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Abstract

In this paper, we investigate the stability of patterns embedded as the associative memory
distributed on the complex-valued Hopfield neural network, in which the neuron states
are encoded by the phase values on a unit circle of complex plane. As learning schemes
for embedding patterns onto the network, projection rule and iterative learning rule are
formally expanded to the complex-valued case. The retrieval of patterns embedded by
iterative learning rule is demonstrated and the stability for embedded patterns is quantita-
tively investigated.
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1 Introduction

Complex-valued neural networks (CVNNs) are
neural networks of which neuronal parameters,
such as input, output, and connection weights, are
encoded by complex values. Various types of
CVNNs have been extensively investigated [1, 2, 3].
One of the advantages in CVNNs is that they
can treat two-dimensional signal as a single en-
tity, e.g. amplitude and phase of signals and two-
dimensional coordinates. Hence CVNNs can be
naturally applied to engineering problems, such as
land-mine detection based on radar wave [4] and
equalization for communication channels [5].

Complex-valued multistate neural network is a
type of CVNNs where the state of a neuron is rep-
resented by a distinct point on a unit circle, i.e. a
phase value, in a complex plane [6, 7, 8, 9, 10]. This
network can be used as an associative memory be-
cause some discrete values such as pixel values in

an image can be mapped to the phase values and
updates for neuron’s state can be easily conducted.
Several types of multistate networks have been pro-
posed and analyzed for both theoretical and experi-
mental approaches.

It is important to develop learning schemes
for embedding patterns onto associative memory.
There are several schemes for multistate networks
[10, 11, 12, 13]. The Hebbian rule is a basic and
straightforward scheme for storing patterns, but it
keeps a major limitation for the properties of pat-
terns to be stored; patterns must be orthogonal to
each other. For practical uses of associative mem-
ory, orthogonality is hardly satisfied among all pat-
terns. Projection rule is an improved scheme from
the Hebbian rule by projecting non-orthogonal pat-
terns to orthogonal ones [12, 14, 15]. This learn-
ing scheme requires to calculate a pseudo-inverse
of matrix and its computational cost becomes rather

 10.1515/jaiscr-2018-0015
  – 249



238 Teijiro Isokawa, Hiroki Yamamoto, Haruhiko Nishimura, Takayuki Yumoto, Naotake Kamiura, Nobuyuki Matsui

higher according to the size of each pattern and the
number of stored patterns.

Thus an iterative learning rule for complex-
valued and quaternionic multistate networks has
been proposed and analyzed in [10]. It is an im-
plementation of Projection rule and was firstly pro-
posed for the real-valued Hopfield networks in [16].
By this rule, the connection weights in the net-
work are gradually modified by iterative presenta-
tions of stored patterns, instead of the calculation
of inverse matrix. The modification of connection
weights works so as to enlarge the basin of attrac-
tor for the presented pattern in the energy landscape
spanned by the connection weights, enabling to the
presented pattern being more deeply embedded to
the network. Thus this rule could have a flexibil-
ity concerning the basins of attractors by control-
ling the presentation frequencies of stored patterns.
For the complex-valued multistate networks, there
is only a theoretical analysis in [10] proving that
embedding patterns can be successfully conducted
by this scheme, but none of experimental results
by using real or artificially generated patterns have
been found.

This paper explores the stabilities of patterns
embedded on the multistate neural networks by the
iterative learning rule through comparisons with
Projection rule (a short version of this paper was
presented in [17]). Embedding and retrieving pat-
terns are demonstrated by using gray-scaled im-
ages, and the stabilities of embedded patterns with
these rules are evaluated by using the randomly gen-
erated patterns with several resolution of a neuron
state.

This paper is organized as follows. Section 2
describes the fundamentals of complex-valued mul-
tistate network and its learning rules. Experimen-
tal results for the stability of embedded patterns are
shown in Section 3. This paper concludes in Sec-
tion 4.

2 Preliminaries

2.1 Complex-valued Multistate Neural
Network

We first describe the complex-valued multistate
neuron model used in this paper that is also used in
[7, 9, 10]. In this model, the state and threshold of

a neuron and the connection weights between the
neurons are represented by complex values. The
output of a neuron is also a complex value, but it
is restricted to one of the distinct points on the unit
circle in a complex plane. Therefore, the output of
this model can only be represented by a phase value.
Figure 1 shows an example of output points in a
complex plane where the number of phase quantiz-
ing delimiter K is 6.

Figure 1. An example of output points in the
complex-valued multistate neuron model

We consider a Hopfield neural network with N
complex-valued multistate neurons. The action po-
tential hp(t) of a neuron p at a discrete time t is
given by

hp(t) =
N

∑
q

wpquq(t), (1)

where uq(t) is the state of the neuron q at a time t,
and wpq is the connection weight from neuron q to
neuron p. The state of neuron p at (t + 1) is deter-
mined by

up(t +1) = csign(hp(t) · z1/2), (2)

where z1/2 = eiφ0/2 is a fixed threshold value, and
φ0 = 2π/K defines a quantized unit. The function
csign(·) is an activation function of a multistate neu-
ron defined as

csign(u) =





z0 0 ≤ arg(u)< φ0
z1 φ0 ≤ arg(u)< 2φ0
...

zK−1 (K −1)φ0 ≤ arg(u)< Kφ0

. (3)
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Figure 1: An example of output points in the
complex-valued multistate neuron model

csign(·) is an activation function of a multistate neu-
ron defined as

csign(u)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z0 0 ≤ arg(u)< ϕ0

z1 ϕ0 ≤ arg(u)< 2ϕ0
...

zK−1 (K −1)ϕ0 ≤ arg(u) < Kϕ0

.

(3)
The state of a neuron has K quantized levels, called
K-stage phase quantizer.

The procedure for updating neuron’s state is illus-
trated in Fig. 2 where K = 6 is adopted. In this pro-
cedure, (1) the action potential hp(t) is firstly calcu-
lated, (2) this action potential is rotated by z1/2, and
(3) the updated state of a neuron is determined by
csign(·) function.

The stability of the network using this model was
proved by showing that the energy function of the
network monotonically decreased under the condi-
tion |Δϕ|< ϕ0/2, where Δϕ is a phase difference be-
tween the state at time (t+1) and the action potential
at time t for the neuron undergoing its update. The
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Figure 2: Procedures for calculation of neuron’s state

energy function E is given by

E =−1
2 ∑

p
∑
q

wpqu∗puq, (4)

where the connection matrix W = {wpq} is a Hermi-
tian matrix (wpq = w∗

qp) with the condition of wrr ≥ 0
(1 ≤ r ≤ N). A proof for this stability is shown in
section A of Appendix.

2.2 Condition for embedding patterns

In order to introduce the learning schemes into the
multistate network, the stability condition for the
neurons’ states is important. Let ξµ = {ξµ

p} (p =
1, · · · ,N;µ = 1, · · · ,np) be a vector of the µ-th mem-
ory pattern, where np denotes the number of patterns
to be embedded. ξµ

p takes one of K integer values
(ξµ

p ∈ {0, · · · ,K−1}). Therefore, storing a pattern to
the network, each ξµ

p is mapped onto εµ
p, which is a

point on the unit circle in a complex plane by

εµ
p = zξµ

p = eiξµ
pϕ0 . (5)

εµ
p represents a stable network configuration if

up(t +1) = up(t) = εµ
p (6)
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higher according to the size of each pattern and the
number of stored patterns.

