell can be implemented by equivalent cir-
cuits that contain an inductance [9-10]. Most of the
results of inertial network focus on the periodic so-
lution, bifurcation and stability [11-13].
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Both of inertial neural network and memris-
tive neural network have received considerable at-
tention due to their widely application in various
fields, such as pattern recognition, associative mem-
ories and learning, etc [14-17]. However, there are
very few results about the neural network contain-
ing both of them. [3] discuss stability and syn-
chronization of inertial memristive neural networks
with time delays. However, the control scheme can
be improved and different types of synchronization
could be further considered. Due to the special
physical meaning and biological background of in-
ertial and memristor, the combination of them can
model more complex dynamical behaviors in nature
and extend the potential application of neural net-
works. Moreover, we also take time-varying delay
into consideration, which may change the dynamics
of systems and make it difficult to achieve synchro-
nization. To the best of our knowledge, there are
very few results on the dynamical behavior of in-
ertial memristive neural network and this motivates
our research interests.

Synchronization is an important phenomenon
in nature, and has been widely applied in various
fields such as chemical reactors, biological sys-
tems, information processing, secure communica-
tion, etc [18-23]. Due to the uncertainty of math
model and the existence of external disturbance,
it is hard to construct two identical drive-response
system in practical situation, parameter mismatch is
unavoidable. So it is of great importance to investi-
gate the system with unmatched parameters. How-
ever, in this case, complete synchronization can not
be achieved. Instead, we consider another type of
synchronization: quasi-synchronization, which is
weaker than complete synchronization, but more
practical in real applications.

Motivated by above discussion, this paper in-
vestigates the synchronization problem of inertial
memristive neural networks with or without param-
eter mismatch. To the best of our knowledge, the
quasi-synchronization of inertial memristive neural
networks and adaptive control method for exponen-
tial synchronization has not been fully investigated
in previous papers yet. The novelties of this pa-
per lies in the following aspects: For the first time,
the adaptive control method is introduced to this
model, which reduces the cost for the control. Dif-
ferent from previous literatures, the matrix measure

method is utilized to study quasi-synchronization in
this paper, which simplifies the analysis process and
reduces the conservativeness of the conclusion.

The remainder of this paper is organized as fol-
lows. In Section 2, some notations and preliminar-
ies are given. The model formulation and main re-
sults are presented in Section 3 and 4. In Section 5,
three numerical examples are given to demonstrate
the effectiveness of the main results. Finally, con-
clusions are drawn in Section 6.

Notations. Throughout this paper, Rn denotes
the n-dimensional Euclidean space. The superscript
T denotes vector transposition. Rn×n is the set of all
n× n real matrices. In is the identity matrix of or-
der n. sign(·) is the sign function. C(1)([−τ,0],Rn)
denotes the family of continuous functions from
[−τ,0] to Rn.

2 Preliminaries

Consider the model of inertial memristive neu-
ral network consisting of n nodes

d2si(t)
dt2 =−di

dsi(t)
dt

− cisi(t)+
n

∑
j=1

ai j(si(t)) f j(s j(t))

+
n

∑
j=1

bi j(si(t)) f j(s j(t − τ(t)))+ Ii,

i = 1, · · · ,n

where si(t) denotes the state vector of the ith neu-
ron. di > 0, ci > 0 are positive constants. The sec-
ond derivative of si(t) represents the inertial term.
The nonlinear function fi stands for the activation
function for the ith neuron. Ii is the external input of
the system. τ(t) is the time-varying delay that sat-
isfies 0 ≤ τ(t)≤ τ, τ̇(t) ≤ θ < 1, where τ and θ are
constants. According to the character of a memris-
tor, the connecting weights ai j(si(t)) and bi j(si(t))
represent the non-delayed and delayed memristive
synaptic connection weights, respectively, and

ai j(si(t)) =
Wai j(s j(t))sgni j

Ci
,

bi j(si(t)) =
Wbi j(s j(t))sgni j

Ci
,

sgni j =

{
1, i = j,
−1, i ̸= j,

(1)

where Wai j(x j(t)) and Wbi j(x j(t)) denote the mem-
ductances of memristors Mai j and Mbi j, respec-
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tively. Mai j represents the memristor between the
feedback function f j(s j(t)) and si(t), Mbi j repre-
sents the memristor between the feedback function
f j(s j(t −τ(t))) and si(t). The capacitor Ci is invari-
ant while memductances of memristors Wai j(x j(t))
and Wbi j(x j(t)) respond to change in pinched hys-
teresis loops. Hence, ai j(si(t)) and bi j(si(t)) will
change. According to the feature of memristor and
current-voltage characteristics, we consider a gen-
eral mathematical model of the memristances as
follows

ai j(si(t)) =
{

âi j, |si(t)| ≤ Ti,
ǎi j, |si(t)|> Ti,

bi j(si(t)) =
{

b̂i j, |si(t)| ≤ Ti,

b̌i j, |si(t)|> Ti,

(2)

for i, j = 1,2, · · ·n, where âi j, ǎi j, b̂i j, b̌i j are known
constants with respect to memristances. The initial
value associated with system (1) is

si(ω) = Φi(ω),
dsi(ω)

dω
= Ψi(ω), −τ ≤ ω ≤ 0,

where Φi(ω),Ψi(ω) ∈ C(1)([−τ,0],Rn), i =
1, · · · ,n. The following assumptions are necessary
for the main results of this paper.

Assumption 2.1 For all x,y ∈ R,x ̸= y, the neural
activation function fi(·) satisfies

| fi(x)− fi(y)| ≤ li|x− y|, i = 1, · · · ,n,

where li are known constants.

Assumption 2.2 There exists constants Mi

s.t.| fi(z)| ≤ Mi,∀z ∈ R, i = 1 . . .n.

Based on the theories of set-valued maps and dif-
ferential inclusions, the model (1) with initial val-
ues can be described by the following differential
inclusion

d2si(t)
dt2 +di

dsi(t)
dt

∈− cisi(t)+
n

∑
j=1

co[ai j,ai j] f j(s j(t))

+
n

∑
j=1

co[bi j,bi j] f j(s j(t − τ(t)))

+ Ii, (3)

where ai j = min{âi j, ǎi j},ai j = max{âi j, ǎi j},bi j =

min{b̂i j, b̌i j},bi j = max{b̂i j, b̌i j},

co[ai j,ai j] =





âi j, |si(t)|< Ti,
[ai j,ai j], |si(t)|= Ti,

ǎi j, |si(t)|> Ti,

co[bi j,bi j] =





b̂i j, |si(t)|< Ti,

[bi j,bi j], |si(t)|= Ti,

b̌i j, |si(t)|> Ti,

(4)

or equivalently, for i, j = 1,2, · · ·n, there exists
ãi j(si(t)) ∈ co[ai j,ai j], b̃i j(si(t)) ∈ co[bi j,bi j] such
that

d2si(t)
dt2 +di

dsi(t)
dt

=− cisi(t)+
n

∑
j=1

ãi j(si(t)) f j(s j(t))

+
n

∑
j=1

b̃i j(si(t)) f j(s j(t − τ(t)))

+ Ii. (5)

