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Abstract

A topological index is a numeric quantity associated with a network or a graph that char-
acterizes its whole structural properties. In [Javaid and Cao, Neural Computing and Appli-
cations, DOI 10.1007/s00521-017-2972-1], the various degree-based topological indices
for the probabilistic neural networks are studied. We extend this study by considering the
calculations of the other topological indices, and derive the analytical closed formulas for
these new topological indices of the probabilistic neural network. Moreover, a compara-
tive study using computer-based graphs has been carried out first time to clarify the nature
of the computed topological descriptors for the probabilistic neural networks. Our results

extend some known conclusions.
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1 Introduction

During the past decades, various neural net-
works have been undergoing for a rapid develop-
ment in the various areas of studies, such as neuro-
chemistry, artificial intelligence, automatic control
and informational sciences [1]. The neural net-
works are used for the calcium oscillation behavior
in biological mathematical models [2], especially
in the powerful brain-like “neural” computers [3].
In the studies of quantitative structure activity rela-
tionships (QSAR models) and quantitative structure
property relationships (QSPR models), the physic-
ochemical properties and topological indices are

excellent tools to explore the biological and chemi-
cal activities of the chemical compounds [4, 5].

The numerical quantities which transform net-
works/compounds structures to a numerical num-
ber are called topological indices/descriptors. More
precisely, a topological index Top(G) is a function
of a graph, in which if H is isomorphic to G, then
Top(H) =Top(G). In general, there are three major
classes of topological indices which are distance-
based topological indices, degree-based topological
indices and counting related indices of graphs [6].
Topological indices are the useful tools provided by
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networks theory for theoretical study of networks
properties.

Since the Sierpinski networks are the first non-
trivial families of graphs, which have been exten-
sively studied in the last few years. M.Imran et al.
[7] had obtained the formulas for the ABC index,
GA index and fourth and fifth version of the ABC
and GA index in the Sierpinski networks in 2017.
The further results of topological indices of the gen-
eralized tree and k-tree [8] have been presented by
S.H.Wang et al. For the probabilistic neural net-
works, M.Javaid et al. [9] have investigated the
degree based topological indices of them in 2017.
More studies about topological indices of other net-
works, one may refer to [10, 11].

Motivated by a large number of applications
on topological indices for the networks theory,
the information regarding topological indices are
obtained from the probabilistic neural networks
(PNN’s) which consist of three types of layers. As-
sume that first, second and third layers called by
input, hidden and output layers have n nodes, k
classes (each class contains m nodes) and k nodes,
respectively [9]. In the construction of PNN, each
node of an input layer is connected to all the nodes
of each class of the hidden layer and all the nodes
of each class of the hidden layer are connected to
the unique corresponding node of the output layer.
In Fig. 1, a PNN denoted by PNN (n,k,m) is shown
forn=4,k=2and m = 3.

Figure 1. PNN(4,2,3)

The remaining of this paper is schematized as
follows. Section 2 presents some preliminaries in-
cluding the definitions and formulas. In Section 3,
the main results are obtained for the TI's of the PNN
and we conclude the whole paper in Section 4.

2 Preliminaries

A network is considered to be a connected
graph having no multiple edges and no loops. We
only consider finite and simple graphs here. Let
G = (V(G),E(G)) be a graph with vertex-set V(G)
and edge-set E(G). If e € E(G) has end vertices u
and v, then we say that u and v are adjacent and this
edge is denoted by uv. The cardinality of V(G) is
called the order of G. Let d; = d(v;) be the degree
of vertex v; and d(u,v) be the distance which is the
length of the shortest path between « and v. The no-
tations used in this article are mainly taken from the
book [12].

The Wiener index of a connected graph G [13],
denoted by W(G), is recognized as the first pro-
posed topological index, which is defined to be the
sum of distances between every pair of vertices in

G,ie.,
wiG) = )
{uv}cv(G)

d(u,v).

The Harary index of a connected graph G, de-
noted by H(G), is defined as

1
d(u,v)’

HG) = )

{uv}Cv(G)

During the past decades, it has received much at-
tention [14]. Nowadays, several variants of Harary
index are introduced from the theoretical or applied
viewpoint [15]. There are some varying Harary in-
dices, a part of these are listed below.