Thus an iterative learning rule for complex-
valued and quaternionic multistate networks has
been proposed and analyzed in [10]. It is an im-
plementation of Projection rule and was firstly pro-
posed for the real-valued Hopfield networks in [16].
By this rule, the connection weights in the net-
work are gradually modified by iterative presenta-
tions of stored patterns, instead of the calculation
of inverse matrix. The modification of connection
weights works so as to enlarge the basin of attrac-
tor for the presented pattern in the energy landscape
spanned by the connection weights, enabling to the
presented pattern being more deeply embedded to
the network. Thus this rule could have a flexibil-
ity concerning the basins of attractors by control-
ling the presentation frequencies of stored patterns.
For the complex-valued multistate networks, there
is only a theoretical analysis in [10] proving that
embedding patterns can be successfully conducted
by this scheme, but none of experimental results
by using real or artificially generated patterns have
been found.

This paper explores the stabilities of patterns
embedded on the multistate neural networks by the
iterative learning rule through comparisons with
Projection rule (a short version of this paper was
presented in [17]). Embedding and retrieving pat-
terns are demonstrated by using gray-scaled im-
ages, and the stabilities of embedded patterns with
these rules are evaluated by using the randomly gen-
erated patterns with several resolution of a neuron
state.

This paper is organized as follows. Section 2
describes the fundamentals of complex-valued mul-
tistate network and its learning rules. Experimen-
tal results for the stability of embedded patterns are
shown in Section 3. This paper concludes in Sec-
tion 4.

2 Preliminaries

2.1 Complex-valued Multistate Neural
Network

We first describe the complex-valued multistate
neuron model used in this paper that is also used in
[7, 9, 10]. In this model, the state and threshold of

a neuron and the connection weights between the
neurons are represented by complex values. The
output of a neuron is also a complex value, but it
is restricted to one of the distinct points on the unit
circle in a complex plane. Therefore, the output of
this model can only be represented by a phase value.
Figure 1 shows an example of output points in a
complex plane where the number of phase quantiz-
ing delimiter K is 6.

Figure 1. An example of output points in the
complex-valued multistate neuron model

We consider a Hopfield neural network with N
complex-valued multistate neurons. The action po-
tential hp(t) of a neuron p at a discrete time t is
given by

hp(t) =
N

∑
q

wpquq(t), (1)

where uq(t) is the state of the neuron q at a time t,
and wpq is the connection weight from neuron q to
neuron p. The state of neuron p at (t + 1) is deter-
mined by

up(t +1) = csign(hp(t) · z1/2), (2)

where z1/2 = eiφ0/2 is a fixed threshold value, and
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The state of a neuron has K quantized levels, called
K-stage phase quantizer.

The procedure for updating neuron’s state is il-
lustrated in Figure 2 where K = 6 is adopted. In this
procedure, (1) the action potential hp(t) is firstly
calculated, (2) this action potential is rotated by
z1/2, and (3) the updated state of a neuron is de-
termined by csign(·) function.

Figure 2. Procedures for calculation of neuron’s
state

The stability of the network using this model
was proved by showing that the energy function
of the network monotonically decreased under the
condition |∆φ| < φ0/2, where ∆φ is a phase differ-
ence between the state at time (t +1) and the action
potential at time t for the neuron undergoing its up-
date. The energy function E is given by

E =−1
2 ∑

p
∑
q

wpqu∗puq, (4)

where the connection matrix W = {wpq} is a Her-
mitian matrix (wpq = w∗

qp) with the condition of
wrr ≥ 0 (1 ≤ r ≤ N). A proof for this stability is
shown in Section A of Appendix.

2.2 Condition for Embedding Patterns

In order to introduce the learning schemes into
the multistate network, the stability condition for
the neurons’ states is important. Let ξµ = {ξµ

p}
(p = 1, · · · ,N;µ = 1, · · · ,np) be a vector of the µ-
th memory pattern, where np denotes the number of
patterns to be embedded. ξµ

p takes one of K inte-
ger values (ξµ

p ∈ {0, · · · ,K−1}). Therefore, storing
a pattern to the network, each ξµ

p is mapped onto
εµ

p, which is a point on the unit circle in a complex

plane by
εµ

p = zξµ
p = eiξµ

pφ0 . (5)

εµ
p represents a stable network configuration if

up(t +1) = up(t) = εµ
p (6)

is satisfied for every neuron p (p = 1, · · · ,N). This
condition leads to the phase relation

arg(εµ
p)≤ arg(hp(t) · z1/2)< arg(εµ

p)+φ0. (7)

According to Eq.(2), this relation can be expressed
as

|arg(hp(t))− arg(εµ
p)|<

φ0

2
. (8)

Also, in order to obtain greater stability of the de-
sired memory patterns, a threshold parameter κ
is introduced so that the left-hand side of Eq.(8)
should be smaller than κ, that is,

|arg(hp(t))− arg(εµ
p)|< κ <

φ0

2
. (9)

For an appropriate κ, the trainable {wpq} in hp

should satisfy this condition.

2.3 Projection Rule

A straightforward way to embed patterns onto
the associative memory networks is the use of Heb-
bian rule. The Hebbian rule is defined as

wpq =
1
N

np

∑
µ=1

εµ
pεµ

q
∗, (10)

where np is the number of patterns to be embed-
ded. However, there is a major limitation in the
Hebbian rule, i.e., it works only when the patterns
εµ = {εµ

1, · · · ,ε
µ
N} satisfy the condition

εµ · εν∗ = 0 (11)

for all combination of µ and ν where 1 ≤ µ,ν ≤ np

and µ ̸= ν. This means that the patterns to be em-
bedded in the network must be orthogonal to each
other, though the patterns provided in most cases
are non-orthogonal.

Projection rule [14, 15, 12] is a learning scheme
that can embed non-orthogonal patterns in a net-
work. The key idea of the Projection rule is that
non-orthogonal patterns are first projected onto or-
thogonal ones, and then the Hebbian rule is applied
to the projected patterns [10]. Projection is con-
ducted by introducing the matrix {Qµν}, defined as:

Qµν =
1
N ∑

p
εµ

p
∗εν

p. (12)
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energy function E is given by

E =−1
2 ∑
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∑
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wpqu∗puq, (4)

where the connection matrix W = {wpq} is a Hermi-
tian matrix (wpq = w∗

qp) with the condition of wrr ≥ 0
(1 ≤ r ≤ N). A proof for this stability is shown in
section A of Appendix.

2.2 Condition for embedding patterns

In order to introduce the learning schemes into the
multistate network, the stability condition for the
neurons’ states is important. Let ξµ = {ξµ

p} (p =
1, · · · ,N;µ = 1, · · · ,np) be a vector of the µ-th mem-
ory pattern, where np denotes the number of patterns
to be embedded. ξµ

p takes one of K integer values
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p, which is a
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The weight matrix of the network, w̃, is calculated
by

w̃pq =
1
N ∑

µ,ν
εµ

p
(
Q−1)

µν εν
q
∗
, (13)

where Q−1 is the pseudo inverse matrix of Q.
Patterns embedded by this scheme become stable
points in the network, as in the case of the Hebbian
rule. This can be checked by calculating the action
potential of a neuron h̃p by applying an embedded
pattern εσ as the input to the network:

h̃p =
N

∑
q=1

w̃pqεσ
q

=
1
N ∑

µ,ν
εµ

p
(
Q−1)

µν ∑
q

εν
q
∗εσ

q

= ∑
µ,ν

εµ
p
(
Q−1)

µν Qνσ

= ∑
µ

εµ
p
(
Q−1Q

)
µσ

= ∑
µ

εµ
pδµ,σ

= εσ
p, (14)

where δµ,σ denotes the Kronecker delta function.