Next, by introducing the following variable trans-
formation

pi(t) = si(t),qi(t) =
dsi(t)

dt
+ si(t),

system (5) can be transformed into the first-order
form




ṗi(t) =− pi(t)+qi(t),

q̇i(t) =(−1+di − ci)pi(t)+(1−di)qi(t)

+
n

∑
j=1

ãi j(pi(t)) f j(p j(t))

+
n

∑
j=1

b̃i j(pi(t)) f j(p j(t − τ(t)))+ Ii,

(6)

with initial conditions
{

pi(s) =ϕi(s),

qi(s) =ϕi(s)+ψi(s),
(7)

where −τ ≤ s ≤ 0, i = 1, · · · ,n.
By letting p(t) = (p1(t), p2(t), · · · , pn(t))T ,q(t) =
(q1(t),q2(t), · · · ,qn(t))T , system (6) can be written
as the following compact form




ṗ(t) =− p(t)+q(t),

q̇(t) =(−In +D−C)p(t)+(In −D)q(t)

+ Ã(p(t)) f (p(t))

+ B̃(p(t)) f (p(t − τ(t)))+ I,

(8)
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where D = diag{d1, · · · ,dn}, C = diag{c1, · · ·cn},
Ã(p(t))= (ãi j(pi(t)))n×n, B̃(p(t))= (b̃i j(pi(t)))n×n.
Define the corresponding response system for (1)

d2xi(t)
dt2 =−di

dxi(t)
dt

− cixi(t)+
n

∑
j=1

ai j(xi) f j(x j(t))

+
n

∑
j=1

bi j(xi(t)) f j(x j(t − τ(t)))+ Ii +ui(t),

i = 1, · · · ,n (9)

Applying the following variable transformation

yi(t) = xi(t),zi(t) =
dxi(t)

dt
+ xi(t),

the response system can be written as




ẏ(t) =− y(t)+ z(t),

ż(t) =(−In +D−C)y(t)+(In −D)z(t)

+ Ã(y(t)) f (y(t))

+ B̃(y(t)) f (y(t − τ(t)))+ I +u(t),

(10)

where y(t) = [y1(t), · · · ,yn(t)]T ,z(t) = [z1(t), · · · ,
zn(t)]T are state variable of the response system,
u(t) ∈ Rn is input control to be designed later.
Ã(y(t)) = (ãi j(yi(t)))n×n, B̃(y(t)) = (b̃i j(yi(t)))n×n.
The parameters of the response system are given as

ai j(yi(t)) =
{

âi j, |yi(t)| ≤ Ti,
ǎi j, |yi(t)|> Ti,

bi j(yi(t)) =
{

b̂i j, |yi(t)| ≤ Ti,

b̌i j, |yi(t)|> Ti.

(11)

By letting the synchronization error e1(t) = y(t)−
p(t),e2(t) = z(t)− q(t), one can derive the follow-
ing error system



ė1(t) =− e1(t)+ e2(t),

ė2(t) =(−In +D−C)e1(t)+(In −D)e2(t)

+ Ã(y(t)) f (y(t))+ B̃(y(t)) f (y(t − τ(t)))
− Ã(p(t)) f (p(t))− B̃(p(t)) f (p(t − τ(t)))
+u(t).

(12)

3 Definition and Lemmas

In this Section, some elementary notations and
lemmas are introduced which play an important role
in the proof of the main results.

Definition 1 ([27]) Suppose E ⊆Rn, then x �→F(x)
is called a set-valued map from E �→ Rn, if for each
point x ∈ E, there exists a nonempty set F(x)⊆ Rn.
A set-valued map F with nonempty values is said to
be upper semicontinuous at x0 ∈ E, if for any open
set N containing F(x0), there exists a neighbour-
hood M of x0 such that F(M)⊆ N. The map F(x) is
said to have a closed image if for each x ∈ E, F(x)
is closed.

Definition 2 ([27]) For the system dx/dt = f (t,x),
x ∈ Rn, with discontinuous right-hand sides, a set-
valued map is defined as

F(t,x) = ∩δ>0 ∩µ(N)=0 co[ f (B(x,δ)\N)],

where co[E] is the closure of the convex hull of
set E, B(x,δ) = {y : ∥y− x∥ ≤ δ}, and µ(N) is the
Lebesgue measure of set N. A solution in Filippov’s
sense of the Cauchy problem for this system with
initial condition x(0) = x0 is an absolutely continu-
ous function x(t), t ∈ [0,T ], which satisfies the dif-
ferential inclusion

dx
dt

∈ F(t,x), t ∈ [0,T ].

Definition 3 ([22])Suppose W = (ωi j)n×n is a real
matrix, then the matrix measure of W is designed as
follows

µp(W ) = limh→0
∥In +hW∥p −1

h
,

where ∥ · ∥p is the induced matrix norm, In is an
identity matrix, p = 1,2,∞.
For x ∈ Rn, the vector norm are defined as

∥x∥1 =
n

∑
i=1

|xi|,∥x∥2 =

√
n

∑
i=1

x2
i ,∥x∥∞ = max

1≤i≤n
|xi|.

For matrix W ∈ Rn×n, the matrix norm are defined
as

∥W∥1 = max
j

n

∑
i=1

|ωi j|, ∥W∥2 =
√

λmax(W TW ),

∥W∥∞ = maxi
n
∑
j=1

|ωi j|.

For p = 1,2,∞, the matrix measure can be calcu-
lated as
µ1(W ) = max j{ω j j +

n
∑

i=1,i̸= j
|ωi j|},

µ2(W ) = λmax(
W T+W

2 ),

µ∞(W ) = maxi{ωii +
n
∑

j=1,i̸= j
|ωi j|}.



273Ruoyu Wei, Jinde Cao

where D = diag{d1, · · · ,dn}, C = diag{c1, · · ·cn},
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ż(t) =(−In +D−C)y(t)+(In −D)z(t)
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Definition 4 The drive-response systems (8) and
(10) are said to be globally exponential synchro-
nized if there exists constants A ≥ 0,β > 0 such that
the condition

∥e(t)∥1 ≤ Ae−βt sup
−τ≤s≤0

∥e(s)∥1

holds for all t ≥ 0, where e(t) = (eT
1 (t),e

T
2 (t))

T .

Lemma 1 ([28]) For any real vectors x,y ∈ Rn, the
following inequality holds

2xT y ≤ xT x+ yT y.

Lemma 2 (Generalized Hanalay Inequality
[25])If the nonnegative function u(t) satisfies
D+u(t) ≤ γ(t) + α(t)u(t) + β(t)supt−τ≤s≤tu(s),
t ∈ [t0,+∞),
where the continuous functions γ(t) ≥ 0,α(t) ≤ 0,
and β(t) ≥ 0, if there exists constant δ to make the
following inequality holds

α(t)+β(t)≤−δ < 0, t ∈ [t0,+∞),

then we have

u(t)≤ γ∗

δ
+ supt−τ≤s≤tu(s)e−µ∗(t−t0),

where γ∗ = supt∈[t0,+∞)γ(t),µ∗ = in ft≥t0{µ(t) :
µ(t)+α(t)+β(t)eµ(t)τ(t) = 0}.