1
H;(G — |
() {u,v};wc)d(u,\/)ﬂ
d(u)+d(v)
HA(G) = |
"o {M,V}EV(G) d(u,v)
d(u) x d(v)

Moreover, for the additively weighted Harary index,
there is another name which is reciprocal degree
distance. And the name is from the celebrated topo-
logical index in chemical graph theory [16], which
is called DD(G) [17]. Furthermore, the definition
of DD(G) is given by

DD(G)= Y,

{uy}CV(G)

[d(u)+d(v)|d(u,v).
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In the 1980s, Narumi and Katayama firstly con-
sidered the NK(G) index [18], which is defined as

NK(G)= [ 4.

veV(G)

In [19], Klein and Rosenfeld investigated some
properties of this topological index. In 1988,
H.Hosoya introduced Hosoya polynomial as a
counting polynomial. Later on, Hosoya polyno-
mial for a vertex of a graph was introduced by
Gutman [20], which is associated with Hosoya
polynomial of the graph. As we know, its defini-
tion is given by

H(G,x) =

Z xd(u,v) ]

{uv}Cv(G)

Among the most significant molecular descrip-
tors, the classically molecular invariants are named
as Zagreb indices, which are expressed as expected
formulas for the total m-electron energy of conju-
gated molecules [21]. As the known results and
wide applications about Zagreb indices, we discuss
the varying Zagreb indices, and they are given by

Mi(G) = ) [du)+dO)],
u#v,uv¢E(G)

W(G) = ld(u) x d(v)].
u#v,uv¢E(G)

Let f(u) be any function of vertex u, and it is
obeyed the following guidelines

e W),
uEVZ(G)f( ) uveg(G)[d((u) ’ d(V)}

It is worthy to mention that special case for f(u) =
d(u)? is known as F — coindex [22]. In this pa-
per, we will discuss a varying F — coindex, which
is given by [23]

Y, [d*(u)+d*(v)).

uv¢E(G)

The irregularity index is the number of distinct
terms of the degree sequence of G. It was intro-
duced by S.Mukwembi [24] and its definition is
given by

irr(G) = Z |d(u)—d(v) |.

uveE (G)

For the first multiplication Zagreb index in de-
tails, one may refer to [25, 26, 27]. Todeschini et
al. proposed the addition of additive graph invari-
ants in the Zagreb index, and its definition is given
by

n

[1(G) =Tl

1 i=1

In 2000, Ivanciuc [28] and Ivanciuc et al. [29]
firstly introduced the reciprocal complementary
Wiener index, which is defined as

1

R - S
cw(G) d+1—d(u,v)’

{uv}CV(G)

where d is the diameter of G.

3 Main Results

This Section includes the main results of the
present study.

Theorem 1 Let G = PNN(n,k,m), where n, k, m >
1. Then, the Wiener index of G is given as

W(G)=n(n—1)+km(km+n+3k—3)+2k(k+n—1).

Proof. According to the definition of W(G) in Sec-
tion 2, V(G) have the following six cases for cal-
culating the distances between any two distinct ver-
tices in PNN(n,k,m).

(1) u,v e vy, (2) u,v € Vs,

(3) u,v € Vs, (4)ueVy,vevy,

(5)MEV1,VGV3, (6)u€V2,v€V3.

Based on the above cases, one can get

W(G) =Y duv)+ Y duv)+ Y d(u,v)

u,veV u,veVy u,veVs

+ )Y duv)+ Y duy)

ucVy,vev, ucVy,vevs

+ Z d(u,v)
ucVs,vevs

= 2C% 4-2C3,, +4C}E 4 kmn + 2kn
+hkm + 3km(k—1)

=n(n—1)+km(km—1)+2k(k—1)+kmn

+2kn + km+3km(k — 1)
=n(n—1)+km(km+n+3k—3)
+2k(k+n—1).
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Theorem 2 Let G = PNN(n,k,m), where n,k,m >
1. Then, the Harary indices H(G), H;(G), Hs(G)
and Hy(G) are given as
_ nln=1) | km(km=1) | k(k=1) |k
H(G) = =~ + =5 — + + kg

7 8
km(3n+k+2)
e

n(n—1) + km(km—1) k(k—1)

k
Hi(G) = o Toan t e
km(nJrl)_i_km(kfl)
142 34t
Ha(G) = kmn(2n 1)+km(km—21)(n+1)+ ( -0 4
kmn(k+1) | km(m+ +1 k+2)
kmn(fm 4 n 4 1) Kbt l) (it 1)(k52),
Hu(G) = Km?n(n—1) n km (km—l)(n-H) +
= 4 4
km?(k—1) | Km*n(2n+3) | km*(n+1)(k+2)
m 8 + mn2n + m-(n 3 .

