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Abstract

Differential Evolution (DE) is a simple, yet highly competitive real parameter optimizer
in the family of evolutionary algorithms. A significant contribution of its robust per-
formance is attributed to its control parameters, and mutation strategy employed, proper
settings of which, generally lead to good solutions. Finding the best parameters for a
given problem through the trial and error method is time consuming, and sometimes im-
practical. This calls for the development of adaptive parameter control mechanisms. In
this work, we investigate the impact and efficacy of adapting mutation strategies with
or without adapting the control parameters, and report the plausibility of this scheme.
Backed with empirical evidence from this and previous works, we first build a case for
strategy adaptation in the presence as well as in the absence of parameter adaptation. Af-
terwards, we propose a new mutation strategy, and an adaptive variant SA-SHADE which
is based on a recently proposed self-adaptive memory based variant of Differential evolu-
tion, SHADE. We report the performance of SA-SHADE on 28 benchmark functions of
varying complexity, and compare it with the classic DE algorithm (DE/Rand/1/bin), and
other state-of-the-art adaptive DE variants including CoDE, EPSDE, JADE, and SHADE
itself. Our results show that adaptation of mutation strategy improves the performance
of DE in both presence, and absence of control parameter adaptation, and should thus be
employed frequently.
Keywords: Evolutionary algorithms, Differential evolution, mutation strategy, adaptive
control

1 Introduction

Challenging real world optimization problems
are ubiquitous in scientific and engineering do-
mains. Complexity of the problem notwithstanding,
its objective function may also be non-continuous,
and non-differentiable adding to the overall diffi-

culty, and negotiability of the search space. Re-
searchers have been looking towards Darwinian in-
spired evolutionary theories like social group be-
havior, and foraging strategies, to name a few, for
tackling hard, and complex optimization problems.
Nature inspired algorithms are the outcomes of such
research activity. These algorithms can be broadly
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classified into two categories: evolutionary com-
puting methods, and swarm intelligence algorithms,
both of which employ their own set of control pa-
rameters.

The underlying idea behind evolutionary algo-
rithms is the iterative fitness improvement of a pop-
ulation of individuals (solutions), through natural
selection. An iteration generally involves, produc-
ing new individuals through a series of mutations
and recombinations, gradually removing lesser fit
individuals from the population, and replacing them
with newly generated individuals if their fitness
proves to be better than the individuals they were
generated to replace [1]. The operation of swarm
intelligence algorithms may be behaviorally charac-
terized as a decentralized swarm searching for op-
timal food sources (solutions) [2]. The direction of
individual search is influenced by the current loca-
tion of the individual, its best location ever, and the
location of the best individual in the whole swarm.
The performance of both these classes of algorithms
is quite sensitive to their respective control param-
eter settings, good values of which are problem de-
pendent. Unless the user has quite an experience
in parameter tuning, finding the best parameter set-
tings for a given problem through trial and error
may prove, at best, an arduous, and sometimes an
infeasible task. A way out of this conundrum lies
in an arrangement that may alter or adapt these pa-
rameters during the course of the algorithm. Much
attention has been paid to this problem and many
adaptive schemes have been proposed in the past
[3]-[7].

Lately, Differential Evolution (DE) [8], an evo-
lutionary algorithm, has established itself as a ro-
bust real parameter optimizer. Intensive research
activity on the subject in the past decade speaks
volumes of its power and popularity. DE has been
rigorously evaluated on a broad range of bench-
mark problems, and has been extensively applied to
real life scientific, and engineering problems [9]. It
also secured first position in the First International
Contest on Evolutionary Optimization in May 1996
[10].

DE is simple and operates with only a few con-
trol parameters namely scale factor (F), crossover
rate (Cr), and population size (NP). The perfor-
mance of DE, as with any evolutionary algorithm,
is quite sensitive to the appropriate settings of these

parameters as reported in [1], [11], [12]. A good
setting can improve both the convergence speed,
and the quality of the solution. Conversely, a poorly
chosen setting of these parameters can seriously de-
teriorate the algorithm’s efficacy. Given the impor-
tance the parameter setting carries, choosing effec-
tive control parameter values, at the same time, can
be quite a tedious task.

Generally, an effective combination of these pa-
rameters depends upon the problem being tackled,
and necessitates a good amount of user experience.
It would not be inappropriate to remark that the
more informed values of these control parameters
are, the better the results. While the role of good
parameter settings in DE’s performance may be un-
equivocal, there is no single accepted scheme to as-
certain their universally applicable or effective val-
ues.

As a result, a good deal of research effort
has been spent to devise and further improve the
alter/adapt schemes to automatically find good,
and acceptable values of these control parameters.
These methods were categorized in [1] and [13],
into three major classes:

– Deterministic - the parameters are altered based
on some user defined rules [8], [14].

– Adaptive - the parameters are allowed to adapt
based on some feedback from the algorithm
[15].

– Self-Adaptive - the parameters are encoded into
the solution itself and they evolve as a part of the
general population [16], [17], [18].

During the search process a particular combi-
nation of control parameters and mutation strategy
may prove more favorable than the others [19]. As
a result, many partially [20]-[22] adaptive schemes
that adapt one or more control parameters, and fully
adaptive schemes [23] that adapt mutation strategy
and control parameters, have been proposed in the
past.

Our contributions in this paper are as follows:
(1) We investigate the efficacy of employing an
adaptive mutation strategy module both in pres-
ence and absence of a control parameter adapta-
tion scheme. Based on empirical results obtained
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through experimentation, we create a pool of suc-
cessful mutation strategies. (2) We propose a mem-
ory based fully adaptive version of Differential Evo-
lution, SA-SHADE, that adapts the control parame-
ters to their appropriate values and chooses the best
suited mutation strategy from the pool. This vari-
ant of DE is quite different from previous work. (3)
Empirical results are obtained using 28 benchmark
functions in order to show the efficacy of our ap-
proach.

The rest of this paper is structured as follows.
Section II describes the basic DE algorithm. In
Section III, related work is presented. Section IV
presents the empirical results for building a case for
strategy adaptation irrespective of parameter adap-
tation. In Section V, SA-SHADE is described with
all its features and then compared with state-of-the-
art adaptive DE variants. Section VI concludes this
paper.

2 Differential Evolution

Like any evolutionary algorithm, DE works
with a population of solutions which is expressed
as a set of NP D dimensional real parameter vec-
tors, X=(x1,....,xNP) where xi (1 ≤ i ≤ NP) is a D
dimensional vector. In broadly accepted DE ter-
minology, each solution is called a vector and we
use the terms solution, individual, and vector inter-
changeably. Essential steps of DE are explained in
Sections 2.1 to 2.4.

2.1 Initialization

Being a global optimizer, DE searches for the
optimum in a D dimensional real parameter space
RD. As a first step, a NP number of D dimensional
vectors are randomly initialized to form a popula-
tion. The idea behind this random initialization is
to allow the population the possibility to cover the
complete landscape of the objective function.

The ith vector (1 ≤ i ≤ NP), Xi, in the current
generation G can be represented as

Xi
j,G = [xi

1,G,x
i
2,G,x

i
3,G, .....,x

i
D,G] (1)

Every parameter xi
j in a given vector has a specific

range denoted by xmin
j and xmax

j , within which it has
to be restricted, where 1 ≤ j ≤ D.

2.2 Mutation

In the most basic arrangement of DE, for each
ith target vector from the current generation, three
other distinct vectors, say Xr1, Xr2, and Xr3 are se-
lected randomly. The indices r1, r2, and r3 are mu-
tually exclusive integers randomly chosen from the
range [1, NP], and are also different from the target
vector index i. The donor is then created as

Di
G = Xr1

G +F × (Xr2
G −Xr3

G ) (2)

where F is known as the scale factor. Equa-
tion 2 represents the classic DE mutation strategy
DE/rand/1 [24] where rand means that parents are
selected randomly, and 1 signifies the presence of
only one differential perturbation. There are other
strategies suggested by authors in [8], [24], but
DE/rand/1 is the most widely used [11], [12], [28].

2.3 Crossover

To improve the potential diversity of the popu-
lation, after the mutation step, a crossover operation
is performed on every pair of target vector, Xi

G, and
its corresponding donor vector, Di

G. In this step,
parameters either from the target vector, Xi

G, or the
donor vector, Di

G, are selected based on some prob-
ability distribution to form a trial (child) vector, TG.
There are two commonly employed crossover oper-
ations in DE literature [14]. One of them, known as
binomial or uni f orm crossover may be elucidated
as

T i
j,G =




Di
j,G if randi

j[0,1]≤Cr or j = jrand

Xi
j,G otherwise

(3)

where T i
G is the trial vector generated for the ith tar-

get vector, Xi
G, for generation G, randi

j [0, 1] is a
randomly generated real number ranging between
the interval [0, 1], and is generated newly for ev-
ery jth parameter of the target vector. The number
jrand , is a randomly chosen index between [1, D] to
ensure that the trial vector gets at least one element
from the donor vector.

The other crossover method frequently used is
the exponential or the two-point modulo crossover
in which a random integer n1 is chosen from the in-
terval [1, D] that represents the starting point in the
target vector Xi

G from where the crossover operation
would start. After that, another integer n2 is chosen
from the same interval that specifies the number of

Deepak Dawar, Simone A. Ludwig

classified into two categories: evolutionary com-
puting methods, and swarm intelligence algorithms,
both of which employ their own set of control pa-
rameters.

The underlying idea behind evolutionary algo-
rithms is the iterative fitness improvement of a pop-
ulation of individuals (solutions), through natural
selection. An iteration generally involves, produc-
ing new individuals through a series of mutations
and recombinations, gradually removing lesser fit
individuals from the population, and replacing them
with newly generated individuals if their fitness
proves to be better than the individuals they were
generated to replace [1]. The operation of swarm
intelligence algorithms may be behaviorally charac-
terized as a decentralized swarm searching for op-
timal food sources (solutions) [2]. The direction of
individual search is influenced by the current loca-
tion of the individual, its best location ever, and the
location of the best individual in the whole swarm.
The performance of both these classes of algorithms
is quite sensitive to their respective control param-
eter settings, good values of which are problem de-
pendent. Unless the user has quite an experience
in parameter tuning, finding the best parameter set-
tings for a given problem through trial and error
may prove, at best, an arduous, and sometimes an
infeasible task. A way out of this conundrum lies
in an arrangement that may alter or adapt these pa-
rameters during the course of the algorithm. Much
attention has been paid to this problem and many
adaptive schemes have been proposed in the past
[3]-[7].

Lately, Differential Evolution (DE) [8], an evo-
lutionary algorithm, has established itself as a ro-
bust real parameter optimizer. Intensive research
activity on the subject in the past decade speaks
volumes of its power and popularity. DE has been
rigorously evaluated on a broad range of bench-
mark problems, and has been extensively applied to
real life scientific, and engineering problems [9]. It
also secured first position in the First International
Contest on Evolutionary Optimization in May 1996
[10].

DE is simple and operates with only a few con-
trol parameters namely scale factor (F), crossover
rate (Cr), and population size (NP). The perfor-
mance of DE, as with any evolutionary algorithm,
is quite sensitive to the appropriate settings of these

parameters as reported in [1], [11], [12]. A good
setting can improve both the convergence speed,
and the quality of the solution. Conversely, a poorly
chosen setting of these parameters can seriously de-
teriorate the algorithm’s efficacy. Given the impor-
tance the parameter setting carries, choosing effec-
tive control parameter values, at the same time, can
be quite a tedious task.

Generally, an effective combination of these pa-
rameters depends upon the problem being tackled,
and necessitates a good amount of user experience.
It would not be inappropriate to remark that the
more informed values of these control parameters
are, the better the results. While the role of good
parameter settings in DE’s performance may be un-
equivocal, there is no single accepted scheme to as-
certain their universally applicable or effective val-
ues.