4 Main Results

4.1 Exponential Synchronization

Constructing the following state feedback con-
troller

u(t) =−K1e2(t)−K2sgn(e2(t))

−K3sgn(e2(t))|e1(t)|
−K4sgn(e2(t))|e1(t − τ(t))|, (13)

where K1,K2,K3,K4 are diagonal positive definite
matrix.
For convenience, the following notation is given,
where matrix Ā, B̄, Á, À, B́, B̀ ∈ Rn×n.

Ā = (max{|âi j|, |ǎi j|})i j, B̄ = (max{|b̂i j|, |b̌i j|})i j,

Á = (max{âi j, ǎi j})i j, À = (min{âi j, ǎi j})i j,

B́ = (max{b̂i j, b̌i j})i j, B̀ = (min{b̂i j, b̌i j})i j.

Theorem 3 Under Assumption 2.1 and 2.2, the
drive-response system (8) and (10) will reach global
exponential synchronization with the convergence
rate β > 0 if the following conditions hold





|− In +D−C|− In + ĀL−K3 +βIn ≤ 0

|In −D|+ In −K1 +βIn ≤ 0

B̄L−K4 ≤ 0

(Á− À)M+(B́− B̀)M−K21 ≤ 0,

where matrix | − In +D−C| is obtained by taking
absolute value of each elements of matrix (−In +
D−C). 1 denotes the vector (1,1, · · · ,1)T ∈ Rn.

Proof. Choose a Lyapunov functional as

V (t) = ∥e(t)∥1 = Σn
i=1|e1i(t)|+Σn

i=1|e2i(t)|,

where e(t) = (eT
1 (t),e

T
2 (t))

T .
Taking the derivative of V (t) with respect to t along
the trajectory of the error system (12) yields

V̇ (t) =sgn(eT
1 (t))ė1(t)+ sgn(eT

2 (t))ė2(t)

≤sgn(eT
1 (t))[−e1(t)+ e2(t)]+ sgn(eT

2 (t))

[(−In +D−C)e1(t)+(In −D)e2(t)]

+ sgn(eT
2 (t))[Ã(y(t)) f (y(t))− Ã(p(t)) f (p(t))

+ B̃(y(t)) f (y(t − τ(t)))− B̃(p(t)) f (p(t − τ(t)))]
+ sgn(eT

2 (t))[−K1e2(t)−K2sgn(e2(t))

−K3sgn(e2(t))|e1(t)|−K4sgn(e2(t))|e1(t − τ(t))|]
≤1T (|− In +D−C|− In)|e1(t)|
+1T (|In −D|+ In)|e2(t)|
+ sgn(eT

2 (t))[Ã(y(t)) f (y(t))− Ã(p(t)) f (p(t))

+ B̃(y(t)) f (y(t − τ(t)))− B̃(p(t)) f (p(t − τ(t)))]
+ sgn(eT

2 (t))[−K1e2(t)−K2sgn(e2(t))

−K3sgn(e2(t))|e1(t)|
−K4sgn(e2(t))|e1(t − τ(t))|].

(14)

According to Assumption 2.1, 2.2 and Lemma 1,
one has

sgn(eT
2 (t))[Ã(y(t)) f (y(t))− Ã(p(t)) f (p(t))]

=sgn(eT
2 (t))Ã(y(t))[ f (y(t))− f (p(t))]

+ sgn(eT
2 (t))[Ã(y(t))− Ã(p(t))] f (p(t))

≤1T ĀL|e1(t)|+1T (Á− À)M,

(15)
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sgn(eT
2 (t))[B̃(y(t)) f (y(t − τ(t)))

− B̃(p(t)) f (p(t − τ(t)))]
≤1T B̄L|e1(t − τ(t))|+1T (B́− B̀)M

(16)

where L = diag{l1, l2 . . . ln}, M = (M1,M2 . . .Mn)
T ,

|e2(t)|= (|e21(t)|, |e22(t)| . . . |e2n(t)|)T .
Thus, it follows that

V̇ (t)+βV (t)

≤1T (|− In +D−C|− In + ĀL−K3 +β)|e1(t)|
+1T (|In −D|+ In −K1 +β)|e2(t)|
+1T (B̄L−K4)|e1(t − τ(t))|
+1T [(Á− À)M+(B́− B̀)M−K21]. (17)

For the purpose of V̇ (t)≤ 0, we can let




|− In +D−C|− In + ĀL−K3 +βIn ≤ 0

|In −D|+ In −K1 +βIn ≤ 0

B̄L−K4 ≤ 0

(Á− À)M+(B́− B̀)M−K21 ≤ 0

It follows that

V̇ (t)+βV (t)≤ 0,

thus, we have 1
2∥e(t)∥1 = V (t) ≤ V (0)e−βt ≤

1
2 e−βt sup−τ≤s≤0 ∥e(s)∥1. According to Definition 4,
the drive-response system (8) and (10) will achieve
global exponential synchronization under controller
(13).

Remark 4.1 In conventional state feedback con-
trol, the control goal can be achieved. However,
the obtained control gains may be much larger than
actual needs, which will increase the cost of con-
trol. To overcome this drawback, the adaptive con-
trol method is investigated.

For convenience of discussion, we consider the fol-
lowing error system.



ė1i(t) =− e1i(t)+ e2i(t),

ė2i(t) =(−1+di − ci)e1i(t)+(1−di)e2i(t)

+Σn
i=1ãi j(yi(t)) f j(y j(t))

−Σn
i=1ãi j(pi(t)) f j(p j(t))

+Σn
i=1b̃i j(yi(t)) f j(y j(t − τ(t)))

−Σn
i=1b̃(pi(t)) f j(p j(t − τ(t)))+ui(t)

(18)

Theorem 4 Under Assumption 2.1 and 2.2, the
drive-response system (8) and (10) will reach global
exponential synchronization with the convergence
rate β > 0 under the adaptive controller





ui(t) =−k1i(t)e2i(t)− k2i(t)sgn(e2i(t))

− k3i(t)sgn(e2i(t))|e1i(t)|
− k4i(t)sgn(e2i(t))|e1i(t − τ(t))|,
k̇1i(t) = εieβt |e2i(t)|,
k̇2i(t) = ξieβt ,

k̇3i(t) = γieβt |e1i(t)|,
k̇4i(t) = ηieβt |e1i(t − τ(t))|,

(19)

where i = 1,2, · · · ,n, εi,ξi,γi,ηi are positive con-
stants, the initial value of k1i(t),k2i(t),k3i(t),k4i(t)
are some small positive constants.

Proof. Choose the Lyapunov functional as

V (t) =V1(t)+V2(t),

where

V1(t) = eβtΣn
i=1(|e1i(t)|+ |e2i(t)|),

V2(t) =Σn
i=1

1
2εi

(k1i(t)− k1i)
2 +Σn

i=1
1

2ξi
(k2i(t)− k2i)

2

+Σn
i=1

1
2γi

(k3i(t)− k3i)
2 +Σn

i=1
1

2ηi
(k4i(t)− k4i)

2

where k1i,k2i,k3i,k4i are positive constants to be de-
termined later.