The Vatue of W(G)

8o

(b) £k=20.

The Vs of WG}

(c) m=20.

Figure 2. Computer-based comparative graph of
the Wiener index for PNN (n,k,m) and its
expression is W(G) =
n(n—1)+km(km+n+3k —3) 4 2k(k+n—1).

Proof. According to the definition of Harary in-

dex, the distances between any two distinct ver-
tices in PNN(n,k,m) have the following six cases
(1) u,v € Vi,(2) u,v € V2,(3) u,v € V3,(4) u €
Vi,ve V2,(5) ueVy,ve V3,(6) ueVy,vevs.

Based on the above cases, we can obtain

HG) = )
{ur}V(G)

-y !

u,veV d(u V)
1

)

u V€V2 V)

d(u,v)

1
d(u,v)

py

u,veVs

1

_.I_
ucVivev, d(u7 V)

>

ueV ,v€V3

1 1
— —C?4 =
2 "+2

1
d(u,v)

d(u,v) +

uGVz,V€V3

1

e
1 km(k—1

+kmn + 2kn+km+m(3)

_n(n—1)  km(km—1)  k(k—1)

4 4 8

kn n km(3n+k+2)

Con+

2 3

Under the definition of a varying Harary index,
by the comparable approach as used in the H(G),
we can obtain the result as follows

1

HG)= Y oyt

{uv}cv(G)

_ 1 1 1
- ZM,VGVI d(u,v)+t +ZM7V€V2 d(u,v)+t +ZM7V€V3 d(u,v)+t +

1 1
ZMEVMVGVZ d(uy)+t +ZMEV17V€V3 d(uy)+t +Z“€V27V€V3 d(u,v)+t

2 2
2+t Cn + 2+Z‘C

Trkm+ s km(k—1)

n(n—1) + kmikn;—l) +
+2t

2
+ 4+tC 1+t krmn +- 2+t srkn+

k(k—1)

kmn kn
T Tt

4(+Zz ) 842t
1+1 + 34t

(a) m=20.

1
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(c) k=20.

Figure 3. Computer-based comparative graph of
the Harary index for PNN (n,k,m) and its
expression is H(G) =

fom(km—1 k(k D) | kn | km(3nk+2)
mér‘n ) + n_’_ni.

n(n—1
o) 4

Tha Vakoo ol H(O} -

(a) k=20, t=1.

The Viloe o8 H 0

(c) m=20, t=1.

Figure 4. Computer-based comparative graph of
the H,(G) index for PNN (n,k,m) and its

expression is H;(G) = "‘("_’;2;) + kmg’j:”zzl) +A 4
k(k=1) | km(n+1) | km(k—1)

8+2:)+ 1+t + 3+t

Especially, in the next two situations (based on
the H;(G)), lett = 1 or 2, respectively. Then we can
obtain

H(G) = Y
{uv}CV(G)

1
d(u,v)+1
1
=X d(u, v)+1 +

u,vev

)Y

u,veVs

1
u;‘vzd(u v)+1
d(u,v) +1

1
d(u,v)+1
1
d(u, v)—!—l >

ucV,vevs

1
C?+ C?
2+1” 2+1km 441

+

ucVy,vev,

)

MGV] ZVEVS

1
d(u,v)+1

G

km(km—1) n k(k—1)
6 6 10
+km(n+1) kn  km(k—1)

2 +3+ 4

1
d(u,v)+2
1
=) d(u, v)—|—2+

u,vevy

Y

u,veVs

H(G) = )