2.4 Iterative Learning Rule

Iterative learning rule for a complex-valued
multistate neural network has been proposed and
theoretically analyzed in [10]. This learning rule is
a complex-valued extension of the iterative learning
for real-valued one in [16]. The connection weight
wpq is updated by using the desired memory pattern
as

wnew
pq = wold

pq +δwpq, (15)

δwpq =
1
N

εµ
pεµ∗

q , (16)

where εµ∗
p is the complex conjugate of εµ

p, i.e., εµ∗
p =

e−iξµ
pφ0 . After the update, the action potential of

neuron p becomes

hnew
p =

N

∑
q=1

wnew
pq uq

= ∑
q

(
wold

pq +δwpq

)
uq

= hold
p +∑

q

1
N

εµ
pεµ∗

q uq. (17)

Consider the effect of updating the connection
weight on the memory pattern state εµ

p. This can
be confirmed by setting uq = εµ

q in Eq.(17) as

hnew
p = hold

p +∑
q

1
N

εµ
pεµ∗

q εµ
q

= hold
p + εµ

p, (18)

since ∑q εµ∗
q εµ

q = N holds. These vectors in a com-
plex plane are shown in Figure 3. The relation of
these vectors indicates that the direction of hnew

p
is turning towards εµ

p by the iterative applications
of Eq.(15). Hence, the memory pattern will be
sufficiently stable when the condition described in
Eq.(9) is satisfied. The achievement of stability
by the iterative applications of Eq.(15) is explicitly
shown in Section B of Appendix. Since the modifi-
cation of the connection weights by Eq.(18) is con-
ducted for a given memory pattern, this rule could
have a flexibility for making the basin of attractor
for a memory pattern by controlling the presenta-
tion frequencies of the memory patterns.

Figure 3. Behavior of vectors in a complex plane
due to the application of iterative learning

3 Experimental Results

3.1 Image Retrieval from Noisy Input

We first investigate the ability for retrieving the
stored patterns from the noisy inputs, in order to
ensure that associative memory with the iterative
learning rule actually works. Figure 4 shows three
stored patterns for this experiment, which are used
in [18]. The size of these images are adjusted to
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since ∑q εµ∗
q εµ

q = N holds. These vectors in a com-
plex plane are shown in Fig. 3. The relation of these
vectors indicates that the direction of hnew

p is turning
towards εµ

p by the iterative applications of Eq.(15).
Hence, the memory pattern will be sufficiently stable
when the condition described in Eq.(9) is satisfied.
The achievement of stability by the iterative applica-
tions of Eq.(15) is explicitly shown in section B of
Appendix. Since the modification of the connection
weights by Eq.(18) is conducted for a given memory
pattern, this rule could have a flexibility for making
the basin of attractor for a memory pattern by con-
trolling the presentation frequencies of the memory
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Figure 3: Behavior of vectors in a complex plane due
to the application of iterative learning

3 Experimental Results

3.1 Image retrieval from noisy input

We first investigate the ability for retrieving the
stored patterns from the noisy inputs, in order to
ensure that associative memory with the iterative
learning rule actually works. Figure 4 shows three
stored patterns for this experiment, which are used
in [18]. The size of these images are adjusted to
90× 90 = 8100 pixels and each pixel value is rep-
resented by 5 bits (32 levels).

The number of neurons in the associative mem-
ory network is the same as the size of the images,
i.e., N = 8100. The resolution factor for the neuron
state is also set to the same as the resolution of the
pixel value, K = 32. In learning stage, each of the
input images are used for modifying the connection
weights, in order of the images in Figs. 4(a), 4(b),
and 4(c). The number of iterations is set to 10.

After learning, the test input images are used to
the initial configuration of the network, and then the
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stored patterns for this experiment, which are used
in [18]. The size of these images are adjusted to
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90× 90 = 8100 pixels and each pixel value is rep-
resented by 5 bits (32 levels).

The number of neurons in the associative mem-
ory network is the same as the size of the images,
i.e., N = 8100. The resolution factor for the neuron
state is also set to the same as the resolution of the
pixel value, K = 32. In learning stage, each of the
input images are used for modifying the connection
weights, in order of the images in Figs. 4(a), 4(b),
and 4(c). The number of iterations is set to 10.

After learning, the test input images are used
to the initial configuration of the network, and then
the updates of the neuron states are conducted un-
til the configuration of the network converges, i.e.
until the states of all neurons in the network do not
change by using the Eqs.(1) and (2).

For the test input images to the associative
memory, one of these stored patterns with corrup-
tion is adopted. The corruption is conducted so that,
for each of pixels in the target image, the pixel value
is replaced to random value with a certain probabil-
ity (rn). Examples of test input images with various
rns are shown in Figure 5. Higher value of rn results
in an image with larger region being corrupted.

Figure 4. Three stored images for the image
retrieval experiment

Figure 5. Input images with various noise
probabilities rn

Figure 6. Output images from the network when
the images in Figure 5 are used for input

Figure 6 shows the output configurations of the
network for the inputs of Figures 4(a), 4(b), and
4(c), respectively. This result shows that the net-
work can retrieve the correct image for the input im-
age with lower rn, thus iterative rule could certainly
embed each of the stored patterns with a certain at-
tractors around it. By using other input images that
are originated from the images in Figures. 4(b) and
4(c), similar results can be obtained as shown in
Figure 7.

Figure 7. Other example of input and output
images

3.2 Stability Analysis for Embedded Pat-
terns

We next explore the stabilities of patterns em-
bedded by two learning rules. This is conducted by
evaluating retrieval performances for the network
from one of stored patterns as its initial state. In
this experiment, the embedded patterns are com-
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around it. By using other input images that are origi-
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results can be obtained as shown in Fig. 7.
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We next explore the stabilities of patterns embedded
by two learning rules. This is conducted by evaluat-
ing retrieval performances for the network from one
of stored patterns as its initial state. In this experi-
ment, the embedded patterns are composed of ran-
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images in Fig. 5 are used for input

domly generated values. The size of the pattern (the
number of neurons in the network) is set to 100, and
the resolution factor K is set to K = 4,6,8,16,32,64.
The number of the stored patterns, denoted by M,
varies such that M = 1, · · · ,30.

The stability of the patterns are checked by the
following procedure. First, for given K and M, the
stored patterns are prepared and are embedded to
the network. In the iterative learning, presenting the
stored patterns to the network with 10 iterations is
conducted for modifying the connection weights of
the network. After the learning, each of the stored
patterns is set to the network as its initial configura-
tion, then the updates of the network are conducted
for all the neurons in the network. If the configura-
tion of the network does not change, the input pattern
(one of the stored patterns) can be stable; otherwise
the input pattern cannot be embedded. An embed-
ding process with given parameters is regarded as
successful if all the stored patterns are stable.