Taking the derivative of V (t) with respect to t
along the trajectory of the error system (18) yields
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sgn(eT
2 (t))[B̃(y(t)) f (y(t − τ(t)))

− B̃(p(t)) f (p(t − τ(t)))]
≤1T B̄L|e1(t − τ(t))|+1T (B́− B̀)M

(16)

where L = diag{l1, l2 . . . ln}, M = (M1,M2 . . .Mn)
T ,

|e2(t)|= (|e21(t)|, |e22(t)| . . . |e2n(t)|)T .
Thus, it follows that

V̇ (t)+βV (t)

≤1T (|− In +D−C|− In + ĀL−K3 +β)|e1(t)|
+1T (|In −D|+ In −K1 +β)|e2(t)|
+1T (B̄L−K4)|e1(t − τ(t))|
+1T [(Á− À)M+(B́− B̀)M−K21]. (17)

For the purpose of V̇ (t)≤ 0, we can let



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B̄L−K4 ≤ 0

(Á− À)M+(B́− B̀)M−K21 ≤ 0

It follows that

V̇ (t)+βV (t)≤ 0,

thus, we have 1
2∥e(t)∥1 = V (t) ≤ V (0)e−βt ≤

1
2 e−βt sup−τ≤s≤0 ∥e(s)∥1. According to Definition 4,
the drive-response system (8) and (10) will achieve
global exponential synchronization under controller
(13).

Remark 4.1 In conventional state feedback con-
trol, the control goal can be achieved. However,
the obtained control gains may be much larger than
actual needs, which will increase the cost of con-
trol. To overcome this drawback, the adaptive con-
trol method is investigated.

For convenience of discussion, we consider the fol-
lowing error system.


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ė2i(t) =(−1+di − ci)e1i(t)+(1−di)e2i(t)

+Σn
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i=1ãi j(pi(t)) f j(p j(t))

+Σn
i=1b̃i j(yi(t)) f j(y j(t − τ(t)))

−Σn
i=1b̃(pi(t)) f j(p j(t − τ(t)))+ui(t)

(18)

Theorem 4 Under Assumption 2.1 and 2.2, the
drive-response system (8) and (10) will reach global
exponential synchronization with the convergence
rate β > 0 under the adaptive controller





ui(t) =−k1i(t)e2i(t)− k2i(t)sgn(e2i(t))

− k3i(t)sgn(e2i(t))|e1i(t)|
− k4i(t)sgn(e2i(t))|e1i(t − τ(t))|,
k̇1i(t) = εieβt |e2i(t)|,
k̇2i(t) = ξieβt ,

k̇3i(t) = γieβt |e1i(t)|,
k̇4i(t) = ηieβt |e1i(t − τ(t))|,

(19)

where i = 1,2, · · · ,n, εi,ξi,γi,ηi are positive con-
stants, the initial value of k1i(t),k2i(t),k3i(t),k4i(t)
are some small positive constants.

Proof. Choose the Lyapunov functional as

V (t) =V1(t)+V2(t),

where

V1(t) = eβtΣn
i=1(|e1i(t)|+ |e2i(t)|),

V2(t) =Σn
i=1

1
2εi

(k1i(t)− k1i)
2 +Σn

i=1
1

2ξi
(k2i(t)− k2i)

2

+Σn
i=1

1
2γi

(k3i(t)− k3i)
2 +Σn

i=1
1

2ηi
(k4i(t)− k4i)

2

where k1i,k2i,k3i,k4i are positive constants to be de-
termined later.

Taking the derivative of V (t) with respect to t
along the trajectory of the error system (18) yields
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V̇1(t) =βeβtΣn
i=1(|e1i(t)|+ |e2i(t)|)

+ eβtΣn
i=1(sgn(e1i(t))ė1i(t)+ sgn(e2i(t))ė2i(t))

≤βeβtΣn
i=1(|e1i(t)|+ |e2i(t)|)

+ eβtΣn
i=1sgn(e1i(t)(−e1i(t)+ e2i(t))

+ eβtΣn
i=1sgn(e2i(t)[(−1+di − ci)e1i(t)

+(1−di)e2i(t)]+ eβtΣn
i=1sgn(e2i(t))·

Σn
j=1[ãi j(yi) f j(y j(t))− ãi j(pi) f j(p j(t))

+ b̃i j(yi) f j(y j(t − τ(t)))− b̃i j(pi) f j(p j(t − τ(t)))]

+ eβtΣn
i=1sgn(e2i(t))[−k1i(t)e2i(t)

− k2i(t)sgn(e2i(t))− k3i(t)sgn(e2i(t))|e1i(t)|
− k4i(t)sgn(e2i(t))|e1i(t − τ(t))|]

=eβtΣn
i=1[β−1+ |−1+di − ci|

+Σn
j=1ā jili − k3i(t)]|e1i(t)|

+ eβtΣn
i=1[β+1+ |1−di|− k1i(t)]|e2i(t)|

+ eβtΣn
i=1[−k4i(t)+Σn

j=1b̄ jili]|e1i(t − τ(t))|

+ eβtΣn
i=1[−k2i(t)+Σn

j=1(âi j − ăi j

+ b̂i j − b̆i j)M j] (20)

V̇2(t) =eβtΣn
i=1(k1i(t)− k1i)|e2i(t)|+ eβtΣn

i=1(k2i(t)

− k2i)+ eβtΣn
i=1(k3i(t)− k3i)|e1i(t)|

+ eβtΣn
i=1(k4i(t)− k4i)|e1i(t − τ(t))| (21)

Therefore,

V̇ (t)≤eβtΣn
i=1[β−1+ |−1+di − ci|+Σn

j=1ā jili

− k3i]|e1i(t)|+ eβtΣn
i=1[β+1+ |1−di|

− k1i]|e2i(t)|+ eβtΣn
i=1[−k4i +Σn

j=1b̄ jili]

· |e1i(t − τ(t))|+ eβtΣn
i=1[−k2i

+Σn
j=1(âi j − ăi j + b̂i j − b̆i j)M j] (22)

Now, choose parameters as




k1i = β+1+ |1−di|,
k2i = Σn

j=1(âi j − ăi j + b̂i j − b̆i j)M j,

k3i = β−1+ |−1+di − ci|+Σn
j=1ā jili,

k4i = Σn
j=1b̄ jili.

(23)

It follows that V̇ (t)≤ 0. Thus, eβt∥e(t)∥1 =V (t)≤

V (0) = ∥e(0)∥1+≤ sup−τ≤s≤0 ∥e(s)∥1.

V (0) =∥e(0)∥1 +Σn
i=1

1
2εi

(k1i(0)− k1i)
2

+Σn
i=1

1
2ξi

(k2i(0)− k2i)
2 +Σn

i=1
1

2γi
(k3i(0)

− k3i)
2 +Σn

i=1
1

2ηi
(k4i(0)− k4i)

2 (24)

If sup−τ≤s≤0 ∥e(s)∥1 ̸= 0, then there exists positive
constants ρ such that

Σn
i=1

1
2εi

(k1i(0)− k1i)
2 +Σn

i=1
1

2ξi
(k2i(0)− k2i)

2

+Σn
i=1

1
2γi

(k3i(0)− k3i)
2 +Σn

i=1
1

2ηi
(k4i(0)− k4i)

2

≤ρ sup
−τ≤s≤0

∥e(s)∥1

Therefore, ∥e(t)∥1 ≤ e−βt(1+ρ)sup−τ≤s≤0 ∥e(s)∥1.
According to Definition 4, the drive-response sys-
tem (8) and (10) will achieve global exponential
synchronization under adaptive controller (19).