As a result, a good deal of research effort
has been spent to devise and further improve the
alter/adapt schemes to automatically find good,
and acceptable values of these control parameters.
These methods were categorized in [1] and [13],
into three major classes:

– Deterministic - the parameters are altered based
on some user defined rules [8], [14].

– Adaptive - the parameters are allowed to adapt
based on some feedback from the algorithm
[15].

– Self-Adaptive - the parameters are encoded into
the solution itself and they evolve as a part of the
general population [16], [17], [18].

During the search process a particular combi-
nation of control parameters and mutation strategy
may prove more favorable than the others [19]. As
a result, many partially [20]-[22] adaptive schemes
that adapt one or more control parameters, and fully
adaptive schemes [23] that adapt mutation strategy
and control parameters, have been proposed in the
past.

Our contributions in this paper are as follows:
(1) We investigate the efficacy of employing an
adaptive mutation strategy module both in pres-
ence and absence of a control parameter adapta-
tion scheme. Based on empirical results obtained
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parameters that the donor vector Di
G contributes to

the formation of trial vector T i
G. This scheme may

be described as

T i
j,G =





Di
j,G for j = (n1) mod D

Xi
j,G otherwise

(4)

A new set of n1 and n2 is chosen for every donor
vector.

2.4 Selection

The objective function is evaluated for all trial
vectors in this step. The fitness value of each target
vector is compared to its corresponding trial vector.
If the fitness (considering a minimization problem)
of the trial vector is better or at least equal to the
target vector, it moves to the next generation. Oth-
erwise the target vector is promoted and trial vector
is discarded.

Xi
G+1 =




T i
G if f (T i

G)≤ f (Xi
G)

Xi
G otherwise.

(5)

The mutation, crossover, and selection steps
are iteratively performed generation after genera-
tion until a stopping criterion specified by the user
is met.

Algorithm 1 Pseudo-code for DE
1: Set the values of control parameters scale factor (F),

crossover rate (Cr), and population size (NP)
2: Set generation number, G=0
3: Initialize a population of NP individuals P =

[X1,X2, ...XNP] where every ith individual is a D di-
mensional vector represented as X j

i =[x1
i , x2

i ... xD
i ]

where 1 ≤ j ≤ D; restrict x j
i to its minimum and

maximum bounds as x j
i,min and x j

i,max.
4: while stopping criteria is not met do
5: for every target vector Xta in P do
6: Select three vectors Xr1 ,Xr2 ,Xr3 where r1,r2,

and r3 are three mutually exclusive indices
and different from target index

7: //Mutation
8: Produce a donor vector through mutation as:
9: Xdo = Xr1 +F × (Xr2 −Xr3)

10: //Crossover
11: Produce a trial vector as:

X j
tr =

{
X j

do if rand j(0,1]≤Cr or j = jrand

X j
ta otherwise

12: //Selection
13: Select either the target vector or the trial

vector based on their fitness values as:

XG+1
survivor =

{
XG

tr if F(XG
tr )≤ F(XG

ta)
XG

ta otherwise

14: end for
15: end while

3 Related Work

It is an established notion that the performance
of DE depends greatly on the mutation strategy em-
ployed, and the corresponding control parameters
[11], [12], [30], [32]. As the complexity of the
problem increases, this dependence becomes even
more profound [12]. A good choice of mutation
strategy and control parameters can lead to better
results, and at the same time, an unfavorable choice
may seriously degrade DE’s performance [14], [21],
[25]. Choosing a good mutation strategy and asso-
ciated control parameters is not an easy task and
requires quite a bit of user experience. A good
amount of research activity has happened in the area
of determining good values of the control param-
eters. Authors in [26] suggested that good values
of F lie between 0.4 and 0.95. For Cr, they as-
cribed the range (0, 0.2) for separable functions and
(0.9, 1) for non-separable functions. On the other
side of the spectrum, the authors in [12] suggested
good value of F to be 0.6 and Cr ranging between
[0.3, 0.9]. As can be seen, these suggestions dif-
fer, and sometimes, are conflicting at best. This
situation naturally calls for adaptive mechanisms
that would require little or no user intervention in
setting up the control parameters while optimizing
with DE.

Much work has been reported on this problem
of automating mutation strategy and control param-
eters [19], [27], [28], [29]. A fuzzy adaptive dif-
ferential evolution with fuzzy logic controllers was
presented in [27] where F and Cr are adapted based
on the relative fitness values and individuals of sub-
sequent generations. Authors developed linguistic
fuzzy sets to encode knowledge by taking into con-
sideration the noise and non-linearity of the objec-
tive function. Qin et al. [30] proposed a memory
based self adaptive differential evolution (SaDE) al-
gorithm. They adapted the mutation strategy de-
pending upon its success history. The mutation
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strategy is chosen from a pool and successful strate-
gies and Cr values are recorded. The subsequent
mutation strategy is selected probabilistically based
on its ability to produce successful trials. The scale
factor, F , is not adapted and instead randomly sam-
pled from the normal distribution (0.5, 0.3). The
idea was to employ exploration (large F values) and
exploitation (small F values) throughout the search
process. The successful values of the crossover rate,
Cr, on the other hand, are stored in a memory bank,
and new values of Cr are generated from the normal
distribution N(Crm, 0.1), where Crm is the median
Cr value in the memory bank m. A small value of
standard deviation 0.1 was chosen to guarantee that
most of the Cr values generated by N(Crm, 0.1) are
between [0,1], even when Crm is close to 0 or 1.

In the self-adaptive scheme, jDE, proposed by
Brest et al. [17], F and Cr are encoded directly into
the individuals so that individuals with better val-
ues of these parameters are more likely to survive,
thus automatically retaining good parameter values,
increasing the length of the vector. Two new param-
eters τ1 and τ2 are introduced to control the values
of F and Cr as

Fi
G+1 =




Fl + randl ×Fu with probability τ1

Fi
G otherwise

(6)

Cri
G+1 =




rand2 with probability τ2

Cri
G otherwise

(7)

where Fl and Fu are the lower and upper limits of
F restricted to the range [0,1]. The authors used
τ1=τ2=0.1 with Fl=0.1 and Fu=0.9. Thus, essen-
tially F (0.1, 0.9) and CR (0, 1) are restricted to
their respective ranges. It should be noted that this
scheme has four extra parameters to be set namely
Fl , Fh, τ1, and τ2, which might pose a problem in
itself. The authors, in this case, opined to have used
only a single setting for them and kept them con-
stant throughout the search. Recently a large scale
study of τ1, and τ2 was conducted in [18].

A fitness based adaptation of F was proposed
in [31]. Cr was fixed at 0.5. The mechanism com-
prised of two evolving populations. After every
generation, F was updated as

F =




max(lmin,1− fmax
fmin

) if fmax
fmin

< 1

max(lmin,1− fmin
fmax

) otherwise
(8)

where fmin and fmax are the generational minimum
and maximum objective function values obtained
by the individuals over the populations and lmin is
the lower bound on F .

In [32], authors proposed a scheme wherein F
was reduced linearly with an increase in the num-
ber of function evaluations. The idea was to use
high values of F during the exploration stage and
small values during the exploitation state in the later
part of the search. Dawar et al. in [33] proposed a
similar technique with the difference that they used
random perturbation of F in the initial stages of
the search, and reduced F non-linearly afterwards.
Both of the above approaches demonstrated favor-
able performance over conventional DE.

Authors in [20] proposed another adaptive ver-
sion of DE named SDE, in which F and population
size NP were adapted but Cr was sampled from a
normal distribution N(0.5, 0.15). SDE was reported
to have outperformed other basic versions of DE de-
scribed in [8]. On similar lines, DESAP (Differ-
ential evolution with self adaptive population size)
was proposed by Teo [34] in which the population
size, NP was adapted alongside F and Cr. Popu-
lation size reduction has also been reported to have
a favorable effect on the performance of DE as ar-
gued in [35]. Authors of the same work reported
an improvement in both efficiency and robustness
of DE when NP is gradually reduced.

Another novel adaptive mechanism proposed in
[23] uses three different pools of values, one for
each mutation strategy, F , and Cr, respectively. The
F pool contained the values in the range [0.4, 0.9]
with an increment of 0.1, and the CR pool had
values in the range [0.1, 0.9] with 0.1 increments.
The mutation strategy pool contained three strate-
gies namely rand/1/bin, best/2/bin, and current-to-
rand/1/bin. Initially every individual is randomly
assigned a set of [F , Cr, Ms] and during the search
successful sets are carried forward to the next gener-
ation while unsuccessful sets are re-initialized. The
parameter Ms in the set denotes a mutation strategy.

In [36], the authors presented an adaptive
scheme, JADE, and also proposed a new muta-
tion strategy current-to-pbest/1. The scheme also
included a diversity maintenance mechanism by
keeping an optional external archive of unsuccess-
ful parents that were unable to move to the next
generation owing to their worse fitness. The muta-
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parameters that the donor vector Di
G contributes to

the formation of trial vector T i
G. This scheme may

be described as

T i
j,G =





Di
j,G for j = (n1) mod D

Xi
j,G otherwise

(4)

A new set of n1 and n2 is chosen for every donor
vector.

2.4 Selection

The objective function is evaluated for all trial
vectors in this step. The fitness value of each target
vector is compared to its corresponding trial vector.
If the fitness (considering a minimization problem)
of the trial vector is better or at least equal to the
target vector, it moves to the next generation. Oth-
erwise the target vector is promoted and trial vector
is discarded.

Xi
G+1 =




T i
G if f (T i

G)≤ f (Xi
G)

Xi
G otherwise.

(5)

The mutation, crossover, and selection steps
are iteratively performed generation after genera-
tion until a stopping criterion specified by the user
is met.

Algorithm 1 Pseudo-code for DE
1: Set the values of control parameters scale factor (F),

crossover rate (Cr), and population size (NP)
2: Set generation number, G=0
3: Initialize a population of NP individuals P =

[X1,X2, ...XNP] where every ith individual is a D di-
mensional vector represented as X j

i =[x1
i , x2

i ... xD
i ]

where 1 ≤ j ≤ D; restrict x j
i to its minimum and

maximum bounds as x j
i,min and x j

i,max.
4: while stopping criteria is not met do
5: for every target vector Xta in P do
6: Select three vectors Xr1 ,Xr2 ,Xr3 where r1,r2,

and r3 are three mutually exclusive indices
and different from target index

7: //Mutation
8: Produce a donor vector through mutation as:
9: Xdo = Xr1 +F × (Xr2 −Xr3)

10: //Crossover
11: Produce a trial vector as:

X j
tr =

{
X j

do if rand j(0,1]≤Cr or j = jrand

X j
ta otherwise

12: //Selection
13: Select either the target vector or the trial

vector based on their fitness values as:

XG+1
survivor =

{
XG

tr if F(XG
tr )≤ F(XG

ta)
XG

ta otherwise

14: end for
15: end while

3 Related Work

It is an established notion that the performance
of DE depends greatly on the mutation strategy em-
ployed, and the corresponding control parameters
[11], [12], [30], [32]. As the complexity of the
problem increases, this dependence becomes even
more profound [12]. A good choice of mutation
strategy and control parameters can lead to better
results, and at the same time, an unfavorable choice
may seriously degrade DE’s performance [14], [21],
[25]. Choosing a good mutation strategy and asso-
ciated control parameters is not an easy task and
requires quite a bit of user experience. A good
amount of research activity has happened in the area
of determining good values of the control param-
eters. Authors in [26] suggested that good values
of F lie between 0.4 and 0.95. For Cr, they as-
cribed the range (0, 0.2) for separable functions and
(0.9, 1) for non-separable functions. On the other
side of the spectrum, the authors in [12] suggested
good value of F to be 0.6 and Cr ranging between
[0.3, 0.9]. As can be seen, these suggestions dif-
fer, and sometimes, are conflicting at best. This
situation naturally calls for adaptive mechanisms
that would require little or no user intervention in
setting up the control parameters while optimizing
with DE.