Figure 8 shows the M dependencies of the retrieval
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(a) Input image
(rn = 0.4)

(b) Output from the
image in Fig. 7(a)
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(rn = 0.5)

(d) Output from the
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Figure 7: Other example of input and output images

success rates with several Ks, in which 100 different
sets of patterns are used for each M. For the fixed
size of the network, it becomes difficult to embed
the larger number of patterns, as in the case of real-
valued hopfield networks. Also, the number of pat-
terns to be embedded correctly depends on the reso-
lution K for the neuron state. A neuron with larger
value of K should contain much more information
for the embedded patterns, and it is equivalent to
larger value of M in the network. Thus, increasing M
and/or K in the network with small number of neu-
rons will lead to degradation of embedded patterns
in the network. For comparison of performance, the
M dependence of the retrieval success rates obtained
by projection rule is shown in Fig. 9. Similar tenden-
cies to the results obtained by iterative learning rule
are shown though overall capacities of patterns in the
network are much higher.

The computational costs for the projection rule
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Figure 8: M dependencies of the retrieval success
rates by iterative learning

and iterative learning rule are discussed. Most of
the computation on the projection rule is devoted to
the creation of the weight matrix (Eq.(13)), thus the
number of neurons (N) becomes a major parameter
determining the computational time. Figure 10(a)
shows computational time by the projection rule with
respect to the number of neurons, in which evalua-
tions are conducted on a PC (Corei7 860 2.80GHz,
Memory 8GB). The curves in this figure have similar
tendencies and are approximated as aN2 where a is a
parameter depending on the number of memory pat-
terns M. In the iterative learning, computational cost
is affected by the numbers of iterations, neurons, and
patterns. The computational time, with various Ms
and 10 iterations, with respect to the number of neu-
rons is shown in Fig. 10(b). Computational time can
also be approximated as aN2, though overall compu-
tational costs for the iterative learning are relatively
low.
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posed of randomly generated values. The size of
the pattern (the number of neurons in the network)
is set to 100, and the resolution factor K is set to
K = 4,6,8,16,32,64. The number of the stored pat-
terns, denoted by M, varies such that M = 1, · · · ,30.

The stability of the patterns are checked by the
following procedure. First, for given K and M, the
stored patterns are prepared and are embedded to
the network. In the iterative learning, presenting the
stored patterns to the network with 10 iterations is
conducted for modifying the connection weights of
the network. After the learning, each of the stored
patterns is set to the network as its initial configura-
tion, then the updates of the network are conducted
for all the neurons in the network. If the configura-
tion of the network does not change, the input pat-
tern (one of the stored patterns) can be stable; other-
wise the input pattern cannot be embedded. An em-
bedding process with given parameters is regarded
as successful if all the stored patterns are stable.

Figure 8 shows the M dependencies of the re-
trieval success rates with several Ks, in which 100
different sets of patterns are used for each M. For
the fixed size of the network, it becomes difficult
to embed the larger number of patterns, as in the
case of real-valued Hopfield networks. Also, the
number of patterns to be embedded correctly de-
pends on the resolution K for the neuron state. A
neuron with larger value of K should contain much
more information for the embedded patterns, and it
is equivalent to larger value of M in the network.
Thus, increasing M and/or K in the network with
small number of neurons will lead to degradation
of embedded patterns in the network. For compar-
ison of performance, the M dependence of the re-
trieval success rates obtained by projection rule is
shown in Figure 9. Similar tendencies to the re-
sults obtained by iterative learning rule are shown
though overall capacities of patterns in the network
are much higher.

Figure 8. M dependencies of the retrieval success
rates by iterative learning

Figure 9. M dependencies of the retrieval success
rates by Projection rule

The computational costs for the projection rule
and iterative learning rule are discussed. Most of
the computation on the projection rule is devoted
to the creation of the weight matrix (Eq.(13)), thus
the number of neurons (N) becomes a major param-
eter determining the computational time. Figure
10(a) shows computational time by the projection
rule with respect to the number of neurons, in which
evaluations are conducted on a PC (Core i7 860
2.80GHz, Memory 8GB). The curves in this fig-
ure have similar tendencies and are approximated as
aN2 where a is a parameter depending on the num-
ber of memory patterns M. In the iterative learn-
ing, computational cost is affected by the numbers
of iterations, neurons, and patterns. The computa-
tional time, with various Ms and 10 iterations, with
respect to the number of neurons is shown in Fig-
ure 10(b). Computational time can also be approx-
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success rates with several Ks, in which 100 different
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the larger number of patterns, as in the case of real-
valued hopfield networks. Also, the number of pat-
terns to be embedded correctly depends on the reso-
lution K for the neuron state. A neuron with larger
value of K should contain much more information
for the embedded patterns, and it is equivalent to
larger value of M in the network. Thus, increasing M
and/or K in the network with small number of neu-
rons will lead to degradation of embedded patterns
in the network. For comparison of performance, the
M dependence of the retrieval success rates obtained
by projection rule is shown in Fig. 9. Similar tenden-
cies to the results obtained by iterative learning rule
are shown though overall capacities of patterns in the
network are much higher.
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the computation on the projection rule is devoted to
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3.3 Stability of embedded patterns by itera-
tive learning rule

In the previous section, we show some comparisons
of iterative learning rule and projection rule from the
viewpoint of retrieval performances by setting one
of stored patterns as an initial state of the network.
Performance differences arise due to the stability in
the embedding processes by these learning schemes.
In this section, we investigate the stabilities on the
patterns embedded by the iterative learning in more
detail, through an analysis on the evolutionary pro-
cess of weight connections in learning.

We have already discussed the stability of the
memory patterns in Section 2.2 by using the phase
relation (Eqs.(7) and (8)). Thus, it is useful to adopt
the phase difference between the action potential of
a neuron and a memory state for the corresponding
neuron, in order to evaluate the stability of an embed-
ded pattern. A phase difference dµ

p for the p-th neu-
ron in the µ-th pattern at the t-th iteration in learning
is defined as

dµ
p(t) = |arg(hp(t))− arg(εµ

p)|. (19)
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Figure 10: Computational time for (a) projection
rule and (b) iterative learning rule with respect to the
number of embedded patterns

Thus the basic stability condition is dµ
p < ϕ0/2. The

average of dµ
p(t) for all neurons is denoted as dµ(t).

We introduce a procedure for embedding the
memory patterns by iterative learning. In the first
iteration in embedding patterns, each of the memory
patterns is prepared and the connection weights are
updated by this pattern according to

wnew
pq = wold

pq +α ·δwpq, (20)

where α is a real-valued parameter. When α = 1.0,
this updating scheme corresponds to the original up-
dating scheme (Eq.(15)). Then, dµ

p is calculated for
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posed of randomly generated values. The size of
the pattern (the number of neurons in the network)
is set to 100, and the resolution factor K is set to
K = 4,6,8,16,32,64. The number of the stored pat-
terns, denoted by M, varies such that M = 1, · · · ,30.

The stability of the patterns are checked by the
following procedure. First, for given K and M, the
stored patterns are prepared and are embedded to
the network. In the iterative learning, presenting the
stored patterns to the network with 10 iterations is
conducted for modifying the connection weights of
the network. After the learning, each of the stored
patterns is set to the network as its initial configura-
tion, then the updates of the network are conducted
for all the neurons in the network. If the configura-
tion of the network does not change, the input pat-
tern (one of the stored patterns) can be stable; other-
wise the input pattern cannot be embedded. An em-
bedding process with given parameters is regarded
as successful if all the stored patterns are stable.