Remark 4.2 It is well known that the sign function
in controller (19) will introduce chattering effects to
system state. To weaken the chattering effects, the
following saturation functions can be employed to
replace the sign function sgn(e2i(t)).

sat(e2i(t)) =




1,
e2i(t)

σ
≥ 1,

−1,
e2i(t)

σ
≤−1,

e2i(t)
σ

, otherwise

(25)

where i = 1,2, · · · ,n, and σ is a small positive con-
stant.

4.2 Quasi-Synchronization

For the system with unmatched parameters,
synchronization will not tend to zero as time goes to
infinity, so completely synchronization can not be
achieved. However, by designing appropriate con-
trol input, the synchronization error can be made
into an arbitrarily small range as time tend to infin-
ity to satisfy our needs. This phenomenon is called
the quasi-synchronization. Consider the following
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inertial memristive neural network

d2si(t)
dt2 =−di

dsi(t)
dt

− cisi(t)+
n

∑
j=1

ai j(si(t)) f j(s j(t))

+
n

∑
j=1

bi j(si(t)) f j(s j(t − τ(t)))+ Ii,

(26)

where

ai j(si(t)) =
{

âi j, |si(t)| ≤ Ti,
ǎi j, |si(t)|> Ti,

bi j(si(t)) =
{

b̂i j, |si(t)| ≤ Ti,

b̌i j, |si(t)|> Ti.

(27)

Due to the parameter mismatch, the response sys-
tem is given as

d2xi(t)
dt2 =−di

dxi(t)
dt

− cixi(t)+
n

∑
j=1

a∗i j(xi(t)) f j(x j(t))

+
n

∑
j=1

b∗i j(xi(t)) f j(x j(t − τ(t)))+ Ii +ui(t),

(28)

where

a∗i j(xi(t)) =
{

â∗i j, |xi(t)| ≤ Ti,

ǎ∗i j, |xi(t)|> Ti,

b∗i j(xi(t)) =
{

b̂∗i j, |xi(t)| ≤ Ti,

b̌∗i j, |xi(t)|> Ti

(29)

According to the previous discussion, the drive-
response system (26) and (28) can be transformed
into the following second-order system




ṗ(t) =− p(t)+q(t),

q̇(t) =(−In +D−C)p(t)+(In −D)q(t)

+ Ã f (p(t))+ B̃ f (p(t − τ(t)))+ I.

(30)




ẏ(t) =− y(t)+ z(t),

ż(t) =(−In +D−C)y(t)+(In −D)z(t)

+ Ã∗ f (y(t))+ B̃∗ f (y(t − τ(t)))
+ I +u(t),

(31)

where Ã = (ãi j(pi(t)))n×n, B̃ = (b̃i j(pi(t)))n×n,
Ã∗ = (ã∗i j(yi(t)))n×n, B̃∗ = (b̃∗i j(yi(t)))n×n.
By letting e1(t)= y(t)− p(t),e2(t)= z(t)−q(t), the

following error system is achieved




ė1(t) =− e1(t)+ e2(t),

ė2(t) =(−In +D−C)e1(t)+(In −D)e2(t)

+ Ã∗ f (y(t))+ B̃∗ f (y(t − τ(t)))
− Ã f (p(t))− B̃ f (p(t − τ(t)))+u(t).

(32)

Define e(t) = (e1(t),e2(t))T , the error system (32)
can be written as

ė(t) = Ge(t)+




0
Ã∗ f (y(t))− Ã f (p(t))
+B̃∗ f (y(t − τ(t)))

−B̃ f (p(t − τ(t)))+u(t)


 .

By designing the following state feedback con-
troller

u(t) =−K2e2(t),

where K2 = diag(k1 · · ·kn) ∈ Rn×n, we get the error
system as follows

ė(t)=Ge(t)+




0
Ã∗ f (y(t))− Ã f (p(t))
+B̃∗ f (y(t − τ(t)))
−B̃ f (p(t − τ(t)))


−Ke(t),

where G =

(
−In In

−In +D−C In −D

)
, K =

diag(0 · · ·0,k1 · · ·kn) ∈ R2n×2n.

According to the switching character of mem-
ristor, Each of Ã, Ã∗, B̃, B̃∗ has 2n possible values.
For the convenience of following discussion, we
make some notations as follows
∥A∗∥p = max{∥Ã∗∥p},∥B∗∥p = max{∥B̃∗∥p},
∥∆A∥p = max{∥Ã∗ − Ã∥p},∥∆B∥p = max{∥B̃∗ −
B̃∥p}, p = 1,2,∞.

The following assumptions can be directly
achieved from Assumption 2.1 and Assumption 2.2

Assumption 4.1 There exists positive constant l p

(p = 1,2,∞) such that

∥ f (s1)− f (s2)∥p ≤ l p∥s1 − s2∥p,∀s1,s2 ∈ Rn.

Assumption 4.2 There exists positive constants
Mp > 0 such that ∥ f (·)∥p ≤ Mp, p = 1,2,∞.

Theorem 5 Under Assumption 4.1 and 4.2, if the
following inequality holds

µp(G−K)+ l p∥A∗∥p + l p∥B∗∥p ≤−δ < 0,
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d2si(t)
dt2 =−di

dsi(t)
dt

− cisi(t)+
n

∑
j=1

ai j(si(t)) f j(s j(t))

+
n

∑
j=1

bi j(si(t)) f j(s j(t − τ(t)))+ Ii,

(26)

where

ai j(si(t)) =
{

âi j, |si(t)| ≤ Ti,
ǎi j, |si(t)|> Ti,

bi j(si(t)) =
{

b̂i j, |si(t)| ≤ Ti,

b̌i j, |si(t)|> Ti.

(27)

Due to the parameter mismatch, the response sys-
tem is given as

d2xi(t)
dt2 =−di

dxi(t)
dt

− cixi(t)+
n

∑
j=1

a∗i j(xi(t)) f j(x j(t))

+
n

∑
j=1

b∗i j(xi(t)) f j(x j(t − τ(t)))+ Ii +ui(t),

(28)

where

a∗i j(xi(t)) =
{

â∗i j, |xi(t)| ≤ Ti,

ǎ∗i j, |xi(t)|> Ti,

b∗i j(xi(t)) =
{

b̂∗i j, |xi(t)| ≤ Ti,

b̌∗i j, |xi(t)|> Ti

(29)

According to the previous discussion, the drive-
response system (26) and (28) can be transformed
into the following second-order system




ṗ(t) =− p(t)+q(t),

q̇(t) =(−In +D−C)p(t)+(In −D)q(t)

+ Ã f (p(t))+ B̃ f (p(t − τ(t)))+ I.