Much work has been reported on this problem
of automating mutation strategy and control param-
eters [19], [27], [28], [29]. A fuzzy adaptive dif-
ferential evolution with fuzzy logic controllers was
presented in [27] where F and Cr are adapted based
on the relative fitness values and individuals of sub-
sequent generations. Authors developed linguistic
fuzzy sets to encode knowledge by taking into con-
sideration the noise and non-linearity of the objec-
tive function. Qin et al. [30] proposed a memory
based self adaptive differential evolution (SaDE) al-
gorithm. They adapted the mutation strategy de-
pending upon its success history. The mutation
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tion strategy current-to-pbest/1 that the authors em-
ployed is different from the basic current-to-pbest/1
strategy in the sense that the individual pbest can
be selected from a user controlled set of top indi-
viduals instead of representing just the top individ-
ual. The search mechanism of current-to-pbest/1
is quite greedy in nature and experimentally, it has
been shown that this greediness often leads to poor
performance on multimodal functions [37]. In other
words, the greediness of this basic mutation strategy
can be controlled to some extent in the new version.
The donor from current-to-pbest/1 is obtained as

Di,G = Xi,G +Fi × (Xpbest,G −Xi,G)+

+Fi × (Xr1,G −Xr2,G)
(9)

where the individual xpbest,G is randomly selected
from the top NP×n (n∈ [0,1]) members in the G-th
generation. Here, n may be regarded as the greedi-
ness control operator. The authors adopted a mem-
ory based control parameter adaptation scheme. F
and Cr were drawn from a normal N (µF , 0.1) and a
cauchy C (µCr, 0.1) distribution respectively where
µF and µCr are the respective mean values of the dis-
tributions. At the beginning of the search, µF and
µCr are initialized to 0.5 and adapted thereafter as

µCr = (1− c)µCr + c.A(SCr) (10)

µF = (1− c)µF + c.L(SF) (11)

where c is the learning rate which was suggested to
be set to 0.1. SF and SCr are the successful values
stored in the memory during the generation. A and L
are the arithmetic and Lehmer means, respectively.

Several extensions to JADE have been pro-
posed. Authors in [38] propose a restart strat-
egy for JADE and also suggest replacing the arith-
metic mean in Equation 10 by a weighted mean,
where higher weights are assigned to Cr values
that achieve a higher fitness difference. A co-
evolutionary extension to JADE was proposed in
[39]. In [40], authors adaptively select the mu-
tation strategy to be applied among current-to-
pbest/1 with/without the external archive, and rand-
to-pbest/1 with/without the external archive. JADE
has also been successfully applied to combinato-
rial and multi-objective optimization problems [41],
[42].

In another memory based parameter adapta-
tion scheme called success history based adaptive
DE (SHADE) [43], authors improve upon the ro-
bustness of JADE. They argue that the continuous
mean update mechanism used in JADE may allow
unfavorable values of F and CR to impact their
mean value thereby allowing the possibility of a de-
graded search performance. They maintain a his-
torical memory of means as MF , and MCr which are
the successful values of means calculated from SF

and SCr. In essence, SHADE maintains a pool of
successful pairwise means in contrast with JADE,
which works with a single pair of means. In case
an unfavorable set of µF and µCr are recorded, its
impact would be far less profound as there may be
other successful and favorable means in the pool
to offset this disadvantage. SHADE was shown to
have outperformed JADE in [44].

Apart from F and Cr, adaptation of population
size NP has also received much attention. The pop-
ulation size significantly impacts the convergence
rate of any evolutionary algorithm, with DE being
no exception. A smaller value of population size,
NP, tends to favor exploitation and the solution con-
verges faster while always breaming with the pos-
sibility of getting stuck in a local minima. Large
population sizes favor exploration of the landscape
thereby slowing down the convergence rate. Many
population resizing methods have been proposed
that have shown to be effective in improving the
performance of evolutionary algorithms [35], [45]-
[48]. These methods of population size reduction
are essentially deterministic instead of adaptive, as
they increase or decrease the population size based
on some predefined rules.

One of such techniques named Linear Pop-
ulation Size Reduction (LPSR) was incorporated
by authors in [49] to enhance the performance of
SHADE. Authors in [50] proposed jDEdynNP, a
self adaptive version of DE, in which F and Cr are
self adapted and a population size reduction tech-
nique is used. This algorithm is further extended to
work with multiple mutation strategies in [51] but
these mutation strategies are not adapted. Popula-
tion size adaptation has not been investigated in this
work.
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4 Experimentation And Results

4.1 Benchmark Functions

To gauge the impact of strategy adaptation with
and without adapting F and Cr, we first evalu-
ated five basic mutation strategies on 28 benchmark
functions listed in [52] at problem dimensionality
10, 30, and 50 results of which are tabulated in
Tables 1, 2, and 3, respectively, and are discussed
in the next section. The parameter values used in
this experiment were NP=100, F=0.5 and Cr=0.9
as suggested in [43], [53].

4.2 Relative performance of basic strate-
gies

We initially experimented with five basic muta-
tion strategies described below. Uniform crossover
and population size of 100 was used with every mu-
tation strategy.

Rand/1:

Xi = Xr1 +F × (Xr2 −Xr3) (12)

Rand/2:

Xi = Xr1 +F × (Xr2 −Xr3)+F × (Xr4 −Xr5) (13)

Best/2:

Xi = Xbest +F×(Xr1−Xr2)+F ×(Xr3−Xr4) (14)

CurrToBest:

Xi = Xtarget +F × (Xbest −Xtarget)+

+F × (Xr1 −Xr2)
(15)

RandToBest:

Xi = Xr1+F×(Xbest −Xr2)+F ×(Xr3−Xr4) (16)

Our first experiment led to a generally accepted
result that different mutation strategies perform dif-
ferently on different problems. Table 4 summa-
rizes the relative performance of the basic mutation
strategies as the ranks obtained by applying Fried-
man test [54] at problem dimensionality 10, 30, and
50.

The Friedman test [54] is a multiple compar-
isons procedure that aims to detect significant per-
formance differences between the k compared algo-
rithms where k ≥ 2. It calculates the relative ranks

of the algorithms through an average ranking pro-
cedure and computes the Friedman statistic, which
is further used to calculate the p value [58]. The
Friedman statistic is computed as

Fs =
12np

na(na +1)
[ΣR2

i −
na(na +1)2

4
] (17)

where np is the number of test problems, na is the
number of algorithms being compared, and Ri is the
relative rank of the ith algorithm.

The statistic Fs is distributed according to the χ2

distribution with na − 1 degrees of freedom, when
np > 10 and na > 5. If the number of algorithms
and test problems are small, then critical values
have been computed and presented, see [55], [56]
for more details.

It is clear that Rand/1 is relatively the most con-
sistent strategy across problem dimensionality. The
next question one might ask - “Is the performance
of Rand/1 statistically significant?”. The experi-
mental results pertaining to this question are shown
in Table 5 which contains the p-values (for α =
0.05) obtained by applying the Hochberg post hoc
method [57] over the results of Table 1, 2, 3, respec-
tively.

Table 4: Relative ranks obtained by Rand/1, Rand/2,
Best/2, RandToBest, and CurrToBest at 10D, 30D, and
50D respectively. The best rank is highlighted in bold.

Strategy Rank-10D Rank-30D Rank-50D
Rand/1 2.46 2.01 2.00
Rand/2 3.97 4.14 4.23
Best/2 3.5 3.08 3.08

RandToBest 2.5 2.58 2.41
CurrToBest 2.57 3.16 3.26

Given a control algorithm, the Hochberg
method tries to identify the algorithms that are bet-
ter or worse by calculating p multiple values. The
Hochberg method adjusts the value of α in a step
up way. It works by comparing the largest p-value
with α, the next largest with α/2, the next with α/3,
and so forth until it finds a hypothesis that definitely
reject it. All hypotheses with smaller p-values are
then rejected as well [58].

The results in Table 5 show that Rand/1 sig-
nificantly outperforms Rand/2 and Best/2 at ev-
ery problem dimension. At 10 dimensions there
is not much of a performance difference between
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tion strategy current-to-pbest/1 that the authors em-
ployed is different from the basic current-to-pbest/1
strategy in the sense that the individual pbest can
be selected from a user controlled set of top indi-
viduals instead of representing just the top individ-
ual. The search mechanism of current-to-pbest/1
is quite greedy in nature and experimentally, it has
been shown that this greediness often leads to poor
performance on multimodal functions [37]. In other
words, the greediness of this basic mutation strategy
can be controlled to some extent in the new version.
The donor from current-to-pbest/1 is obtained as

Di,G = Xi,G +Fi × (Xpbest,G −Xi,G)+

+Fi × (Xr1,G −Xr2,G)
(9)

where the individual xpbest,G is randomly selected
from the top NP×n (n∈ [0,1]) members in the G-th
generation. Here, n may be regarded as the greedi-
ness control operator. The authors adopted a mem-
ory based control parameter adaptation scheme. F
and Cr were drawn from a normal N (µF , 0.1) and a
cauchy C (µCr, 0.1) distribution respectively where
µF and µCr are the respective mean values of the dis-
tributions. At the beginning of the search, µF and
µCr are initialized to 0.5 and adapted thereafter as

µCr = (1− c)µCr + c.A(SCr) (10)

µF = (1− c)µF + c.L(SF) (11)

where c is the learning rate which was suggested to
be set to 0.1. SF and SCr are the successful values
stored in the memory during the generation. A and L
are the arithmetic and Lehmer means, respectively.

Several extensions to JADE have been pro-
posed. Authors in [38] propose a restart strat-
egy for JADE and also suggest replacing the arith-
metic mean in Equation 10 by a weighted mean,
where higher weights are assigned to Cr values
that achieve a higher fitness difference. A co-
evolutionary extension to JADE was proposed in
[39]. In [40], authors adaptively select the mu-
tation strategy to be applied among current-to-
pbest/1 with/without the external archive, and rand-
to-pbest/1 with/without the external archive. JADE
has also been successfully applied to combinato-
rial and multi-objective optimization problems [41],
[42].

In another memory based parameter adapta-
tion scheme called success history based adaptive
DE (SHADE) [43], authors improve upon the ro-
bustness of JADE. They argue that the continuous
mean update mechanism used in JADE may allow
unfavorable values of F and CR to impact their
mean value thereby allowing the possibility of a de-
graded search performance. They maintain a his-
torical memory of means as MF , and MCr which are
the successful values of means calculated from SF

and SCr. In essence, SHADE maintains a pool of
successful pairwise means in contrast with JADE,
which works with a single pair of means. In case
an unfavorable set of µF and µCr are recorded, its
impact would be far less profound as there may be
other successful and favorable means in the pool
to offset this disadvantage. SHADE was shown to
have outperformed JADE in [44].

Apart from F and Cr, adaptation of population
size NP has also received much attention. The pop-
ulation size significantly impacts the convergence
rate of any evolutionary algorithm, with DE being
no exception. A smaller value of population size,
NP, tends to favor exploitation and the solution con-
verges faster while always breaming with the pos-
sibility of getting stuck in a local minima. Large
population sizes favor exploration of the landscape
thereby slowing down the convergence rate. Many
population resizing methods have been proposed
that have shown to be effective in improving the
performance of evolutionary algorithms [35], [45]-
[48]. These methods of population size reduction
are essentially deterministic instead of adaptive, as
they increase or decrease the population size based
on some predefined rules.