Figure 8 shows the M dependencies of the re-
trieval success rates with several Ks, in which 100
different sets of patterns are used for each M. For
the fixed size of the network, it becomes difficult
to embed the larger number of patterns, as in the
case of real-valued Hopfield networks. Also, the
number of patterns to be embedded correctly de-
pends on the resolution K for the neuron state. A
neuron with larger value of K should contain much
more information for the embedded patterns, and it
is equivalent to larger value of M in the network.
Thus, increasing M and/or K in the network with
small number of neurons will lead to degradation
of embedded patterns in the network. For compar-
ison of performance, the M dependence of the re-
trieval success rates obtained by projection rule is
shown in Figure 9. Similar tendencies to the re-
sults obtained by iterative learning rule are shown
though overall capacities of patterns in the network
are much higher.

Figure 8. M dependencies of the retrieval success
rates by iterative learning

Figure 9. M dependencies of the retrieval success
rates by Projection rule

The computational costs for the projection rule
and iterative learning rule are discussed. Most of
the computation on the projection rule is devoted
to the creation of the weight matrix (Eq.(13)), thus
the number of neurons (N) becomes a major param-
eter determining the computational time. Figure
10(a) shows computational time by the projection
rule with respect to the number of neurons, in which
evaluations are conducted on a PC (Core i7 860
2.80GHz, Memory 8GB). The curves in this fig-
ure have similar tendencies and are approximated as
aN2 where a is a parameter depending on the num-
ber of memory patterns M. In the iterative learn-
ing, computational cost is affected by the numbers
of iterations, neurons, and patterns. The computa-
tional time, with various Ms and 10 iterations, with
respect to the number of neurons is shown in Fig-
ure 10(b). Computational time can also be approx-
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imated as aN2, though overall computational costs
for the iterative learning are relatively low.

Figure 10. Computational time for (a) projection
rule and (b) iterative learning rule with respect to

the number of embedded patterns

3.3 Stability of Embedded Patterns by It-
erative Learning Rule

In the previous Section, we show some compar-
isons of iterative learning rule and projection rule
from the viewpoint of retrieval performances by set-
ting one of stored patterns as an initial state of the
network. Performance differences arise due to the
stability in the embedding processes by these learn-
ing schemes. In this Section, we investigate the
stabilities on the patterns embedded by the itera-
tive learning in more detail, through an analysis on
the evolutionary process of weight connections in
learning.

We have already discussed the stability of the
memory patterns in Section 2.2 by using the phase
relation (Eqs.(7) and (8)). Thus, it is useful to adopt
the phase difference between the action potential of
a neuron and a memory state for the correspond-

ing neuron, in order to evaluate the stability of an
embedded pattern. A phase difference dµ

p for the p-
th neuron in the µ-th pattern at the t-th iteration in
learning is defined as

dµ
p(t) = |arg(hp(t))− arg(εµ

p)|. (19)

Thus the basic stability condition is dµ
p < φ0/2. The

average of dµ
p(t) for all neurons is denoted as dµ(t).

We introduce a procedure for embedding the
memory patterns by iterative learning. In the first
iteration in embedding patterns, each of the mem-
ory patterns is prepared and the connection weights
are updated by this pattern according to

wnew
pq = wold

pq +α ·δwpq, (20)

where α is a real-valued parameter. When α = 1.0,
this updating scheme corresponds to the original
updating scheme (Eq.(15)). Then, dµ

p is calculated
for each of the memory patterns and for each of the
neurons. At each subsequent iteration in learning,
only the patterns with the condition of dµ

p ≥ φ0/2
for any p are prepared and used for updating the
connection weights.

The following conditions are used for the ex-
periments. The numbers of neurons and memory
patterns are N = 100 and M = 15, respectively, and
the resolution factor K is set to 4 (thus φ0/2 =
0.7854). Each element of the memory patterns is
randomly generated. Iterative learning with α = 0.1
in Eq.(20) and projection rule are used for embed-
ding the memory patterns, and the performances of
these schemes are evaluated. As in the experiment
in the previous Section, all patterns are embedded
to the network and then each of the patterns is set
to the initial state of the network. If the configura-
tion of the network do not change from the initial
configuration, this pattern is stably embedded. Re-
trieval is regarded as successful if all the patterns
are stably embedded.

First we show the evolutions of the averaged
phase differences by iterative learning. Table 1
shows an example of averaged phases for the first
six iterations of learning. In this table there are
the averaged phase differences for only four pat-
terns (µ = 2,4,5,14) that are involved in the iter-
ations of learning. At the first iteration of learn-
ing there are two neurons that do not satisfy the
condition dµ

p < φ0/2 for the 14-th pattern. Thus in
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3.3 Stability of embedded patterns by itera-
tive learning rule

In the previous section, we show some comparisons
of iterative learning rule and projection rule from the
viewpoint of retrieval performances by setting one
of stored patterns as an initial state of the network.
Performance differences arise due to the stability in
the embedding processes by these learning schemes.
In this section, we investigate the stabilities on the
patterns embedded by the iterative learning in more
detail, through an analysis on the evolutionary pro-
cess of weight connections in learning.

We have already discussed the stability of the
memory patterns in Section 2.2 by using the phase
relation (Eqs.(7) and (8)). Thus, it is useful to adopt
the phase difference between the action potential of
a neuron and a memory state for the corresponding
neuron, in order to evaluate the stability of an embed-
ded pattern. A phase difference dµ

p for the p-th neu-
ron in the µ-th pattern at the t-th iteration in learning
is defined as

dµ
p(t) = |arg(hp(t))− arg(εµ

p)|. (19)
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Figure 10: Computational time for (a) projection
rule and (b) iterative learning rule with respect to the
number of embedded patterns

Thus the basic stability condition is dµ
p < ϕ0/2. The

average of dµ
p(t) for all neurons is denoted as dµ(t).

We introduce a procedure for embedding the
memory patterns by iterative learning. In the first
iteration in embedding patterns, each of the memory
patterns is prepared and the connection weights are
updated by this pattern according to

wnew
pq = wold

pq +α ·δwpq, (20)

where α is a real-valued parameter. When α = 1.0,
this updating scheme corresponds to the original up-
dating scheme (Eq.(15)). Then, dµ

p is calculated for
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the second iteration, only the 14-th pattern is used
for updating the connection weights. As a result,
the averaged phase difference for this pattern ac-
tually decreased but the phase differences for the
other patterns slightly increased. At the third itera-
tion, the second pattern is involved in learning and
then the phase difference for this pattern decreased,
by the reason that some phase differences with re-
spect to the second pattern exceed to the thresh-
old φ0/2. Similar process is conducted at the each
subsequent iteration in learning. The averaged dif-
ferences gradually decreases according to the itera-
tions, though sometimes they slightly increase.

As described above, strengthening the embed
for a particular pattern often results in weakening
the other patterns, though embedding all patterns
is still possible. Figure 11 shows an example of
changes of retrieval success rate with respect to the
iteration in learning. The success rate increases
according to the iterations of learning and some-
times fluctuates by strengthening and weakening
the stored patterns by learning. At the 66-th iter-
ation, all the patterns could be retrieved thus em-
bedded. The averaged phase differences for the net-
work with 66-th iteration in learning are shown in
Figure 12. The results for the network in which the
patterns are embedded by projection rule are also
shown in this figure. The phase differences by pro-
jection rule are much smaller than those by itera-
tive learning rule, thus the patterns are better em-
bedded by projection rule. This result would reflect
the possible number of embedded patterns, shown
in Figs. 8 and 9.