(30)




ẏ(t) =− y(t)+ z(t),

ż(t) =(−In +D−C)y(t)+(In −D)z(t)

+ Ã∗ f (y(t))+ B̃∗ f (y(t − τ(t)))
+ I +u(t),

(31)

where Ã = (ãi j(pi(t)))n×n, B̃ = (b̃i j(pi(t)))n×n,
Ã∗ = (ã∗i j(yi(t)))n×n, B̃∗ = (b̃∗i j(yi(t)))n×n.
By letting e1(t)= y(t)− p(t),e2(t)= z(t)−q(t), the

following error system is achieved




ė1(t) =− e1(t)+ e2(t),

ė2(t) =(−In +D−C)e1(t)+(In −D)e2(t)

+ Ã∗ f (y(t))+ B̃∗ f (y(t − τ(t)))
− Ã f (p(t))− B̃ f (p(t − τ(t)))+u(t).

(32)

Define e(t) = (e1(t),e2(t))T , the error system (32)
can be written as

ė(t) = Ge(t)+




0
Ã∗ f (y(t))− Ã f (p(t))
+B̃∗ f (y(t − τ(t)))

−B̃ f (p(t − τ(t)))+u(t)


 .

By designing the following state feedback con-
troller

u(t) =−K2e2(t),

where K2 = diag(k1 · · ·kn) ∈ Rn×n, we get the error
system as follows

ė(t)=Ge(t)+




0
Ã∗ f (y(t))− Ã f (p(t))
+B̃∗ f (y(t − τ(t)))
−B̃ f (p(t − τ(t)))


−Ke(t),

where G =

(
−In In

−In +D−C In −D

)
, K =

diag(0 · · ·0,k1 · · ·kn) ∈ R2n×2n.

According to the switching character of mem-
ristor, Each of Ã, Ã∗, B̃, B̃∗ has 2n possible values.
For the convenience of following discussion, we
make some notations as follows
∥A∗∥p = max{∥Ã∗∥p},∥B∗∥p = max{∥B̃∗∥p},
∥∆A∥p = max{∥Ã∗ − Ã∥p},∥∆B∥p = max{∥B̃∗ −
B̃∥p}, p = 1,2,∞.

The following assumptions can be directly
achieved from Assumption 2.1 and Assumption 2.2

Assumption 4.1 There exists positive constant l p

(p = 1,2,∞) such that

∥ f (s1)− f (s2)∥p ≤ l p∥s1 − s2∥p,∀s1,s2 ∈ Rn.

Assumption 4.2 There exists positive constants
Mp > 0 such that ∥ f (·)∥p ≤ Mp, p = 1,2,∞.

Theorem 5 Under Assumption 4.1 and 4.2, if the
following inequality holds

µp(G−K)+ l p∥A∗∥p + l p∥B∗∥p ≤−δ < 0,

SYNCHRONIZATION ANALYSIS OF . . .

Then, the synchronization error converges to the
following set

M = {e(t) ∈ Rn|∥e(t)∥p ≤ γ∗/δ},

where γ∗ = supt≥0{Mp(∥∆A∥p+∥∆B∥p)}<∞, p=
1,2,∞. It means that drive system (30) and response
system (31) achieve quasi-synchronization with an
error level γ∗/δ.

Proof. Consider the following Lyapunov functional

V (t) = ∥e(t)∥p, p = 1,2,∞,

Taking the derivative of V (t) with respect to t along
the trajectory of the error system (32) yields

D+V (t) =limh→0+
∥e(t +h)∥p −∥e(t)∥p

h

=limh→0+
∥e(t)+hė(t)+o(h)∥p −∥e(t)∥p

h

=limh→0+
1
h
{∥e(t)

+h




0
Ã∗ f (y(t))− Ã f (p(t))
+B̃∗ f (y(t − τ(t)))
−B̃ f (p(t − τ(t)))




+hGe(t)−hKe(t)+o(h)∥p −∥e(t)∥p}

≤limh→0+
1
h
{∥I2n +h(G−K)∥p −1}∥e(t)∥p

+∥Ã∗ f (y(t))− Ã f (p(t))∥p

+∥B̃∗ f (y(t − τ(t)))− B̃ f (p(t − τ(t))∥p

≤µp(G−K)∥e(t)∥p + l p∥Ã∗∥p∥e1(t)∥p

+∥(Ã∗ − Ã)∥p∥ f (p(t))∥p

+ l p∥B̃∗∥p∥e1(t − τ(t))∥p

+∥(B̃∗ − B̃)∥p∥ f (p(t − τ(t)))∥p

≤µp(G−K)∥e(t)∥p + l p∥Ã∗∥p∥e(t)∥p

+ l p∥B̃∗∥p∥e(t − τ(t))∥p

+∥(Ã∗ − Ã)∥p∥ f (p(t))∥p

+∥(B̃∗ − B̃)∥p∥ f (p(t − τ(t)))∥p

≤(µp(G−K)+ l p∥A∗∥p)∥e(t)∥p

+ l p∥B∗∥p sup
t−τ≤s≤t

∥e(s)∥p

+∥∆A∥pMp +∥∆B∥pMp. (33)

Let α(t) = µp(G−K)+ l p∥A∗∥p, β(t) = l p∥B∗∥p,
γ(t) = ∥∆A∥pMp +∥∆B∥pMp, we can get that

D+V (t)≤ γ(t)+α(t)V (t)+β(t)supt−τ≤s≤tV (s).

According to the condition of Theorem 5, we have
α(t)+β(t) ≤ −δ < 0. Using Lemma 2, it follows
that

∥e(t)∥p ≤
γ∗

δ
+ sup−τ≤s≤0∥e(s)∥pe−µ∗t ,

where µ∗ = in ft≥0{µ(t) : µ(t)+α(t)+ β(t)eµ(t)τ =
0} > 0. When t → ∞, sup−τ≤s≤0∥e(s)∥pe−µ∗t → 0.
Therefore, the system error converges to the set
M = {e(t) ∈ Rn|∥e(t)∥p ≤ γ∗/δ}, which can be ar-
bitrarily small by letting δ be sufficiently large.
According to above discussion, systems (30) and
(31) reach quasi-synchronization with an error level
γ∗/δ.

Remark 4.3 In Theorem (5), the synchronization
error γ∗/δ will not tend to 0 as t → ∞. However, it
can be made into an arbitrarily small range by let-
ting elements in control gain matrix K sufficiently
large. Though weaker than complete synchroniza-
tion, quasi-synchronization has its advantage and
it can be widely applied in practical applications
due to its lower costs. Besides, in many real situ-
ations, we only need the synchronization error be
controlled in an acceptable region instead of tend-
ing to 0.

Remark 4.4 The matrix measure approach has the
following advantages: firstly, we do not need to
construct Lyapunov functional. Secondly, the ef-
fects of positive values and negative values of the
matrix can be trade off by matrix measure method.
It is more powerful when dealing with the case when
the connection weights contain both positive and
negative values, which corresponds to the excita-
tion and inhibition in neurons, respectively.

5 Numerical examples

In order to show the effectiveness of the theoret-
ical results, the following numerical examples are
given. Firstly, we consider the globally exponential
synchronization.