One of such techniques named Linear Pop-
ulation Size Reduction (LPSR) was incorporated
by authors in [49] to enhance the performance of
SHADE. Authors in [50] proposed jDEdynNP, a
self adaptive version of DE, in which F and Cr are
self adapted and a population size reduction tech-
nique is used. This algorithm is further extended to
work with multiple mutation strategies in [51] but
these mutation strategies are not adapted. Popula-
tion size adaptation has not been investigated in this
work.
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Table 1: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 10. Reported values are the aver-
ages of 51 independent runs for each function. Error values reaching 10−8 of the global optimum of the function are
reported as 0.00+E00. The best result is highlighted in bold.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 3.54E+00 3.40E-06 3.36E+04 9.03E+02
3 5.21E-01 5.23E+03 1.38E-01 1.30E+06 2.76E+05
4 0.00E+00 1.87E-02 2.26E-08 2.33E+02 3.04E+01
5 0.00E+00 0.00E+00 0.00E+00 6.33E-01 3.25E-04
6 4.50E-03 1.64E-06 0.00E+00 6.37E+00 7.66E+00
7 4.80E-04 1.29E+00 7.71E-02 5.07E-02 7.39E-05
8 2.04E+01 2.04E+01 2.04E+01 2.04E+01 2.04E+01
9 1.93E-01 6.75E+00 4.88E+00 8.65E-01 5.57E-01

10 3.60E-01 5.39E-01 5.47E-01 5.16E-03 1.07E-02
11 1.73E+01 2.49E+01 2.22E+01 2.03E+00 8.24E+00
12 2.59E+01 3.23E+01 3.21E+01 1.02E+01 1.54E+01
13 2.59E+01 3.14E+01 2.96E+01 1.01E+01 1.70E+01
14 1.02E+03 1.28E+03 1.24E+03 7.88E+02 1.01E+03
15 1.25E+03 1.36E+03 1.37E+03 1.04E+03 1.16E+03
16 9.99E-01 1.14E+00 1.15E+00 9.48E-01 9.69E-01
17 3.07E+01 3.99E+01 3.54E+01 1.76E+01 1.80E+01
18 3.58E+01 4.60E+01 4.19E+01 2.56E+01 2.46E+01
19 1.84E+00 2.62E+00 2.45E+00 1.41E+00 1.64E+00
20 2.54E+00 2.95E+00 2.65E+00 1.95E+00 2.09E+00
21 3.72E+02 3.05E+02 3.81E+02 4.00E+02 4.00E+02
22 9.47E+02 1.44E+03 1.29E+03 3.39E+02 9.11E+02
23 1.16E+03 1.39E+03 1.33E+03 5.83E+02 9.39E+02
24 1.98E+02 2.05E+02 2.05E+02 2.01E+02 2.01E+02
25 2.00E+02 2.00E+02 2.02E+02 2.00E+02 2.00E+02
26 1.26E+02 1.39E+02 1.46E+02 1.23E+02 1.18E+02
27 3.00E+02 3.07E+02 3.00E+02 3.05E+02 3.00E+02
28 2.52E+02 2.90E+02 2.52E+02 3.00E+02 3.00E+02
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Table 2: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 30D. Reported values are the av-
erages of 51 independent runs for each function. Error values reaching within 10−8 of the global optimum of the
function are reported as 0.00+E00. The best result is highlighted in bold.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 2.40E-01 0.00E+00 1.18E+02 5.95E+02
2 5.09E+05 3.72E+07 1.41E+06 4.21E+06 3.16E+06
3 2.29E-02 1.71E+09 5.26E+04 1.97E+09 1.91E+09
4 9.98E+02 3.54E+04 7.30E+03 4.56E+03 2.63E+03
5 0.00E+00 5.06E-01 4.83E-10 2.43E+02 4.21E+02
6 9.21E+00 1.80E+01 6.26E+00 1.04E+02 1.08E+02
7 1.00E-01 5.82E+01 9.91E+00 1.79E+01 1.15E+01
8 2.09E+01 2.09E+01 2.10E+01 2.09E+01 2.09E+01
9 2.25E+01 3.89E+01 3.84E+01 8.68E+00 1.04E+01

10 5.40E-03 2.55E+01 1.39E-04 5.80E+01 9.98E+01
11 1.23E+02 2.10E+02 1.87E+02 2.06E+01 8.89E+01
12 1.77E+02 2.26E+02 1.98E+02 7.71E+01 1.60E+02
13 1.72E+02 2.28E+02 1.98E+02 1.37E+02 1.66E+02
14 6.25E+03 6.81E+03 6.85E+03 6.22E+03 6.43E+03
15 7.12E+03 7.31E+03 7.22E+03 6.57E+03 6.84E+03
16 2.49E+00 2.45E+00 2.57E+00 2.48E+00 2.51E+00
17 1.83E+02 2.69E+02 2.23E+02 1.59E+02 1.67E+02
18 2.12E+02 2.83E+02 2.31E+02 1.78E+02 1.86E+02
19 1.50E+01 2.04E+01 1.73E+01 3.44E+01 3.43E+01
20 1.21E+01 1.27E+01 1.26E+01 1.21E+01 1.24E+01
21 2.91E+02 3.12E+02 3.10E+02 6.69E+02 6.67E+02
22 6.45E+03 6.95E+03 6.90E+03 4.52E+03 5.89E+03
23 7.14E+03 7.23E+03 7.08E+03 6.10E+03 6.68E+03
24 2.00E+02 2.70E+02 2.06E+02 2.17E+02 2.21E+02
25 2.39E+02 2.82E+02 2.51E+02 2.47E+02 2.45E+02
26 2.00E+02 2.03E+02 2.00E+02 2.00E+02 2.11E+02
27 3.37E+02 1.17E+03 5.93E+02 5.13E+02 4.64E+02
28 3.00E+02 3.25E+02 3.00E+02 3.25E+02 9.93E+02
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Table 1: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 10. Reported values are the aver-
ages of 51 independent runs for each function. Error values reaching 10−8 of the global optimum of the function are
reported as 0.00+E00. The best result is highlighted in bold.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 3.54E+00 3.40E-06 3.36E+04 9.03E+02
3 5.21E-01 5.23E+03 1.38E-01 1.30E+06 2.76E+05
4 0.00E+00 1.87E-02 2.26E-08 2.33E+02 3.04E+01
5 0.00E+00 0.00E+00 0.00E+00 6.33E-01 3.25E-04
6 4.50E-03 1.64E-06 0.00E+00 6.37E+00 7.66E+00
7 4.80E-04 1.29E+00 7.71E-02 5.07E-02 7.39E-05
8 2.04E+01 2.04E+01 2.04E+01 2.04E+01 2.04E+01
9 1.93E-01 6.75E+00 4.88E+00 8.65E-01 5.57E-01

10 3.60E-01 5.39E-01 5.47E-01 5.16E-03 1.07E-02
11 1.73E+01 2.49E+01 2.22E+01 2.03E+00 8.24E+00
12 2.59E+01 3.23E+01 3.21E+01 1.02E+01 1.54E+01
13 2.59E+01 3.14E+01 2.96E+01 1.01E+01 1.70E+01
14 1.02E+03 1.28E+03 1.24E+03 7.88E+02 1.01E+03
15 1.25E+03 1.36E+03 1.37E+03 1.04E+03 1.16E+03
16 9.99E-01 1.14E+00 1.15E+00 9.48E-01 9.69E-01
17 3.07E+01 3.99E+01 3.54E+01 1.76E+01 1.80E+01
18 3.58E+01 4.60E+01 4.19E+01 2.56E+01 2.46E+01
19 1.84E+00 2.62E+00 2.45E+00 1.41E+00 1.64E+00
20 2.54E+00 2.95E+00 2.65E+00 1.95E+00 2.09E+00
21 3.72E+02 3.05E+02 3.81E+02 4.00E+02 4.00E+02
22 9.47E+02 1.44E+03 1.29E+03 3.39E+02 9.11E+02
23 1.16E+03 1.39E+03 1.33E+03 5.83E+02 9.39E+02
24 1.98E+02 2.05E+02 2.05E+02 2.01E+02 2.01E+02
25 2.00E+02 2.00E+02 2.02E+02 2.00E+02 2.00E+02
26 1.26E+02 1.39E+02 1.46E+02 1.23E+02 1.18E+02
27 3.00E+02 3.07E+02 3.00E+02 3.05E+02 3.00E+02
28 2.52E+02 2.90E+02 2.52E+02 3.00E+02 3.00E+02
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Table 3: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 50D. Reported values are the av-
erages of 51 independent runs for each function. Error values reaching within 10−8 of the global optimum of the
function are reported as 0.00+E00. The best result is highlighted in bold.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 7.13E+01 0.00E+00 1.44E+03 3.55E+03
2 2.70E+06 2.30E+08 2.23E+07 1.76E+07 1.07E+07
3 3.36E+05 3.15E+10 3.90E+06 8.89E+09 1.07E+10
4 2.10E+04 7.38E+04 4.32E+04 4.50E+03 3.47E+03
5 0.00E+00 1.84E+01 8.11E-09 5.56E+02 9.32E+02
6 4.34E+01 6.04E+01 4.34E+01 2.17E+02 2.54E+02
7 1.03E+00 1.24E+02 2.03E+01 2.86E+01 2.98E+01
8 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.11E+01
9 7.04E+01 7.23E+01 7.23E+01 2.36E+01 2.39E+01

10 4.06E-02 4.63E+02 1.42E-02 3.08E+02 4.17E+02
11 2.16E+02 4.32E+02 3.65E+02 6.69E+01 8.27E+01
12 3.61E+02 4.77E+02 3.86E+02 7.87E+01 2.34E+02
13 3.51E+02 4.79E+02 3.83E+02 3.14E+02 3.68E+02
14 1.13E+04 1.30E+04 1.30E+04 1.21E+04 1.26E+04
15 1.39E+04 1.39E+04 1.39E+04 1.31E+04 1.35E+04
16 3.33E+00 3.17E+00 3.32E+00 3.31E+00 3.36E+00
17 3.30E+02 5.45E+02 4.19E+02 3.48E+02 3.81E+02
18 4.01E+02 5.60E+02 4.43E+02 3.75E+02 3.97E+02
19 2.97E+01 4.93E+01 3.36E+01 4.54E+02 1.34E+03
20 2.21E+01 2.27E+01 2.24E+01 2.06E+01 2.07E+01
21 4.06E+02 4.31E+02 2.74E+02 2.06E+03 2.30E+03
22 1.08E+04 1.34E+04 1.32E+04 3.88E+03 1.19E+04
23 1.37E+04 1.39E+04 1.39E+04 1.23E+04 1.30E+04
24 2.07E+02 3.61E+02 2.14E+02 2.60E+02 2.68E+02
25 2.78E+02 3.81E+02 3.13E+02 3.31E+02 3.31E+02
26 2.45E+02 3.45E+02 3.76E+02 3.15E+02 2.90E+02
27 5.71E+02 2.04E+03 1.22E+03 8.96E+02 9.57E+02
28 4.00E+02 4.59E+02 4.00E+02 1.26E+03 1.53E+03
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Rand/1, RandToBest, and CurrToBest. At 30 di-
mensions though, Rand/1 significantly outperforms
CurrToBest, and RandToBest remains the only
competitive strategy against Rand/1, and this obser-
vation is repeated at 50 dimensions.

Table 5: p values obtained using Hochberg procedure
by mutation strategies Rand/2, Best/2, RandToBest and
CurrToBest when compared to Rand/1 at 10D, 30D, and
50D respectively at α level 0.05.