The parameters for embedding patterns, such as
the number of memory patterns M and the resolu-
tion factor K, impact the process of embedding, i.e.,
the evolution of the retrieval success rate. Figure 13
shows the retrieval success rates with respect to the
learning iterations in the case of M = 20 and K = 4
and in the case of M = 15 and K = 6. Increase of K
or M makes difficult to embed patterns in the itera-
tive learning rule, as suggested in Figure 8.

Figure 11. Evolution of retrieval success rate by
iterative learning rule (N = 100,M = 15,K = 4)

Figure 12. Averaged phase differences for 15
patterns by iterative learning rule with 66-th

iteration and projection rule

Figure 13. Evolutions of retrieval success rates by
iterative learning rule (N = 100,M = 20,K = 4)

and (N = 100,M = 15,K = 6)

Table 1: An example of evolutions for the averaged phase differences according to the iterations by iterative
learning rule. At the first iteration of learning, all the patterns are involved in learning. At the second, third,
fourth, and fifth iteration of learning, the 14-th, the second, the fourth, and the fifth patterns, respectively,
are involved in learning.

µ dµ(1) dµ(2) dµ(3) dµ(4) dµ(5) dµ(6)
2 0.23302 0.23318 0.21511 0.22016 0.22528 0.20918
4 0.23391 0.23553 0.24084 0.22185 0.20570 0.21051
5 0.21062 0.21377 0.21710 0.21755 0.21805 0.22197

14 0.22466 0.20580 0.20582 0.20862 0.21174 0.21180
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Figure 11: Evolution of retrieval success rate by iter-
ative learning rule (N = 100,M = 15,K = 4)

network with their attractors, and the capability for
embedding depends on the number of patterns and
the resolution for representing neuron states. The
stability of embedded patterns have also been ex-
plored through measuring the phase differences on
presenting the memory patterns to the trained net-
works.

Though the computational cost for iterative learn-
ing rule is much lower than that of projection rule,
the capability of iterative learning rule is not high
as projection rule, as indicated in the experimental
results. One of our future researches directs to de-
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Figure 12: Averaged phase differences for 15 pat-
terns by iterative learning rule with 66-th iteration
and projection rule

veloping improvement schemes for the learning ca-
pability by iterative learning rule. This could be real-
ized by incorporating a more sophisticated control of
updating the connection weights in the network. An-
alyzing other types of learning schemes, such as the
scheme in [11], will be necessary. The analysis of
this learning scheme for higher dimensional associa-
tive memory is also a challenging problem, such as
for quaternionic multistate hopfield neural networks
[19, 20, 21] in which two or three kinds of phase val-
ues are available for representing neuron’s state.
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updating the connection weights in the network. An-
alyzing other types of learning schemes, such as the
scheme in [11], will be necessary. The analysis of
this learning scheme for higher dimensional associa-
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for quaternionic multistate hopfield neural networks
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the second iteration, only the 14-th pattern is used
for updating the connection weights. As a result,
the averaged phase difference for this pattern ac-
tually decreased but the phase differences for the
other patterns slightly increased. At the third itera-
tion, the second pattern is involved in learning and
then the phase difference for this pattern decreased,
by the reason that some phase differences with re-
spect to the second pattern exceed to the thresh-
old φ0/2. Similar process is conducted at the each
subsequent iteration in learning. The averaged dif-
ferences gradually decreases according to the itera-
tions, though sometimes they slightly increase.

As described above, strengthening the embed
for a particular pattern often results in weakening
the other patterns, though embedding all patterns
is still possible. Figure 11 shows an example of
changes of retrieval success rate with respect to the
iteration in learning. The success rate increases
according to the iterations of learning and some-
times fluctuates by strengthening and weakening
the stored patterns by learning. At the 66-th iter-
ation, all the patterns could be retrieved thus em-
bedded. The averaged phase differences for the net-
work with 66-th iteration in learning are shown in
Figure 12. The results for the network in which the
patterns are embedded by projection rule are also
shown in this figure. The phase differences by pro-
jection rule are much smaller than those by itera-
tive learning rule, thus the patterns are better em-
bedded by projection rule. This result would reflect
the possible number of embedded patterns, shown
in Figs. 8 and 9.

The parameters for embedding patterns, such as
the number of memory patterns M and the resolu-
tion factor K, impact the process of embedding, i.e.,
the evolution of the retrieval success rate. Figure 13
shows the retrieval success rates with respect to the
learning iterations in the case of M = 20 and K = 4
and in the case of M = 15 and K = 6. Increase of K
or M makes difficult to embed patterns in the itera-
tive learning rule, as suggested in Figure 8.

Figure 11. Evolution of retrieval success rate by
iterative learning rule (N = 100,M = 15,K = 4)

Figure 12. Averaged phase differences for 15
patterns by iterative learning rule with 66-th

iteration and projection rule

Figure 13. Evolutions of retrieval success rates by
iterative learning rule (N = 100,M = 20,K = 4)

and (N = 100,M = 15,K = 6)

COMPLEX-VALUED ASSOCIATIVE MEMORIES . . .

Table 1. An example of evolutions for the averaged phase differences according to the iterations by
iterative learning rule. At the first iteration of learning, all the patterns are involved in learning. At the

second, third, fourth, and fifth iteration of learning, the 14-th, the second, the fourth, and the fifth patterns,
respectively, are involved in learning.

µ dµ(1) dµ(2) dµ(3) dµ(4) dµ(5) dµ(6)
2 0.23302 0.23318 0.21511 0.22016 0.22528 0.20918
4 0.23391 0.23553 0.24084 0.22185 0.20570 0.21051
5 0.21062 0.21377 0.21710 0.21755 0.21805 0.22197

14 0.22466 0.20580 0.20582 0.20862 0.21174 0.21180

4 Conclusion

In this paper, the stabilities of embedded pat-
terns are investigated in the complex-valued asso-
ciative memory. The associative memory is based
on complex-valued multistate Hopfield neural net-
work, and iterative learning rule and projection rule
are adopted for embedding patterns. The experi-
mental results show that the patterns can be cer-
tainly embedded in the network with their attrac-
tors, and the capability for embedding depends on
the number of patterns and the resolution for rep-
resenting neuron states. The stability of embedded
patterns have also been explored through measur-
ing the phase differences on presenting the memory
patterns to the trained networks.

Though the computational cost for iterative
learning rule is much lower than that of projection
rule, the capability of iterative learning rule is not
high as projection rule, as indicated in the exper-
imental results. One of our future researches di-
rects to developing improvement schemes for the
learning capability by iterative learning rule. This
could be realized by incorporating a more sophis-
ticated control of updating the connection weights
in the network. Analyzing other types of learning
schemes, such as the scheme in [11], will be neces-
sary. The analysis of this learning scheme for higher
dimensional associative memory is also a challeng-
ing problem, such as for quaternionic multistate
Hopfield neural networks [19, 20, 21] in which two
or three kinds of phase values are available for rep-
resenting neuron’s state.
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The action potential of the neuron r, hr(t + 1), can be
represented by its variables at the time t and time (t+1).

hr(t +1) =
N

∑
q=1

wrquq(t +1)

=
N

∑
q=1

wrquq(t +1)−wrrur(t)

+wrrur(t +1)
= hp(t)−wrr (ur(t)−ur(t +1)) .

(23)

Using this variable, Eq.(22) can be rewritten as

Er(t +1) = −Re(u∗r (t +1)hr(t)

−wrr (ur(t)−ur(t +1)))+
1
2
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= −Re(u∗r (t +1)hr(t))

+wrrRe(u∗r (t +1)(ur(t)−ur(t +1)))

+
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1
2

wrr.