Example 1 Consider the drive inertial memristive
neural network
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



ṗ1(t) =− p1(t)+q1(t),

ṗ2(t) =− p2(t)+q2(t),

q̇1(t) =(−1+d1 − c1)p1(t)+(1−d1)q1(t)

+a11(p1(t)) f1(p1(t))

+a12(p1(t)) f2(p2(t))

+b11(p1(t)) f1(p1(t − τ(t)))
+b12(p1(t)) f2(p2(t − τ(t)))+ I1,

q̇2(t) =(−1+d2 − c2)p2(t)+(1−d2)q2(t)

+a21(p2(t)) f1(p1(t))

+a22(p2(t)) f2(p2(t))

+b21(p2(t)) f1(p1(t − τ(t)))
+b22(p2(t)) f2(p2(t − τ(t)))+ I2,

(34)

the memristive connection weight are as follows

a11(p1) =

{
1, |p1| ≤ 1,
−1, |p1|> 1,

a12(p1) =

{
2, |p1| ≤ 1,
1, |p1|> 1,

a21(p2) =

{
1, |p2| ≤ 1,
−1, |p2|> 1,

a22(p2) =

{
2, |p2| ≤ 1,
1, |p2|> 1,

b11(p1) =

{
1, |p1| ≤ 1,
−2, |p1|> 1,

b12(p1) =

{
1, |p1| ≤ 1,
2, |p1|> 1,

b21(p2) =

{
2, |p2| ≤ 1,
1, |p2|> 1,

b22(p2) =

{
2, |p2| ≤ 1,
−1, |p2|> 1,

(35)
the response system is



ẏ1(t) =− y1(t)+ z1(t),

ẏ2(t) =− y2(t)+ z2(t),

ż1(t) =(−1+d1 − c1)y1(t)+(1−d1)z1(t)

+a11(y1(t)) f1(y1(t))+a12(y1(t)) f2(y2(t))

+b11(y1(t)) f1(y1(t − τ(t)))
+b12(y1(t)) f2(y2(t − τ(t)))
+ I1 − k11e21(t)− k21sgn(e21(t))

− k31sgn(e21(t))|e11(t)|
− k41sgn(e21(t))|e11(t − τ(t))|,

ż2(t) =(−1+d2 − c2)y2(t)+(1−d2)z2(t)

+a21(y2(t)) f1(y1(t))+a22(y2(t)) f2(y2(t))

+b21(y2(t)) f1(y1(t − τ(t)))
+b22(y2(t)) f2(y2(t − τ(t)))
+ I2 − k12e22(t)− k22sgn(e22(t))

− k32sgn(e22(t))|e12(t)|
− k42sgn(e22(t))|e12(t − τ(t))|,

(36)

Choose the activation functions f1(x) = f2(x) =
sinx,β = 1,τ(t) = 0.8 + 0.2sin3t, external inputs
are I1 = I2 = 0. Let c1 = 2,c2 = 1,d1 = d2 = 1.
According to Assumption 2.1 and 2.2, l1 = l2 =
1,M1 = M2 = 1. By simple computation, it can
be obtained that k11 ≥ 2,k12 ≥ 2,k21 ≥ 10,k22 ≥
10,k31 ≥ 5,k32 ≥ 4,k41 ≥ 4,k42 ≥ 4.

When control gains are chosen as k11 = 4,k12 =
4,k21 = 12,k22 = 12,k31 = 6,k32 = 6,k41 = 6,k42 =
6, the condition of Theorem 4 holds. Choose the
initial condition as p1(t) = 3, p2(t) = 2,q1(t) =
4,q2(t) = 0, y1(t) = −2,y2(t) = −1,z1(t) =
−1,z2(t) = 2, t ∈ [−1,0]. The results of the simu-
lation are shown in Figure 1, synchronization error
e11,e12,e21,e22 will converge to 0 as t → ∞, which
verify the effectiveness of Theorem 4.

Figure 1. Synchronization error e11,e12,e21,e22
between (34) and (36)

Secondly, we are considering quasi-
synchronization.

Example 2 Consider the drive inertial memristive
neural network
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



ṗ1(t) =− p1(t)+q1(t),

ṗ2(t) =− p2(t)+q2(t),

q̇1(t) =(−1+d1 − c1)p1(t)+(1−d1)q1(t)

+a11(p1(t)) f1(p1(t))

+a12(p1(t)) f2(p2(t))

+b11(p1(t)) f1(p1(t − τ(t)))
+b12(p1(t)) f2(p2(t − τ(t)))+ I1,

q̇2(t) =(−1+d2 − c2)p2(t)+(1−d2)q2(t)

+a21(p2(t)) f1(p1(t))

+a22(p2(t)) f2(p2(t))

+b21(p2(t)) f1(p1(t − τ(t)))
+b22(p2(t)) f2(p2(t − τ(t)))+ I2,

(34)

the memristive connection weight are as follows

a11(p1) =

{
1, |p1| ≤ 1,
−1, |p1|> 1,

a12(p1) =

{
2, |p1| ≤ 1,
1, |p1|> 1,

a21(p2) =

{
1, |p2| ≤ 1,
−1, |p2|> 1,

a22(p2) =

{
2, |p2| ≤ 1,
1, |p2|> 1,

b11(p1) =

{
1, |p1| ≤ 1,
−2, |p1|> 1,

b12(p1) =

{
1, |p1| ≤ 1,
2, |p1|> 1,

b21(p2) =

{
2, |p2| ≤ 1,
1, |p2|> 1,

b22(p2) =

{
2, |p2| ≤ 1,
−1, |p2|> 1,

(35)
the response system is



ẏ1(t) =− y1(t)+ z1(t),

ẏ2(t) =− y2(t)+ z2(t),

ż1(t) =(−1+d1 − c1)y1(t)+(1−d1)z1(t)

+a11(y1(t)) f1(y1(t))+a12(y1(t)) f2(y2(t))

+b11(y1(t)) f1(y1(t − τ(t)))
+b12(y1(t)) f2(y2(t − τ(t)))
+ I1 − k11e21(t)− k21sgn(e21(t))

− k31sgn(e21(t))|e11(t)|
− k41sgn(e21(t))|e11(t − τ(t))|,

ż2(t) =(−1+d2 − c2)y2(t)+(1−d2)z2(t)

+a21(y2(t)) f1(y1(t))+a22(y2(t)) f2(y2(t))

+b21(y2(t)) f1(y1(t − τ(t)))
+b22(y2(t)) f2(y2(t − τ(t)))
+ I2 − k12e22(t)− k22sgn(e22(t))

− k32sgn(e22(t))|e12(t)|
− k42sgn(e22(t))|e12(t − τ(t))|,

(36)

Choose the activation functions f1(x) = f2(x) =
sinx,β = 1,τ(t) = 0.8 + 0.2sin3t, external inputs
are I1 = I2 = 0. Let c1 = 2,c2 = 1,d1 = d2 = 1.
According to Assumption 2.1 and 2.2, l1 = l2 =
1,M1 = M2 = 1. By simple computation, it can
be obtained that k11 ≥ 2,k12 ≥ 2,k21 ≥ 10,k22 ≥
10,k31 ≥ 5,k32 ≥ 4,k41 ≥ 4,k42 ≥ 4.