{uv}CV(G)
Z 1

= d(u,v)+2

d(u,v) +2

_ 1

d(u,v)+2

1
d(u,v)+2 >

ucV, vevs

+

ueVy,vev,

)

ucViy,vevs
1 2 1 2

1
d(u,v)+2

I

km(km—1) N k(k—1)
8 8 12
+km(n+1) kn  km(k—1)

3 +4+ 5
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Based on the definition of Hy(G) =
Y {uv}cv(G) d(fl)(jf)(v) , the distances between any two

distinct vertices in PNN(n,k,m) have the following

(5

Tha Vi ol H,(0)

Six cases
(1) u,v e vy, (2) u,v € Vs,
(3) u,v e V3, (4) uec V]7V S Vz, (c) k=20.
(5) ueVy,vevs, (6)u€V2,v€V3.

Figure 5. Computer-based comparative graph of
the Hy(G) index for PNN (n,k,m) and its
expression is

Based on the above cases, one can get
HA(G) _ kmn(znfl) + km(kmle)(nJrl) + km(]f;l) "

Ha(G) ke (km + n + 1) 4 2mGel) oo £1)(k42)
d(u)+d(v d(u)
= Z ( ) + Z ) Similarly, according to the definition of
uveVl d(u,v) u,yeVs (u v) H d(u)xd(v) e
M(G) = Lfur}cv(G) gy > and its situations
+ Z du) +d0v) + Y d(u) +d(v) are same as Hy (G), then we have
u,vevs d( U, ) ucVi,vev, d(u’v

)
by ) drdy

ucVy,vevs d(u’v) ucVr vevs d( V)
) nf 2 o v d(w) xd(y) , y d(u) x d(v)
+4Ck+kmn(km+n+l) 5 kn uby,  du,v) sy,  du,v)
1
+km(1—|—m+n)+m+n+ km(k—1) 'Y a’(u)><a’(v)+ y d(u) xd(v)
k 1 km(k 31 | u,veVs d(u,V) ucViveV, d(u’v)
_ kmn(n—1) | km(km—1)(n+1) d(u) x d(v) d(u) x d(v)
2 > Loy dwxdl) g d xdl)
km(k—1) UEVI vEV3 d(”"’) ueVz,v€V3 d(u,v)
_ 2 2
(k1) | donGm+n 1)(k+2) = G+ Gt 4C i+ kmnlkm(n+1)] +
2 3 ' km? m(n+1)

Tkn—l—km[m(n—}-l)]—k km(k—1)

Bm’n(n—1)  km(km—1)(n+1)> km*(k—1)
= + +
4 4 8
Km?n(2n+3)  km*(n+1)(k+2)
+ 5 + 3 :

To Vsl of 1,40}

e s

Tha Viskss of
The Valse of HI0) =
b

(a) n=100.
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The Vb st H (D) =

(b) m=20.

The Vb st H (D) =

(c) k=20.

Figure 6. Computer-based comparative graph of
the Hy(G) index for PNN (n,k,m) and its
expression is

Hy(G) = kzmzrz(nfl) + km(kmfi)(nJrl)z + ka(écq) +
K2m?n(2n+3) + km? (n4-1) (k42)
2 3 :

Theorem 3 Let G = PNN(n,k,m), where n,k,m >
1. Then the expression of DD(G) is given as
DD(G) = kmn(km + 2k + 3n + 1) + 2km(km —
1)(n+1)+4km(k—1)+km(m+n+1)(3k—2).

Proof. As a celebrated topological index in chemi-
cal graph theory, the distances between any two dis-
tinct vertices in PNN (n,k,m) have the following six
cases

(1) u,v e vy, (2) u,v € Vs,
(3) u,v € Vs, (4)u€V1,V€V2,
(S)ueVy,vevs, (6) u € Va,veVs.

Based on the definition of DD(G)
Yo, v}CV(G) [d(u) +d(v)]d(u,v), we have

DD(G) = Yuvewld(u) + d(v)d(u,v)
Luven[d) + dW)ld(u,v) + Lyyev[d(u)
d(W)ld(u,v) + Yuevvev,[d(u) + d(v)]d(u,v)
ZuGVl,v€V3 [d( ) + d(v)]d(u,v) + ZuEVg,v€V3 [d( )
d(v)ld(u,v)

= 4kmC2 + 4(n + 1)C;, + 8mC; + kmn(km +
n+1)+2kmn(k+ 1)+ km(m+n+ 1) + 3km(k —
)(m+n+1)

= kmn(3n+km+ 2k + 1) + 2km(km —1)(n+
1)+4km(k—1)+km(m+n-+1)(3k—2).