Strategy pHoc-10D pHoc-30D pHoc-50D

Rand/2 0.001 0.000 0.000
Best/2 0.042 0.020 0.019

RandToBest 0.932 0.176 0.331

CurrToBest 0.932 0.022 0.008

The first inference that can be drawn from these
results is that for the given number of function
evaluations and in the absence of control parame-
ter adaptation, Rand/1 remains the most competi-
tive strategy across problem dimensionality, and the
relative competitiveness of Rand/1 against Rand/2,
Best/2, and CurrToBest marginally improves with
an increase in problem dimensionality. Rand-
ToBest stands at second rank according to the Fried-
man ranking procedure but statistically inseparable
when compared to Rand/1.

The performance of Best2 relative to Cur-
rToBest improves as problem dimensionality in-
creases as it is ranked 3 at 50 dimensions as com-
pared to 4 at 30 dimensions. Rand2 turns out to be
the worst performing strategy at every problem di-
mensionality.

To ascertain the relative competitiveness of
RandToBest and CurrToBest at 30D and 50D, we
performed the Wilcoxon test, and the results are
presented in Table 6.

Table 6: Results obtained by the Wilcoxon test for strat-
egy RandToBest against CurrToBest

Problem Dimensionality Asymptotic P-value

30 0.070897

50 0.001324

Table 6 shows that RandToBest turns out to be
a better performing strategy, significantly outper-

forming CurrToBest at 50 (α=0.05) and 30 (α=0.1)
dimensions.

4.3 A case for strategy adaptation irre-
spective of parameter adaptation

Looking at the above results, one may surmise
that Rand1 is relatively the most robust strategy,
and can be used with confidence while optimiz-
ing with DE. This observation, however, requires
greater scrutiny. Table 7 shows the number of wins
scored by all the mutation strategies at 10, 30, and
50 dimensions. Functions on which multiple strate-
gies score equally are not counted as wins.

Cumulative results presented in Tables 5 and 7
coupled with works reported in [19], [30] are in-
dicative that no single strategy has the ability to per-
form relatively better on all the problems. This is
evidence that calls for automating the selection of
mutation strategies during the course of the search.

It must be noted that several works in the past
[37], [59], [60] have evaluated multiple variants
of DE on various real life and benchmark func-
tions, and have arrived at seemingly contrasting
results, possibly due to varying test subjects and
problems. For example, authors in [59] reported
that DE/Best/* variants perform much better than
DE/Rand/* variants on the problem of optimal de-
sign of shell-and-heat tube exchangers. On similar
lines as ours, authors in [60] report superior perfor-
mance of DE/Rand/1/bin.

As is clear from the literature, the different
strategies seem to work well on different problems,
and different authors report possibly contrasting
claims, a possible reason of which might be differ-
ent problem sets they worked upon. All in all, in
light of these multi-faceted issues, it would be pru-
dent to let the mutation strategy adapt during the
search operation. Strategy adaptive variants pro-
posed in the past [19], [30], [61], [62], [63] have
reported favorable results.

4.4 Impact of mutation strategy on adap-
tive control parameter models

To ascertain the importance of mutation strat-
egy employed while using adaptive control param-
eters (F and Cr) models, we performed experiments
on the same test suite, but this time we used a con-
trol parameter adaptive model, SHADE, proposed
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Table 3: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 50D. Reported values are the av-
erages of 51 independent runs for each function. Error values reaching within 10−8 of the global optimum of the
function are reported as 0.00+E00. The best result is highlighted in bold.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 7.13E+01 0.00E+00 1.44E+03 3.55E+03
2 2.70E+06 2.30E+08 2.23E+07 1.76E+07 1.07E+07
3 3.36E+05 3.15E+10 3.90E+06 8.89E+09 1.07E+10
4 2.10E+04 7.38E+04 4.32E+04 4.50E+03 3.47E+03
5 0.00E+00 1.84E+01 8.11E-09 5.56E+02 9.32E+02
6 4.34E+01 6.04E+01 4.34E+01 2.17E+02 2.54E+02
7 1.03E+00 1.24E+02 2.03E+01 2.86E+01 2.98E+01
8 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.11E+01
9 7.04E+01 7.23E+01 7.23E+01 2.36E+01 2.39E+01
10 4.06E-02 4.63E+02 1.42E-02 3.08E+02 4.17E+02
11 2.16E+02 4.32E+02 3.65E+02 6.69E+01 8.27E+01
12 3.61E+02 4.77E+02 3.86E+02 7.87E+01 2.34E+02
13 3.51E+02 4.79E+02 3.83E+02 3.14E+02 3.68E+02
14 1.13E+04 1.30E+04 1.30E+04 1.21E+04 1.26E+04
15 1.39E+04 1.39E+04 1.39E+04 1.31E+04 1.35E+04
16 3.33E+00 3.17E+00 3.32E+00 3.31E+00 3.36E+00
17 3.30E+02 5.45E+02 4.19E+02 3.48E+02 3.81E+02
18 4.01E+02 5.60E+02 4.43E+02 3.75E+02 3.97E+02
19 2.97E+01 4.93E+01 3.36E+01 4.54E+02 1.34E+03
20 2.21E+01 2.27E+01 2.24E+01 2.06E+01 2.07E+01
21 4.06E+02 4.31E+02 2.74E+02 2.06E+03 2.30E+03
22 1.08E+04 1.34E+04 1.32E+04 3.88E+03 1.19E+04
23 1.37E+04 1.39E+04 1.39E+04 1.23E+04 1.30E+04
24 2.07E+02 3.61E+02 2.14E+02 2.60E+02 2.68E+02
25 2.78E+02 3.81E+02 3.13E+02 3.31E+02 3.31E+02
26 2.45E+02 3.45E+02 3.76E+02 3.15E+02 2.90E+02
27 5.71E+02 2.04E+03 1.22E+03 8.96E+02 9.57E+02
28 4.00E+02 4.59E+02 4.00E+02 1.26E+03 1.53E+03
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Table 7: Number of wins scored, out of 28, by all mutation strategies at 10, 30, and 50 dimensions, respectively.

Dimensions Rand/1 Rand/2 Best/2 RandToBest CurrToBest

10 5 1 2 12 3

30 11 1 2 10 0

50 13 1 2 9 1

in [43]. The choice of this model was based on the
superior performance this demonstrated over other
adaptive models as is evident from the work in [43].
After making this choice, we asked the following
questions.

1. What impact does a mutation strategy have on
the assessed performance of the algorithm with
adapted control parameters?

2. Is the impact profound enough to necessitate au-
tomated strategy selection?

To answer the first question we tested the adap-
tive model with multiple mutation strategies at
problem dimensionality 10, 30, and 50, the results
of which are presented in Tables 8, 8, and 10, re-
spectively. Table 11 and 12 show the ranks and p
values obtained using the Friedman and Hochberg
test respectively, for the tested mutation strategies
at problem dimensionality 10, 30, and 50, respec-
tively.

It is worth noting that SHADE used
CurrentTopBest as the mutation strategy that used
an external archive of inferior solutions, and draws
the pbest vector from the top x% individuals in the
population. Results from Tables 11 and 12 show
that when a control parameter adaptation model is
used, the strategy used in SHADE is ranked at the
top of the strategies tested, and proves vastly supe-
rior to Rand1, Rand2, and Best2 at every problem
dimensionality. It, however, is not significant when
compared to CurrentToBest and RandToBest as is
clear from the p values shown in Table 12.

There are two important inferences that can be
drawn from these results.

– With or without a given parameter adaptation
model, the choice of mutation strategy plays an
important role in determining the quality of so-
lutions.

– Given the control parameter adaptation scheme
that we have used, RandToBest and Current-

ToBest tend to perform relatively better that
Rand1, which according to the results tabulated
earlier, was the most robust strategy in absence
of parameter adaptation.

Table 11: Relative ranks obtained by Rand/1, Rand/2,
Best/2, RandToBest, CurrToBest, and SHADE at 10D,
30D, and 50D. AD is prefixed with basic strategies to
denote their usage with an adaptive control parameter
model. The best rank is highlighted in bold.

Strategy Rank-10D Rank-30D Rank-50D
AD-Rand/1 4.17 4.16 4.30
AD-Rand/2 4.50 5.19 5.00
AD-Best/2 4.05 4.03 4.00

AD-RandToBest 3.16 2.82 2.71
AD-CurrToBest 2.57 2.46 2.71

SHADE 2.53 2.32 2.26

Table 13 shows the number of wins scored by
each strategy and provides some insights into inves-
tigating the plausibility of automated strategy selec-
tion vis-a-vis control parameter adaptation.

Table 12: p values obtained using Hochberg proce-
dure by Rand/1, Rand/2, Best/2, RandToBest, and Cur-
rToBest when compared with SHADE at 10D, 30D, and
50D at α level 0.05. AD is prefixed with basic strategies
to denote their usage with an adaptive control parameter
model.

Strategy pHoc-10D pHoc-30D pHoc-50D

AD-Rand/1 0.004 0.000 0.000

AD-Rand/2 0.000 0.000 0.000

AD-Best/2 0.000 0.000 0.019

AD-RandToBest 0.422 0.317 0.371
AD-CurrToBest 0.943 0.775 0.371

As is clear from the results in Table 12 and 13,
even though the strategy used in SHADE is highest
ranked, there is a possibility of further improving
SHADE by automating the selection of mutation
strategy as the cumulative wins scored by all strate-
gies at every problem dimensionality is greater than
the wins recorded by SHADE.
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Table 8: Performance of Rand/1, Rand/2, Best/2, RandToBest, CurrentToBest, and SHADE at 10D when employed
with adaptive control parameter model used in SHADE. Reported values are the averages of 51 independent runs for
each function. Error values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00. The
best result is highlighted in bold.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 2.30E+01 1.39E+04 2.08E-05 6.11E-01 3.13E-01 1.27E-01
4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 8.88E+00 8.41E+00 9.81E+00 9.35E+00 8.41E+00 7.89E+00
7 3.18E-01 9.09E-01 1.16E-04 2.60E-05 4.26E-02 3.26E-03
8 2.04E+01 2.04E+01 2.04E+01 2.03E+01 2.03E+01 2.04E+01
9 4.16E+00 4.81E+00 4.01E+00 3.64E+00 3.48E+00 3.39E+00
10 4.74E-02 6.42E-02 6.42E-02 1.70E-02 1.02E-02 1.20E-02
11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 8.48E+00 1.05E+01 9.00E+00 5.27E+00 3.55E+00 3.14E+00
13 1.20E+01 1.31E+01 1.50E+01 7.48E+00 4.98E+00 3.77E+00
14 0.00E+00 2.73E-02 2.83E-04 5.95E-03 0.00E+00 4.90E-03
15 7.21E+02 7.19E+02 7.01E+02 6.27E+02 4.57E+02 4.21E+02
16 1.01E+00 1.16E+00 1.05E+00 8.92E-01 4.99E-01 7.08E-01
17 1.01E+01 1.00E+01 1.01E+01 1.01E+01 1.01E+01 1.01E+01
18 2.29E+01 2.17E+01 1.88E+01 1.78E+01 1.77E+01 1.69E+01
19 4.11E-01 4.66E-01 4.30E-01 3.65E-01 3.32E-01 3.44E-01
20 2.54E+00 2.80E+00 2.32E+00 2.24E+00 2.38E+00 2.16E+00
21 4.00E+02 3.53E+02 3.81E+02 4.00E+02 4.00E+02 4.00E+02
22 1.70E+01 5.86E+01 3.80E+01 5.58E+00 1.06E+01 4.84E+00
23 7.71E+02 8.13E+02 6.94E+02 5.98E+02 5.42E+02 4.61E+02
24 2.06E+02 1.98E+02 2.06E+02 2.00E+02 1.93E+02 1.93E+02
25 2.01E+02 2.00E+02 2.03E+02 2.00E+02 2.00E+02 2.00E+02
26 1.12E+02 1.22E+02 1.24E+02 1.07E+02 1.05E+02 1.33E+02
27 3.00E+02 3.30E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02

Deepak Dawar, Simone A. Ludwig

Table 7: Number of wins scored, out of 28, by all mutation strategies at 10, 30, and 50 dimensions, respectively.