When control gains are chosen as k11 = 4,k12 =
4,k21 = 12,k22 = 12,k31 = 6,k32 = 6,k41 = 6,k42 =
6, the condition of Theorem 4 holds. Choose the
initial condition as p1(t) = 3, p2(t) = 2,q1(t) =
4,q2(t) = 0, y1(t) = −2,y2(t) = −1,z1(t) =
−1,z2(t) = 2, t ∈ [−1,0]. The results of the simu-
lation are shown in Figure 1, synchronization error
e11,e12,e21,e22 will converge to 0 as t → ∞, which
verify the effectiveness of Theorem 4.

Figure 1. Synchronization error e11,e12,e21,e22
between (34) and (36)

Secondly, we are considering quasi-
synchronization.

Example 2 Consider the drive inertial memristive
neural network
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



ṗ1(t) =− p1(t)+q1(t),

ṗ2(t) =− p2(t)+q2(t),

q̇1(t) =(−1+d1 − c1)p1(t)+(1−d1)q1(t)

+a11(p1(t)) f1(p1(t))

+a12(p1(t)) f2(p2(t))

+b11(p1(t)) f1(p1(t − τ(t)))
+b12(p1(t)) f2(p2(t − τ(t)))+ I1,

q̇2(t) =(−1+d2 − c2)p2(t)+(1−d2)q2(t)

+a21(p2(t)) f1(p1(t))

+a22(p2(t)) f2(p2(t))

+b21(p2(t)) f1(p1(t − τ(t)))
+b22(p2(t)) f2(p2(t − τ(t)))+ I2,

(37)

the memristive connection weight are as follows

a11(p1) =

{
1, |p1| ≤ 1,
−1, |p1|> 1,

a12(p1) =

{
2, |p1| ≤ 1,
−2, |p1|> 1,

a21(p2) =

{
1, |p2| ≤ 1,
−1, |p2|> 1,

a22(p2) =

{
2, |p2| ≤ 1,
−2, |p2|> 1,

b11(p1) =

{
1, |p1| ≤ 1,
−2, |p1|> 1,

b12(p1) =

{
1, |p1| ≤ 1,
2, |p1|> 1,

b21(p2) =

{
2, |p2| ≤ 1,
1, |p2|> 1,

b22(p2) =

{
2, |p2| ≤ 1,
−1, |p2|> 1,

(38)
the response system with unmatched parameters is




ẏ1(t) =− y1(t)+ z1(t)− k11e11(t),

ẏ2(t) =− y2(t)+ z2(t)− k12e12(t),

ż1(t) =(−1+d1 − c1)y1(t)+(1−d1)z1(t)

+a∗11(y1(t)) f1(y1(t))+a∗12(y1(t)) f2(y2(t))

+b∗11(y1(t)) f1(y1(t − τ(t)))
+b∗12(y1(t)) f2(y2(t − τ(t)))
+ I1 − k21e21(t),

ż2(t) =(−1+d2 − c2)y2(t)+(1−d2)z2(t)

+a∗21(y2(t)) f1(y1(t))+a∗22(y2(t)) f2(y2(t))

+b∗21(y2(t)) f1(y1(t − τ(t)))
+b∗22(y2(t)) f2(y2(t − τ(t)))
+ I2 − k22e22(t),

(39)

where

a∗11(y1) =

{
1, |y1| ≤ 1,
−1, |y1|> 1,

a∗12(y1) =

{
2, |y1| ≤ 1,
−1, |y1|> 1,

a∗21(y2) =

{
1, |y2| ≤ 1,
−1, |y2|> 1,

a∗22(y2) =

{
1, |y1| ≤ 1,
−2, |y1|> 1,

b∗11(y1) =

{
1, |y1| ≤ 1,
−2, |y1|> 1,

b∗12(y1) =

{
−1, |y1| ≤ 1,
2, |y1|> 1,

b∗21(y2) =

{
2, |y2| ≤ 1,
1, |y2|> 1,

b∗22(y2) =

{
2, |y2| ≤ 1,
−1, |y2|> 1.

(40)
Consider the case that p = 1. Choose δ = 13,c1 =
1,c2 = −1,d1 = 2,d2 = 1,τ(t) = 1. Let activa-
tion functions be f1(x) = f2(x) = sinx, external in-
puts are I1 = I2 = 0. According to Assumption 4.1
and 4.2, l1 = 1,M1 = 2. When the control gains
are chosen as k11 = 23,k12 = k21 = 20,k22 = 21,
it follows that µ1(G − K) + l1∥A∗∥1 + l1∥B∗∥1 ≤
−δ < 0, the conditions of Theorem 5 are sat-
isfied. In this case, γ∗ = supt≥0{M1(∥∆A∥1 +
∥∆B∥1)} = 26 < ∞,M = {e(t) ∈ Rn|∥e(t)∥1 ≤
γ∗/δ} = {e(t) ∈ Rn|∥e(t)∥1 ≤ 2}. The initial val-
ues are given as p1(t) = 2.5, p2(t) = 3.3,q1(t) =
2,q2(t) = −1,y1(t) = −0.5, y2(t) = −0.8,z1(t) =
0,z2(t) = 2.5, t ∈ [−1,0]. The simulation results
are shown by Fig. 2-6, it can be seen that the
norm of error trajectories converge into the region
M = {e(t) ∈ Rn|∥e(t)∥1 ≤ 2}, which verify the ef-
fectiveness of Theorem 5.

Figure 2. State trajectories of p1(t) and y1(t)
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Figure 3. State trajectories of p2(t) and y2(t)

Figure 4. State trajectories of q1(t) and z1(t)

Figure 5. State trajectories of q2(t) and z2(t)

Figure 6. Synchronization error e11,e12,e21,e22
between (37) and (39)

Conclusion

In this paper, exponential synchronization and
quasi-synchronization are studied respectively for
the inertial memristive neural networks with and
without parameter mismatch. Firstly, by using the
Fillipov discontinuous theory and a variable trans-
formation, the problem of second-order equations
can be converted into first-order one. Then, state
feedback controller and adaptive controller is pro-
posed to study exponential synchronization, two
sufficient conditions are derived. By constructing a
simple controller and using matrix method measure,
criterion for quasi-synchronization of the parameter
mismatch case is obtained. Finally, numerical sim-
ulations are given to verify the effectiveness of our
theoretical results.

Future research efforts will be devoted towards
addressing the following aspects: 1) Considering
the finite-time synchronization of inertial memris-
tive neural networks via event-triggered scheme. 2)
Introducing the stochastic elements into the syn-
chronization problem of inertial memristive neu-
ral networks and trying to find impulsive control
method for this issue.
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quasi-synchronization are studied respectively for
the inertial memristive neural networks with and
without parameter mismatch. Firstly, by using the
Fillipov discontinuous theory and a variable trans-
formation, the problem of second-order equations
can be converted into first-order one. Then, state
feedback controller and adaptive controller is pro-
posed to study exponential synchronization, two
sufficient conditions are derived. By constructing a
simple controller and using matrix method measure,
criterion for quasi-synchronization of the parameter
mismatch case is obtained. Finally, numerical sim-
ulations are given to verify the effectiveness of our
theoretical results.

Future research efforts will be devoted towards
addressing the following aspects: 1) Considering
the finite-time synchronization of inertial memris-
tive neural networks via event-triggered scheme. 2)
Introducing the stochastic elements into the syn-
chronization problem of inertial memristive neu-
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