(24)

The difference of the contribution between the time t and
(t +1), ∆E, is calculated from Eqs.(21) and (22).

∆E = Er(t +1)−Er(t)

= −{Re(u∗r (t +1)hr(t))−Re(u∗r (t)hr(t))}
+wrr {Re(u∗r (t +1)ur(t))−1}

= −(X1 −X2)+wrrX3, (25)

where

X1 = Re(u∗r (t +1)hr(t)) ,

X2 = Re(u∗r (t)hr(t)) ,

X3 = Re(u∗r (t +1)ur(t))−1.

Proving the monotonically decrease of E corre-
sponds to showing ∆E ≤ 0 with respect to the change
of network state. Thus it is necessary to investigate each
of X1, X2, and X3. For this purpose the following two
relations are required. One is the relation of the outputs
between the time t and (t +1):

ur(t +1) = ur(t)eiaφ0 , (26)

where a is an integer. The other relation refers to the
action potential hr(t) and the output ur(t):

hr(t) = |hr(t)|ei∆φur(t +1)

= |hr(t)|ei(aφ0+∆φ)ur(t). (27)

Investigation the term X3 is firstly conducted. the
term u∗r (t + 1)ur(t) is decomposed by using the above-
mentioned relations, as

u∗r (t +1)ur(t) =
(
ur(t)eiaφ0

)∗
ur(t)

= u∗r (t)e
−iaφ0 ur(t)

= e−iaφ0 .

Thus X3 = cos(−aφ0)− 1 is obtained. This term does
not take a positive value due to −1 ≤ cos(−aφ0) ≤ 1.
Consequently wrrX3 ≤ 0 is satisfied under the condition
of wrr being a non-negative value.

Similarly the terms X1 and X2 are investigated as

X1 = Re
(

u∗r (t)e
−iaφ0 |hr(t)|ei(aφ0+∆φ)ur(t)

)

= |hr(t)|Re(ei∆φ)

= |hr(t)|cos(∆φ),

and

X2 = Re
(

u∗r (t)|hr(t)|ei(aφ0+∆φ)ur(t)
)

= |hr(t)|cos(aφ0 +∆φ),

respectively. Thus under the condition |∆φ|< φ0,

X1 −X2 = |hr(t)|(cos(∆φ)− cos(aφ0 +∆φ))
≥ 0, (28)

is obtained. Finally ∆E ≤ 0 is obtained from these rela-
tions.

B Proof for the stability of local it-
erative learning scheme

This Section describe a proof concerning the stabil-
ity of iterative learning rule, i.e., this rule can actually
embed each of the stored patterns as its stable configu-
ration in the network. Let θnew

p and θold
p be the angles of

hnew
p and hold

p in a complex plane, respectively. Equation
(18) can be expressed as

|hnew
p |eiθnew

p = |hold
p |eiθold

p + |εµ
p|eiξµ

pφ0 .

Multiplication this equation with e−iξµ
pφ0 gives

|hnew
p |ei(θnew

p −ξµ
pφ0) = |hold

p |ei(θold
p −ξµ

pφ0) + |εµ
p|.

This can be written as two equations for real and imagi-
nary components:

|hnew
p |cos

(
θnew

p −ξµ
pφ0

)

= |hold
p |cos

(
θold

p −ξµ
pφ0

)
+ |εµ

p| (29)

and

|hnew
p |sin

(
θnew

p −ξµ
pφ0

)
= |hold

p |sin
(

θold
p −ξµ

pφ0

)
.

(30)
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To represent the value of the update frequency, hL+1
p and

hL
p for hnew

p and hold
p , respectively, are substituted where

L is the number of updates in iterative learning. Then,
Eq.(29) can be expressed as

|hL+1
p |cos(θL+1

p −ξµ
pφ0)

= |hL
p|cos(θL

p −ξµ
pφ0)+ |εµ

p|
= |hL−1

p |cos(θL−1
p −ξµ

pφ0)+2|εµ
p|

...
= |h0

p|cos(θ0
p −ξµ

pφ0)+(L+1)|εµ
p|.

Hence, the following relation is obtained:

cos(θL+1
p −ξµ

pφ0) =
|h0

p|cos(θ0
p −ξµ

pφ0)+(L+1)|εµ
p|

|hL+1
p |

.

(31)
In a similar way, using Eq.(30), the following relation is
obtained:

|hL+1
p |sin(θL+1

p −ξµ
pφ0) = |h0

p|sin(θ0
p −ξµ

pφ0) (32)

From these equations,

cos(θL+1
p −ξµ

pφ0)

=
|h0

p|Θ+(L+1)|εµ
p|√

|h0
p|2 +2(L+1)|h0

p||ε
µ
p|Θ+(L+1)2|εµ

p|2
.

(33)

where Θ = cos(θ0
p −ξµ

pφ0).

According to the iterative update in the connection
weights, Eq.(33) becomes

cos(θL+1
p −ξµ

pφ0)≃
(L+1)|εµ

p|√
(L+1)2|εµ

p|2
= 1, (34)

for large values of L. This shows that the direction of
hL+1

p approaches that of εµ
p, that is,

|arg(hL+1
p )−ξµ

pφ0|< |arg(h0
p)−ξµ

pφ0| (35)

for large value of L.

It can be seen that the direction of hp would move to-
wards that of εµ

p by even one update. From the Eqs.(29)
and (30), the following relations hold:

cos(θnew
p −ξµ

pφ0) =
|hnew

p |2 −|hold
p |2 + |εµ

p|2

2|hnew
p ||εµ

p|

and

cos(θold
p −ξµ

pφ0) =
|hnew

p |2 −|hold
p |2 −|εµ

p|2

2|hold
p ||εµ

p|
.

We see that the difference between the above two equa-
tions is always greater than 0, i.e.,

cos(θnew
p −ξµ

pφ0)− cos(θold
p −ξµ

pφ0)

=

(
|hnew

p |+ |hold
p |

){(
|hnew

p |− |hold
p |

)2
+ |εµ

p|2
}

2|hnew
p ||hold

p ||εµ
p|

> 0. (36)

Consequently, we obtain

|arg(hnew
p )−ξµ

pφ0|< |arg(hold
p )−ξµ

pφ0|. (37)

This indicates that even one update can make the di-
rection of hp move towards that of εµ

p. Thus the de-
sired memory patterns can be embedded by the proposed
learning scheme expressed in Eq.(15).

In the case of all the patterns being orthogonal to
one another, this rule becomes equivalent to the Hebbian
learning rule. The connection weights are defined by the
Hebbian rule in Eq.(10). The action potential at up = εµ

p
becomes

hp =
N

∑
q=1

wpquq

=
N

∑
q=1

1
N

(
np

∑
ν=1

εν
pεν∗

q

)
εµ

q

= ∑
ν

εν
p ·

1
N ∑

q
εν∗

q εµ
q

= ∑
ν

εν
pδν,µ

= εµ
p.

In this case, the relation

|arg(hp)−ξµ
pφ0|= 0 < κ (38)

always holds.
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To represent the value of the update frequency, hL+1
p and

hL
p for hnew

p and hold
p , respectively, are substituted where

L is the number of updates in iterative learning. Then,
Eq.(29) can be expressed as

|hL+1
p |cos(θL+1

p −ξµ
pφ0)

= |hL
p|cos(θL

p −ξµ
pφ0)+ |εµ

p|
= |hL−1

p |cos(θL−1
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pφ0)+2|εµ
p|

...
= |h0
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p −ξµ
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p|.