Dimensions Rand/1 Rand/2 Best/2 RandToBest CurrToBest

10 5 1 2 12 3

30 11 1 2 10 0

50 13 1 2 9 1

in [43]. The choice of this model was based on the
superior performance this demonstrated over other
adaptive models as is evident from the work in [43].
After making this choice, we asked the following
questions.

1. What impact does a mutation strategy have on
the assessed performance of the algorithm with
adapted control parameters?

2. Is the impact profound enough to necessitate au-
tomated strategy selection?

To answer the first question we tested the adap-
tive model with multiple mutation strategies at
problem dimensionality 10, 30, and 50, the results
of which are presented in Tables 8, 8, and 10, re-
spectively. Table 11 and 12 show the ranks and p
values obtained using the Friedman and Hochberg
test respectively, for the tested mutation strategies
at problem dimensionality 10, 30, and 50, respec-
tively.

It is worth noting that SHADE used
CurrentTopBest as the mutation strategy that used
an external archive of inferior solutions, and draws
the pbest vector from the top x% individuals in the
population. Results from Tables 11 and 12 show
that when a control parameter adaptation model is
used, the strategy used in SHADE is ranked at the
top of the strategies tested, and proves vastly supe-
rior to Rand1, Rand2, and Best2 at every problem
dimensionality. It, however, is not significant when
compared to CurrentToBest and RandToBest as is
clear from the p values shown in Table 12.

There are two important inferences that can be
drawn from these results.

– With or without a given parameter adaptation
model, the choice of mutation strategy plays an
important role in determining the quality of so-
lutions.

– Given the control parameter adaptation scheme
that we have used, RandToBest and Current-

ToBest tend to perform relatively better that
Rand1, which according to the results tabulated
earlier, was the most robust strategy in absence
of parameter adaptation.

Table 11: Relative ranks obtained by Rand/1, Rand/2,
Best/2, RandToBest, CurrToBest, and SHADE at 10D,
30D, and 50D. AD is prefixed with basic strategies to
denote their usage with an adaptive control parameter
model. The best rank is highlighted in bold.

Strategy Rank-10D Rank-30D Rank-50D
AD-Rand/1 4.17 4.16 4.30
AD-Rand/2 4.50 5.19 5.00
AD-Best/2 4.05 4.03 4.00

AD-RandToBest 3.16 2.82 2.71
AD-CurrToBest 2.57 2.46 2.71

SHADE 2.53 2.32 2.26

Table 13 shows the number of wins scored by
each strategy and provides some insights into inves-
tigating the plausibility of automated strategy selec-
tion vis-a-vis control parameter adaptation.

Table 12: p values obtained using Hochberg proce-
dure by Rand/1, Rand/2, Best/2, RandToBest, and Cur-
rToBest when compared with SHADE at 10D, 30D, and
50D at α level 0.05. AD is prefixed with basic strategies
to denote their usage with an adaptive control parameter
model.

Strategy pHoc-10D pHoc-30D pHoc-50D

AD-Rand/1 0.004 0.000 0.000

AD-Rand/2 0.000 0.000 0.000

AD-Best/2 0.000 0.000 0.019

AD-RandToBest 0.422 0.317 0.371
AD-CurrToBest 0.943 0.775 0.371

As is clear from the results in Table 12 and 13,
even though the strategy used in SHADE is highest
ranked, there is a possibility of further improving
SHADE by automating the selection of mutation
strategy as the cumulative wins scored by all strate-
gies at every problem dimensionality is greater than
the wins recorded by SHADE.



224 Deepak Dawar, Simone A. Ludwig

Table 9: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest at 30D when employed with adap-
tive control parameter model used in SHADE. Reported values are the averages of 51 independent runs for each
function. Error values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00. The best
result is highlighted in bold.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.89E+06 1.72E+07 1.11E+07 3.78E+04 1.77E+04 9.00E+03
3 4.36E+06 7.06E+07 5.89E+05 1.37E+05 1.31E+05 4.02E+01
4 2.55E+04 2.25E+04 1.61E+04 2.45E+03 1.64E-01 1.92E-04
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 1.42E+01 1.49E+01 1.23E+01 1.47E+01 8.42E+00 5.96E-01
7 2.43E+01 3.59E+01 5.09E+00 1.97E+00 3.18E+00 4.60E+00
8 2.09E+01 2.10E+01 2.09E+01 2.06E+01 2.06E+01 2.07E+01
9 2.79E+01 2.81E+01 2.80E+01 2.74E+01 2.74E+01 2.75E+01

10 1.23E+00 1.00E+01 8.69E-02 1.72E-01 1.07E-01 7.69E-02
11 0.00E+00 0.00E+00 3.79E-01 0.00E+00 0.00E+00 0.00E+00
12 6.28E+01 6.13E+01 4.54E+01 2.52E+01 2.44E+01 2.30E+01
13 9.42E+01 9.67E+01 8.57E+01 5.47E+01 5.20E+01 5.03E+01
14 1.09E-02 3.60E+00 1.55E+00 2.08E-02 8.92E-03 3.18E-02
15 4.72E+03 4.96E+03 4.57E+03 4.38E+03 3.22E+03 3.22E+03
16 1.43E+00 1.96E+00 1.61E+00 6.09E-01 9.22E-01 9.13E-01
17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
18 1.11E+02 1.42E+02 8.99E+01 6.89E+01 7.36E+01 7.25E+01
19 1.79E+00 1.92E+00 1.80E+00 1.52E+00 1.38E+00 1.36E+00
20 1.17E+01 1.19E+01 1.10E+01 1.04E+01 1.07E+01 1.05E+01
21 2.48E+02 2.74E+02 2.81E+02 2.95E+02 2.97E+02 3.09E+02
22 8.19E+01 2.07E+02 1.52E+02 1.08E+02 9.79E+01 9.81E+01
23 4.83E+03 5.16E+03 4.44E+03 4.57E+03 3.74E+03 3.51E+03
24 2.38E+02 2.66E+02 2.28E+02 2.02E+02 2.05E+02 2.05E+02
25 2.84E+02 2.87E+02 2.85E+02 2.69E+02 2.82E+02 2.59E+02
26 2.06E+02 2.01E+02 2.01E+02 2.15E+02 2.02E+02 2.02E+02
27 9.85E+02 1.01E+03 9.62E+02 3.26E+02 4.60E+02 3.88E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02



225EFFECT OF STRATEGY ADAPTATION ON DIFFERENTIAL EVOLUTION IN . . .

Table 10: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest at 50D when employed with
adaptive control parameter model used in SHADE. Reported values are the averages of 51 independent runs for each
function. Error values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00. The best
result is highlighted in bold.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 3.13E+07 4.93E+07 2.71E+07 1.79E+05 8.70E+04 2.66E+04
3 5.14E+08 2.87E+09 2.85E+06 2.67E+06 6.84E+05 8.80E+05
4 6.14E+04 6.13E+04 3.02E+04 1.24E+04 5.21E-01 1.61E-03
5 0.00E+00 0.00E+00 0.00E+00 6.92E-09 0.00E+00 0.00E+00
6 4.35E+01 4.35E+01 4.34E+01 4.38E+01 4.36E+01 4.28E+01
7 6.15E+01 8.33E+01 2.43E+01 1.62E+01 2.58E+01 2.33E+01
8 2.11E+01 2.11E+01 2.11E+01 2.09E+01 2.08E+01 2.09E+01
9 5.57E+01 5.63E+01 5.52E+01 5.47E+01 5.56E+01 5.54E+01
10 1.27E+01 5.63E+01 1.71E-01 2.50E-01 1.28E-01 7.37E-02
11 0.00E+00 4.74E-02 4.03E+00 0.00E+00 0.00E+00 0.00E+00
12 1.24E+02 1.48E+02 8.25E+01 6.46E+01 6.09E+01 5.86E+01
13 2.03E+02 2.07E+02 1.53E+02 1.40E+02 1.50E+02 1.45E+02
14 8.33E-03 1.76E+01 1.25E+01 3.69E-02 1.61E-02 3.45E-02
15 9.22E+03 9.03E+03 9.22E+03 8.79E+03 7.04E+03 6.82E+03
16 2.04E+00 2.12E+00 1.81E+00 1.42E+00 1.22E+00 1.28E+00
17 5.08E+01 5.08E+01 5.08E+01 5.08E+01 5.08E+01 5.08E+01
18 2.33E+02 2.64E+02 1.49E+02 1.16E+02 1.33E+02 1.37E+02
19 3.26E+00 3.59E+00 3.24E+00 2.77E+00 2.74E+00 2.64E+00
20 2.11E+01 2.14E+01 2.07E+01 1.92E+01 1.97E+01 1.93E+01
21 4.94E+02 3.57E+02 5.54E+02 8.15E+02 9.66E+02 8.45E+02
22 3.28E+01 2.35E+02 9.92E+01 1.24E+01 1.50E+01 1.33E+01
23 9.79E+03 1.04E+04 9.28E+03 8.58E+03 8.07E+03 7.63E+03
24 3.22E+02 3.40E+02 2.93E+02 2.21E+02 2.30E+02 2.34E+02
25 3.72E+02 3.74E+02 3.71E+02 3.54E+02 3.74E+02 3.40E+02
26 2.70E+02 2.28E+02 3.07E+02 3.08E+02 2.06E+02 2.58E+02
27 1.67E+03 1.71E+03 1.65E+03 6.99E+02 9.57E+02 9.36E+02
28 4.00E+02 4.00E+02 5.42E+02 4.00E+02 4.00E+02 4.58E+02

Table 13: Number of wins scored, out of 28, by all mutation strategies and SHADE at 10, 30, and 50 dimensions,
respectively.

D AD-Rand/1 AD-Rand/2 AD-Best/2 AD-RandToBest AD-CurrToBest SHADE

10 0 2 1 1 4 10
30 2 0 0 7 1 10
50 1 1 0 8 4 9

Deepak Dawar, Simone A. Ludwig

Table 9: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest at 30D when employed with adap-
tive control parameter model used in SHADE. Reported values are the averages of 51 independent runs for each
function. Error values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00. The best
result is highlighted in bold.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.89E+06 1.72E+07 1.11E+07 3.78E+04 1.77E+04 9.00E+03
3 4.36E+06 7.06E+07 5.89E+05 1.37E+05 1.31E+05 4.02E+01
4 2.55E+04 2.25E+04 1.61E+04 2.45E+03 1.64E-01 1.92E-04
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 1.42E+01 1.49E+01 1.23E+01 1.47E+01 8.42E+00 5.96E-01
7 2.43E+01 3.59E+01 5.09E+00 1.97E+00 3.18E+00 4.60E+00
8 2.09E+01 2.10E+01 2.09E+01 2.06E+01 2.06E+01 2.07E+01
9 2.79E+01 2.81E+01 2.80E+01 2.74E+01 2.74E+01 2.75E+01
10 1.23E+00 1.00E+01 8.69E-02 1.72E-01 1.07E-01 7.69E-02
11 0.00E+00 0.00E+00 3.79E-01 0.00E+00 0.00E+00 0.00E+00
12 6.28E+01 6.13E+01 4.54E+01 2.52E+01 2.44E+01 2.30E+01
13 9.42E+01 9.67E+01 8.57E+01 5.47E+01 5.20E+01 5.03E+01
14 1.09E-02 3.60E+00 1.55E+00 2.08E-02 8.92E-03 3.18E-02
15 4.72E+03 4.96E+03 4.57E+03 4.38E+03 3.22E+03 3.22E+03
16 1.43E+00 1.96E+00 1.61E+00 6.09E-01 9.22E-01 9.13E-01
17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
18 1.11E+02 1.42E+02 8.99E+01 6.89E+01 7.36E+01 7.25E+01
19 1.79E+00 1.92E+00 1.80E+00 1.52E+00 1.38E+00 1.36E+00
20 1.17E+01 1.19E+01 1.10E+01 1.04E+01 1.07E+01 1.05E+01
21 2.48E+02 2.74E+02 2.81E+02 2.95E+02 2.97E+02 3.09E+02
22 8.19E+01 2.07E+02 1.52E+02 1.08E+02 9.79E+01 9.81E+01
23 4.83E+03 5.16E+03 4.44E+03 4.57E+03 3.74E+03 3.51E+03
24 2.38E+02 2.66E+02 2.28E+02 2.02E+02 2.05E+02 2.05E+02
25 2.84E+02 2.87E+02 2.85E+02 2.69E+02 2.82E+02 2.59E+02
26 2.06E+02 2.01E+02 2.01E+02 2.15E+02 2.02E+02 2.02E+02
27 9.85E+02 1.01E+03 9.62E+02 3.26E+02 4.60E+02 3.88E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
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5 SA-SHADE Algorithm: Im-
provements with strategy adap-
tation

Motivated by the results presented in the previ-
ous section, we investigated the benefits of plug-
ging a strategy adaptation module in the original
SHADE algorithm.