+
_l’_
+
_l’_

(c) k=20.

Figure 7. Computer-based comparative graph of
the DD(G) index for PNN(n,k,m) and its
expression is
DD(G) = kmn(km+ 2k +3n+ 1) + 2km(km —
1)(n+1)+4km(k—1)+km(m+n+1)(3k—2).

Theorem 4 Let G = PNN(n,k,m), where n,k,m >
1. Then the expression of H(G,x) is given as

H(G,x) = k(k_l)x4 + km(k — 1)x> + knx? +
n( 1) 2+km(km 1)x2—|—kmx(n—|—l).

Proof. Obviously, the distances between any two
distinct vertices in PNN(n,k,m) have the following
Six cases:

(1) u,v e vy, (2) u,v € Vs,
(3) u,v € Vs, (4)u e Vy,v ey,
(5)M€V1,V€V3, (6)MGV2,V€V3.

Under the definition of H(G,x) = Y, ycv(G)*? (uv)

and the above cases, one can get

H(G’x) = ZMNEVI xd(u’v) + ZM,VEVZ xd(u,v) +
ZquEV3 xd(u’V) + Zu€V1 VveVy xd(u,v) d(uv) +
ZMGVQ,VEV3 xd(mv)

+ZuEV1 WVEVS X
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= C2x* + CLx* + Clx* + C)C,x + CIClx? +

m
kmx + km(k — 1)x?
_ n(n;l)xz + km(k?*I)XZ + k(kgl)x4 + kmnx +
knx?® + kmx + km(k — 1)x°
— kk=1)
2

x* km(k —1)x3 + knx? + @xz +

WXZ +kmx(n+1).

(b) k=2, n=4.

(c) k=2, m=3.

Figure 8. Computer-based comparative graph of

the H(G,x) index for PNN(n,k,m) and its
expression is H(G,x) = @x“ +km(k—1)x° +

knx* + n(nz_l)x2 + km(k;n_l)xz +kmx(n+1).

Theorem 5 Let G = PNN(n,k,m), where n,k,m >
1. Then, the first Zagreb index and second Zagreb
index are as follows

M (G) = km[n® + (n+1)(k+km—1) —1].

My (G) = Erinlntl) | dmhon— (1) | ko (k1)

Proof. Noting the definitions of M (G) and M,(G),
V(G) have the following four cases for calculating
M, (G) and M;(G). Moreover, based on the follow-
ing cases, any two distinct vertices u and v are not

adjacent:

(1) u,v eV,
(3) u,v € Vs,

(2) u,v € Vs,
(4)ueVy,vevs.

In PNN(n,k,m), we firstly consider the M;(G) =
Yutvuvgi(G)ld(u) +d(v)]. Then, we have

Mi(G)

= ZV [d(u) +d(v)]+ ZV [d(u) +d(v)]

+ Z [d(u)+d(v)|+ Z [d(u)+d(v)]
u,veVs ucVi,vevs

= 2kmC? +2(n+1)C3,, +2mC} 4 CC} (km -+ m)
= km[n* + (n+ 1) (k+km—1)—1].

Similarly, according to the definition of M;(G) =
YurvugeG)ld(u) x d(v)], and its situations are
same as M| (G), then we can obtain

M>(G) = Ly vev, [d(u) < d(v)] + Luvev, [d(u) X
dEVH + Luvews[d(u) x dv)] + Luev, vevsld(u) X
d(v

= Clkm -km+CZ (n+1)(n+1)+Cim-m+

ClClkm-m
= K2 M) (g 1)2 s Rl 2
7k(k2—1) +k*m’n
2.2 _ 2 2(f_
_Km n2(n+l) + km(km 21)(n+1) + km (2k 1)'

Theorem 6 Let G = PNN(n,k,m) n,k,m > 1.
Then, the expression of F(G) is given as

F(G) = km*(kn®> — kn + k — 1) + km(km —
D(n+1)?+km?n(k>+1).