Hence, the following relation is obtained:
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pφ0) =
|h0

p|cos(θ0
p −ξµ
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p|
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.
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In a similar way, using Eq.(30), the following relation is
obtained:

|hL+1
p |sin(θL+1

p −ξµ
pφ0) = |h0

p|sin(θ0
p −ξµ

pφ0) (32)

From these equations,

cos(θL+1
p −ξµ

pφ0)

=
|h0

p|Θ+(L+1)|εµ
p|√

|h0
p|2 +2(L+1)|h0

p||ε
µ
p|Θ+(L+1)2|εµ

p|2
.

(33)

where Θ = cos(θ0
p −ξµ

pφ0).

According to the iterative update in the connection
weights, Eq.(33) becomes

cos(θL+1
p −ξµ

pφ0)≃
(L+1)|εµ

p|√
(L+1)2|εµ

p|2
= 1, (34)

for large values of L. This shows that the direction of
hL+1

p approaches that of εµ
p, that is,

|arg(hL+1
p )−ξµ

pφ0|< |arg(h0
p)−ξµ

pφ0| (35)

for large value of L.

It can be seen that the direction of hp would move to-
wards that of εµ

p by even one update. From the Eqs.(29)
and (30), the following relations hold:

cos(θnew
p −ξµ

pφ0) =
|hnew

p |2 −|hold
p |2 + |εµ

p|2

2|hnew
p ||εµ

p|

and

cos(θold
p −ξµ

pφ0) =
|hnew

p |2 −|hold
p |2 −|εµ

p|2

2|hold
p ||εµ

p|
.

We see that the difference between the above two equa-
tions is always greater than 0, i.e.,

cos(θnew
p −ξµ

pφ0)− cos(θold
p −ξµ

pφ0)

=

(
|hnew

p |+ |hold
p |

){(
|hnew

p |− |hold
p |

)2
+ |εµ

p|2
}

2|hnew
p ||hold

p ||εµ
p|

> 0. (36)

Consequently, we obtain

|arg(hnew
p )−ξµ

pφ0|< |arg(hold
p )−ξµ

pφ0|. (37)

This indicates that even one update can make the di-
rection of hp move towards that of εµ

p. Thus the de-
sired memory patterns can be embedded by the proposed
learning scheme expressed in Eq.(15).

In the case of all the patterns being orthogonal to
one another, this rule becomes equivalent to the Hebbian
learning rule. The connection weights are defined by the
Hebbian rule in Eq.(10). The action potential at up = εµ

p
becomes

hp =
N

∑
q=1

wpquq

=
N

∑
q=1

1
N

(
np

∑
ν=1

εν
pεν∗

q

)
εµ

q

= ∑
ν

εν
p ·

1
N ∑

q
εν∗

q εµ
q

= ∑
ν

εν
pδν,µ

= εµ
p.

In this case, the relation

|arg(hp)−ξµ
pφ0|= 0 < κ (38)

always holds.
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COMPLEX-VALUED ASSOCIATIVE MEMORIES . . .

The action potential of the neuron r, hr(t + 1), can be
represented by its variables at the time t and time (t+1).

hr(t +1) =
N

∑
q=1

wrquq(t +1)

=
N

∑
q=1

wrquq(t +1)−wrrur(t)

+wrrur(t +1)
= hp(t)−wrr (ur(t)−ur(t +1)) .

(23)

Using this variable, Eq.(22) can be rewritten as

Er(t +1) = −Re(u∗r (t +1)hr(t)

−wrr (ur(t)−ur(t +1)))+
1
2

wrr

= −Re(u∗r (t +1)hr(t))

+wrrRe(u∗r (t +1)(ur(t)−ur(t +1)))

+
1
2

wrr

= −Re(u∗r (t +1)hr(t))

+wrrRe(u∗r (t +1)ur(t)−1)+
1
2

wrr.

(24)

The difference of the contribution between the time t and
(t +1), ∆E, is calculated from Eqs.(21) and (22).

∆E = Er(t +1)−Er(t)

= −{Re(u∗r (t +1)hr(t))−Re(u∗r (t)hr(t))}
+wrr {Re(u∗r (t +1)ur(t))−1}

= −(X1 −X2)+wrrX3, (25)

where

X1 = Re(u∗r (t +1)hr(t)) ,

X2 = Re(u∗r (t)hr(t)) ,

X3 = Re(u∗r (t +1)ur(t))−1.

Proving the monotonically decrease of E corre-
sponds to showing ∆E ≤ 0 with respect to the change
of network state. Thus it is necessary to investigate each
of X1, X2, and X3. For this purpose the following two
relations are required. One is the relation of the outputs
between the time t and (t +1):

ur(t +1) = ur(t)eiaφ0 , (26)

where a is an integer. The other relation refers to the
action potential hr(t) and the output ur(t):

hr(t) = |hr(t)|ei∆φur(t +1)

= |hr(t)|ei(aφ0+∆φ)ur(t). (27)

Investigation the term X3 is firstly conducted. the
term u∗r (t + 1)ur(t) is decomposed by using the above-
mentioned relations, as

u∗r (t +1)ur(t) =
(
ur(t)eiaφ0

)∗
ur(t)

= u∗r (t)e
−iaφ0 ur(t)

= e−iaφ0 .

Thus X3 = cos(−aφ0)− 1 is obtained. This term does
not take a positive value due to −1 ≤ cos(−aφ0) ≤ 1.
Consequently wrrX3 ≤ 0 is satisfied under the condition
of wrr being a non-negative value.

Similarly the terms X1 and X2 are investigated as

X1 = Re
(

u∗r (t)e
−iaφ0 |hr(t)|ei(aφ0+∆φ)ur(t)

)

= |hr(t)|Re(ei∆φ)

= |hr(t)|cos(∆φ),

and

X2 = Re
(

u∗r (t)|hr(t)|ei(aφ0+∆φ)ur(t)
)

= |hr(t)|cos(aφ0 +∆φ),

respectively. Thus under the condition |∆φ|< φ0,

X1 −X2 = |hr(t)|(cos(∆φ)− cos(aφ0 +∆φ))
≥ 0, (28)

is obtained. Finally ∆E ≤ 0 is obtained from these rela-
tions.

B Proof for the stability of local it-
erative learning scheme

This Section describe a proof concerning the stabil-
ity of iterative learning rule, i.e., this rule can actually
embed each of the stored patterns as its stable configu-
ration in the network. Let θnew

p and θold
p be the angles of

hnew
p and hold

p in a complex plane, respectively. Equation
(18) can be expressed as

|hnew
p |eiθnew

p = |hold
p |eiθold

p + |εµ
p|eiξµ

pφ0 .

Multiplication this equation with e−iξµ
pφ0 gives

|hnew
p |ei(θnew

p −ξµ
pφ0) = |hold

p |ei(θold
p −ξµ

pφ0) + |εµ
p|.

This can be written as two equations for real and imagi-
nary components:

|hnew
p |cos

(
θnew

p −ξµ
pφ0

)

= |hold
p |cos

(
θold

p −ξµ
pφ0

)
+ |εµ

p| (29)

and

|hnew
p |sin

(
θnew

p −ξµ
pφ0

)
= |hold

p |sin
(

θold
p −ξµ

pφ0

)
.

(30)