We propose SA-SHADE, a memory based
adaptive version of Differential Evolution wherein
F , Cr, and mutation strategy are adapted during
the search process. The basis of our paper is the
SHADE algorithm [43], which adapts F and Cr but
uses a fixed mutation strategy which is current-to-
pbest/1 with an optional external archive that was
originally used in [36].

Algorithm 2 Pseudo-code for SA-SHADE
1: Set max number of generations Gmax=0
2: Set current generation number, G=0
3: Set memory size M=100, reset rate R=0.1, counter

k=1, and initialize external archive A = /0
4: Initialize the mutation strategy pool PMs
5: Initialize a population of NP individuals Pop =

[X1,X2, ...XNP] where every ith individual is a D di-
mensional vector represented as X j

i =[x1
i , x2

i ... xD
i ]

where 1 ≤ j ≤ D. Restrict x j
i to its minimum and

maximum bounds as x j
i,min and x j

i,max
6: Set all values in memory MCr,MF to 0.5 and ran-

domly initialize MMs with mutation strategies from
the pool PMs

7: while G ≤ Gmax or required error precision is not
achieved do

8: SCr = /0 SF = /0; SMs = /0
9: for every target vector Xi in Pop do

10: Select a random integer r from [1,M]
11: Draw F from a cauchy distribution

as C(MF,r,0.1)
12: Draw Cr from a normal distribution

as N(MCr,r,0.1)
13: Choose a mutation strategy Mi from MMs,r

indexed at r
14: Produce a trial vector V G

i , using
the control parameters generated
and the strategy selected above

15: Select either the target vector or the trial
vector based on their fitness values as

XG+1
i =

{
V G

i if f (V G
i )≤ f (XG

i )
XG

i otherwise

16: //update external archive A
17: if ( f (V G

i )< f (XG
i )) then

18: Add XG
i to external archive A

19: Add Cr to the set SCr

20: Add F to the set SF
21: Add Mi to the set SMs
22: end if
23: end for
24: //update memories based on performance
25: if SCr ̸= /0 and SF ̸= /0 and SMs ̸= /0 then
26: Add the most successful strategy,

given by mode of successful strategies
in SMs to MMs

27: Update MCr and MF based on
SCr and SF respectively

28: end if
29: //check for mutation memory reset
30: if G = (k×R)×Gmax then
31: Randomly initialize MMs with mutation

strategies from the pool PMs
32: Increase the counter k to k+1
33: end if
34: Increase the generation count G to G+1
35: end while
SA-SHADE and SHADE differ on three aspects.

– SA-SHADE adapts the mutation strategy during
the search process, while SHADE uses a single
mutation strategy throughout the search process.

– SA-SHADE uses the mode of successful muta-
tion strategies to update its memory, which is
slightly different from the way F and Cr are
adapted in SHADE.

– The learned memory of successful strategies in
SA-SHADE is wiped out after a certain num-
ber of function evaluations which is determined
by the reset rate R. In SHADE, on the other
hand, such reset is not performed for updating
the memory of successful F and Cr values.

The operation of SA-SHADE is described as
follows. First, we select the mutation strategies to
be included in the pool P, which are, of course, se-
lected on the basis of their relative strengths as de-
scribed in Section 5.1. We then initialize an integer
vector MMs of size 100, the memory containing suc-
cessful mutation strategies after every generation,
length of which is user controlled, with randomly
selected mutation strategies from the pool, P. All
of the mutation strategies in P are included in MMs

at least once. Then, every individual solution is al-
lowed to randomly choose a mutation strategy from
the memory MMs. During the course of a genera-
tion, for every successful individual, just like F and
Cr, we record, in another integer vector named suc-
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cessful mutation strategies vector, SMs, the success-
ful mutation strategies over a generation. Then, we
store the most successful strategy of the generation,
given by the mode of SMs, in the memory MMs.

The distinction between MMs and SMs is as fol-
lows. SMs maintains the record of successful mu-
tation strategies within a generation. The most suc-
cessful strategy in SMs is then recorded in MMs. This
way the most successful of the mutation strategies
are retained in the memory MMs. Successful F and
Cr are recorded in their respective memories ac-
cording to the mechanism proposed in the original
SHADE algorithm [43]. This operation is repeated
until a number of function evaluations are reached
after which the memory MMs is re-initialized. This
resetting of the memory is done to disallow any
probabilistic bias created by the system towards a
particular mutation strategy, and we show that this
indeed proves useful. At the same time, it can be
argued that the same reset scheme can be applied to
F and Cr but our experiments show that this proves
counterproductive in most of the cases. Hence, we
have steered clear of using this reset method on F
and Cr. SA-SHADE is summarized in Algorithm 2.

5.1 Choice of mutation strategies used in
SA-SHADE

As proven in Section III-B, the choice of mu-
tation strategy has a significant impact on the solu-
tion quality. A good mutation strategy is problem
dependent, i.e., for the one which is successful on
one landscape may prove adverse on others. There
are some characteristics associated with every mu-
tation strategy that may justify its use or otherwise.
For example, double difference vector strategies
like DE/rand/2/bin and DE/best/2/bin exhibit bet-
ter diversity than DE/rand/1/bin and DE/best/1/bin
[12], [15], [25], [24], making them more suitable
on landscapes riddled with local minima. Strategies
that use the best individual to generate mutant like
DE/best/1/bin and DE/rand-to-best/1/bin tend to be
greedy and score well on unimodal problems but
their performance worsens on difficult and highly
multimodal problems. A rotationally invariant strat-
egy, DE/current-to-rand/1/, tends to do better on
rotated problems [64]. The scheme DE/target-to-
best/1/bin with neighborhood search proposed in
[65], provides a good balance between exploration
and exploitation.

Our pool PMs was obviously designed to contain
the mutation strategies with diverse capabilities. We
choose the following strategies for the listed rea-
sons.

1. DE/rand/1/: Most widely used, less greedy but
robust.

2. DE/rand/2/: Even though it has a poor record of
achieving good solutions, it has the ability to im-
prove the diversity of population as it is capable
of generating more trial vectors due to presence
of two difference vectors [8], [12].

3. DE/best/2/: Greedy but also has the ability of di-
versity improvement as it utilizes two different
vectors [8], [12].

4. DE/current-to-pbestWithArchive/: Proposed in
[36] and used in [43] which is the basis of our
paper.

5. DE/current-rand-to-pbest/: A new mutation
strategy that we experimented with, that uses
the target vector as the base vector, a difference
of one of the top 20% of best vectors and a
randomly chosen vector, and another difference
vector of two randomly chosen vectors. It has
proven to be unstable sometimes but has the ca-
pability to negotiate local minima.

Xi = Xtarget +F × (Xpbest −Xr1)+

+F × (Xr2 −Xr3)
(18)

We have incorporated a memory based adapta-
tion mechanism into SA-SHADE on similar lines as
the memory based adaptation of F and Cr. SHADE
does not adapt the mutation strategy but only F and
Cr.

5.2 Results

The comparative results of SA-SHADE with
other variants at 30 dimensions are shown in Ta-
ble 14. Table 15 lists the rank and p values ob-
tained by SA-SHADE. It is clear that SA-SHADE
is the top ranked algorithm among all the algo-
rithms compared. SA-SHADE displays an im-
proved performance compared to AD-Rand/1 (α =
0.05), AD-Rand/2 (α = 0.05), AD-Best2 (α = 0.05),
AD-RandToBest (α = 0.05), and AD-CurrToBest
(α = 0.1) while being highly competitive against
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5 SA-SHADE Algorithm: Im-
provements with strategy adap-
tation

Motivated by the results presented in the previ-
ous section, we investigated the benefits of plug-
ging a strategy adaptation module in the original
SHADE algorithm.

We propose SA-SHADE, a memory based
adaptive version of Differential Evolution wherein
F , Cr, and mutation strategy are adapted during
the search process. The basis of our paper is the
SHADE algorithm [43], which adapts F and Cr but
uses a fixed mutation strategy which is current-to-
pbest/1 with an optional external archive that was
originally used in [36].

Algorithm 2 Pseudo-code for SA-SHADE
1: Set max number of generations Gmax=0
2: Set current generation number, G=0
3: Set memory size M=100, reset rate R=0.1, counter

k=1, and initialize external archive A = /0
4: Initialize the mutation strategy pool PMs
5: Initialize a population of NP individuals Pop =

[X1,X2, ...XNP] where every ith individual is a D di-
mensional vector represented as X j

i =[x1
i , x2

i ... xD
i ]

where 1 ≤ j ≤ D. Restrict x j
i to its minimum and

maximum bounds as x j
i,min and x j

i,max
6: Set all values in memory MCr,MF to 0.5 and ran-

domly initialize MMs with mutation strategies from
the pool PMs

7: while G ≤ Gmax or required error precision is not
achieved do

8: SCr = /0 SF = /0; SMs = /0
9: for every target vector Xi in Pop do

10: Select a random integer r from [1,M]
11: Draw F from a cauchy distribution

as C(MF,r,0.1)
12: Draw Cr from a normal distribution

as N(MCr,r,0.1)
13: Choose a mutation strategy Mi from MMs,r

indexed at r
14: Produce a trial vector V G

i , using
the control parameters generated
and the strategy selected above

15: Select either the target vector or the trial
vector based on their fitness values as

XG+1
i =

{
V G

i if f (V G
i )≤ f (XG

i )
XG

i otherwise

16: //update external archive A
17: if ( f (V G

i )< f (XG
i )) then

18: Add XG
i to external archive A

19: Add Cr to the set SCr

20: Add F to the set SF
21: Add Mi to the set SMs
22: end if
23: end for
24: //update memories based on performance
25: if SCr ̸= /0 and SF ̸= /0 and SMs ̸= /0 then
26: Add the most successful strategy,

given by mode of successful strategies
in SMs to MMs

27: Update MCr and MF based on
SCr and SF respectively

28: end if
29: //check for mutation memory reset
30: if G = (k×R)×Gmax then
31: Randomly initialize MMs with mutation

strategies from the pool PMs
32: Increase the counter k to k+1
33: end if
34: Increase the generation count G to G+1
35: end while
SA-SHADE and SHADE differ on three aspects.