Proof. According to the definition of F(G) in Sec-
tion 2, there are the following four cases

(1) u,v eV,
(3) u,v e V37

(2) u,v € Vs,
@) ueVi,vevs.

Based on the F(G) = ¥,¢r(q) [d*(u) +d*(v)] and
the above cases, one can get

F(G) = Zu,vEVl [dz(u) +d2 (v)] +Zu,veV2 [d2(u) +
dim + Luwevs [d2 () +d> (V)] + Luev, vevs [d” (u) +
d=(v
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= 2K°m’C? + 2(n + 1)°C}, + 2m*C? +
kn[(km)? + m?]

=n(n— D)k*m? +km(km —1)(n+1)* + k(k —
1)m? + nk[m?*(k* 4-1)]

= km? (kn®> —kn+k—1) +km(km—1)(n+1)>+
km*n(k* +1).

Theorem 7 Let G = PNN(n,k,m), where n,k,m >
1. Then the expression of irr(G) is given as

irr(G) =nkm | km—n—1|+4+mk |n+1—m|.

Proof. According to the definition of irr(G), just
only two cases are known

(l)u eVi,ve V2,(2)u e Vh,v e Vs.

Based on the above cases and the irr(G) =
Yuwer) | d(u) —d(v) |, we can arrive at

irr(G> = ZquE(G) ’d(V]) _d(V2> | +Zuv§E(G) ’
d(V2) —d(V3) |

=C\Cl |km—n—1|4+CCl |n+1—m|

=nkm | km—n—1|+km|n+1—m]|.

Theorem 8 Let G = PNN(n,k,m), where n,k,m >
1. Then, the first multiplication Zagreb index is
given as

[1(G) = (km)* (n+ 1)*"m*.
1

Theorem 9 Let G = PNN(n,k,m), where n,k,m >
1. Then the expression of NK(G) is given as

NK(G) = (km)"(n+ 1) "m*.

Theorem 10 Let G = PNN(n,k,m), where
n,k,m > 1. Then the reciprocal complementary
Wiener index is given as

— n(2k+n-—1) km(2km+3n-+6k—5)
" If)CW(G) = 6 + 3 +

5

Proof. Based on the definition of RCW (G) in Sec-
tion 2, there are the following six cases

(1) u,v e vy, (2) u,v € Vs,

)
(3) u,v € V3, (4) u € Vi,v € Vy,
(5)u€V1,v€V3, (6)u€V2,v€V3.

According to the above cases and RCW(G) =
Y{uv}cv(G) m, we have

RCW(G) =L ven; m L vevs m +

1
+  Yuevivew imamyy T

Y — 14y S
ueVi,veVs d+1—d(u,v) ueVa,veVs d+-1—d(u,v)

_ 1 2 1 2 )
- d+17261'n + d+1;2ckm + 1d+1—4ck +
d+171kmn+d+172kn+d+171km+d+173km(k_1)

1
Zu,v€V3 d+1—d(u,v)

_ n(n—1 km(km—1 k(k—1 ki ki ki
= M) g Bt o M)y byl
km(k—1)
2
_ n(2k4n—1) | km(2km+3n+6k—5) | k(k—1)
- 6 + 12 + 2

The Vave oIREWIG) 2

() m=10.

Figure 10. Computer-based comparative graph of
the RCW (G) index for PNN(n,k,m) and its

expression is

RCW(G) = n(2k—gn—l) + km(ka-i—l32n+6k—5) i k(kz_l)'

4 Conclusion

In this paper, we calculated the degree-based
topological indices (TI's) as well as distanced-
based TI’s of PNN(n,k,m). Furthermore, the
analytical closed formulas of degree-based and
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distance-based indices for the network were man-
ifested, which will help the scholars to under-
stand and explore the underlying topologies of
PNN(n,k,m), which are working in network sci-
ence and physical features. In order to help
us to know the properties of topological indices,
which we had already computed, we plotted the
three-dimensional graphics of the W(G), H(G),
H,(G), Hs(G), Hy(G), DD(G), H(G,x), NK(G)
and RCW (G) with the help of space cartesian co-
ordinate system.
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