– SA-SHADE adapts the mutation strategy during
the search process, while SHADE uses a single
mutation strategy throughout the search process.

– SA-SHADE uses the mode of successful muta-
tion strategies to update its memory, which is
slightly different from the way F and Cr are
adapted in SHADE.

– The learned memory of successful strategies in
SA-SHADE is wiped out after a certain num-
ber of function evaluations which is determined
by the reset rate R. In SHADE, on the other
hand, such reset is not performed for updating
the memory of successful F and Cr values.

The operation of SA-SHADE is described as
follows. First, we select the mutation strategies to
be included in the pool P, which are, of course, se-
lected on the basis of their relative strengths as de-
scribed in Section 5.1. We then initialize an integer
vector MMs of size 100, the memory containing suc-
cessful mutation strategies after every generation,
length of which is user controlled, with randomly
selected mutation strategies from the pool, P. All
of the mutation strategies in P are included in MMs

at least once. Then, every individual solution is al-
lowed to randomly choose a mutation strategy from
the memory MMs. During the course of a genera-
tion, for every successful individual, just like F and
Cr, we record, in another integer vector named suc-
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SHADE. The prefix AD denotes that the algo-
rithm uses the adaptive control parameter mecha-
nism. While in previous results, SHADE was not
found to be better than Ad-RandToBest and AD-
CurrToBest at any significance level, SA-SHADE
improves upon SHADE and shows superior results.

Table 14: Relative ranks obtained by Rand/1, Rand/2,
Best/2, RandToBest, CurrToBest, SHADE, and SA-
SHADE at 30D. AD is prefixed with basic strategies to
denote their usage with an adaptive control parameter
model. The best rank and outperformed algorithms at α
value = 0.05 are highlighted in bold.

Strategy Rank pHoc

AD-Rand/1 4.17 0.00
AD-Rand/2 4.50 0.00
AD-Best/2 4.05 0.00

AD-RandToBest 3.16 0.03
AD-CurrToBest 2.57 0.06

SHADE 2.53 0.26

SA-SHADE 2.28 -

Table 17: Relative ranks and p values obtained by
SHADE against CoDE, EPSDE, JADE, and dynNP-jDE
at 30D. The best rank and outperformed algorithms at α
value = 0.05 are highlighted in bold.

Algorithm Rank-10D p value

SHADE 2.30 –

CoDE 2.91 0.15

JADE 2.50 0.64

dynNP-jDE 2.76 0.27

EPSDE 4.51 0.00

Table 17 shows the relative performance of
SHADE with recently proposed state-of-the-art
adaptive DE mechanisms. It is clear that SHADE,
apart from EPSDE, is not statistically superior when
compared to other algorithms at α = 0.05 or 0.1.
SA-SHADE, with the results listed in Table 18, im-
proves upon SHADE and shows statistically sig-
nificant performance against EPSDE, CoDE, and
dynNP-jDE while being highly competitive against
JADE and SHADE. The best rank and outper-
formed algorithms at α value = 0.05 are highlighted
in bold.

Table 18: Relative ranks and p values obtained by SA-
SHADE against SHADE, JADE, dynNP-jDE, CoDE,
and EPSDE at 30D.

Algorithm Rank p value

SA-SHADE 2.46 –

SHADE 2.92 0.35

JADE 3.14 0.15

dynNP-jDE 3.41 0.05
CoDE 3.60 0.02

EPSDE 5.44 0.00

While SA-SHADE (9 wins) is not statistically
superior to SHADE (5 wins), it does improve upon
SHADE on number of wins scored. The superior
performance of SA-SHADE can be attributed to the
strategy adaptation module as the underlying con-
trol parameter adaptation mechanism remains the
same as SHADE. This also drives home the point
that strategy adaptation is indeed a useful mech-
anism and should be used to improve the perfor-
mance of DE variants.

5.3 Parameter study of the reset rate pa-
rameter used in SA-SHADE

Table 20: Average rankings of SA-SHADE at different
memory reset rates (Friedman)

Reset Rate Ranking
R=0.05 3
R=0.1 2.0536
R=0.2 3.0893
R=0.3 3.5179
R=0.4 3.4107

We performed a parameter analysis of the mem-
ory reset rate R to determine the most useful inter-
val of clearing up the learned successful strategies
in the system. The results obtained using five differ-
ent reset rates are shown in Table 19 and the respec-
tive Friedman ranks obtained are listed in Table 20.
These results show that the reset rate does have a
crucial impact on the performance of SA-SHADE,
and lower reset rates (0.05, 0.1) tend to be gener-
ally more useful than the higher ones (0.2, 0.3, 0.4).
This may well be due to the bias created by the suc-
cessful mutation strategies when they are retained
in memory for longer times (higher reset rates).



229EFFECT OF STRATEGY ADAPTATION ON DIFFERENTIAL EVOLUTION IN . . .

Table 15: Performance of parameter adaptive Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest against
SHADE, and SA-SHADE at 30D. Reported values are the averages of 51 independent runs for each function. Er-
ror values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00. The best result is
highlighted in bold.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE SA-SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.89E+06 1.72E+07 1.11E+07 3.78E+04 1.77E+04 9.00E+03 8.15E+03
3 4.36E+06 7.06E+07 5.89E+05 1.37E+05 1.31E+05 4.02E+01 1.19E+05
4 2.55E+04 2.25E+04 1.61E+04 2.45E+03 1.64E-01 1.92E-04 3.10E-02
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 1.42E+01 1.49E+01 1.23E+01 1.47E+01 8.42E+00 5.96E-01 0.00E+00
7 2.43E+01 3.59E+01 5.09E+00 1.97E+00 3.18E+00 4.60E+00 3.06E+00
8 2.09E+01 2.10E+01 2.09E+01 2.06E+01 2.06E+01 2.07E+01 2.07E+01
9 2.79E+01 2.81E+01 2.80E+01 2.74E+01 2.74E+01 2.75E+01 2.69E+01

10 1.23E+00 1.00E+01 8.69E-02 1.72E-01 1.07E-01 7.69E-02 6.13E-02
11 0.00E+00 0.00E+00 3.79E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 6.28E+01 6.13E+01 4.54E+01 2.52E+01 2.44E+01 2.30E+01 1.82E+01
13 9.42E+01 9.67E+01 8.57E+01 5.47E+01 5.20E+01 5.03E+01 3.84E+01
14 1.09E-02 3.60E+00 1.55E+00 2.08E-02 8.92E-03 3.18E-02 6.34E-01
15 4.72E+03 4.96E+03 4.57E+03 4.38E+03 3.22E+03 3.22E+03 3.24E+03
16 1.43E+00 1.96E+00 1.61E+00 6.09E-01 9.22E-01 9.13E-01 1.01E+00
17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
18 1.11E+02 1.42E+02 8.99E+01 6.89E+01 7.36E+01 7.25E+01 7.17E+01
19 1.79E+00 1.92E+00 1.80E+00 1.52E+00 1.38E+00 1.36E+00 1.33E+00
20 1.17E+01 1.19E+01 1.10E+01 1.04E+01 1.07E+01 1.05E+01 1.03E+01
21 2.48E+02 2.74E+02 2.81E+02 2.95E+02 2.97E+02 3.09E+02 2.81E+02
22 8.19E+01 2.07E+02 1.52E+02 1.08E+02 9.79E+01 9.81E+01 9.75E+01
23 4.83E+03 5.16E+03 4.44E+03 4.57E+03 3.74E+03 3.51E+03 3.58E+03
24 2.38E+02 2.66E+02 2.28E+02 2.02E+02 2.05E+02 2.05E+02 2.01E+02
25 2.84E+02 2.87E+02 2.85E+02 2.69E+02 2.82E+02 2.59E+02 2.80E+02
26 2.06E+02 2.01E+02 2.01E+02 2.15E+02 2.00E+02 2.02E+02 2.00E+02
27 9.85E+02 1.01E+03 9.62E+02 3.26E+02 4.60E+02 3.88E+02 4.11E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
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SHADE. The prefix AD denotes that the algo-
rithm uses the adaptive control parameter mecha-
nism. While in previous results, SHADE was not
found to be better than Ad-RandToBest and AD-
CurrToBest at any significance level, SA-SHADE
improves upon SHADE and shows superior results.

Table 14: Relative ranks obtained by Rand/1, Rand/2,
Best/2, RandToBest, CurrToBest, SHADE, and SA-
SHADE at 30D. AD is prefixed with basic strategies to
denote their usage with an adaptive control parameter
model. The best rank and outperformed algorithms at α
value = 0.05 are highlighted in bold.

Strategy Rank pHoc

AD-Rand/1 4.17 0.00
AD-Rand/2 4.50 0.00
AD-Best/2 4.05 0.00

AD-RandToBest 3.16 0.03
AD-CurrToBest 2.57 0.06

SHADE 2.53 0.26

SA-SHADE 2.28 -

Table 17: Relative ranks and p values obtained by
SHADE against CoDE, EPSDE, JADE, and dynNP-jDE
at 30D. The best rank and outperformed algorithms at α
value = 0.05 are highlighted in bold.

Algorithm Rank-10D p value

SHADE 2.30 –

CoDE 2.91 0.15

JADE 2.50 0.64

dynNP-jDE 2.76 0.27

EPSDE 4.51 0.00

Table 17 shows the relative performance of
SHADE with recently proposed state-of-the-art
adaptive DE mechanisms. It is clear that SHADE,
apart from EPSDE, is not statistically superior when
compared to other algorithms at α = 0.05 or 0.1.
SA-SHADE, with the results listed in Table 18, im-
proves upon SHADE and shows statistically sig-
nificant performance against EPSDE, CoDE, and
dynNP-jDE while being highly competitive against
JADE and SHADE. The best rank and outper-
formed algorithms at α value = 0.05 are highlighted
in bold.

Table 18: Relative ranks and p values obtained by SA-
SHADE against SHADE, JADE, dynNP-jDE, CoDE,
and EPSDE at 30D.

Algorithm Rank p value

SA-SHADE 2.46 –

SHADE 2.92 0.35

JADE 3.14 0.15

dynNP-jDE 3.41 0.05
CoDE 3.60 0.02

EPSDE 5.44 0.00

While SA-SHADE (9 wins) is not statistically
superior to SHADE (5 wins), it does improve upon
SHADE on number of wins scored. The superior
performance of SA-SHADE can be attributed to the
strategy adaptation module as the underlying con-
trol parameter adaptation mechanism remains the
same as SHADE. This also drives home the point
that strategy adaptation is indeed a useful mech-
anism and should be used to improve the perfor-
mance of DE variants.

5.3 Parameter study of the reset rate pa-
rameter used in SA-SHADE

Table 20: Average rankings of SA-SHADE at different
memory reset rates (Friedman)

Reset Rate Ranking
R=0.05 3
R=0.1 2.0536
R=0.2 3.0893
R=0.3 3.5179
R=0.4 3.4107

We performed a parameter analysis of the mem-
ory reset rate R to determine the most useful inter-
val of clearing up the learned successful strategies
in the system. The results obtained using five differ-
ent reset rates are shown in Table 19 and the respec-
tive Friedman ranks obtained are listed in Table 20.
These results show that the reset rate does have a
crucial impact on the performance of SA-SHADE,
and lower reset rates (0.05, 0.1) tend to be gener-
ally more useful than the higher ones (0.2, 0.3, 0.4).
This may well be due to the bias created by the suc-
cessful mutation strategies when they are retained
in memory for longer times (higher reset rates).
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Table 16: Relative performance of SA-SHADE against state-of-the-art adaptive variants of DE at 30D. Reported
values are the averages of 51 independent runs for each function. Error values reaching within 10−8 of the global
optimum of the function are reported as 0.00+E00. The best result is highlighted in bold.

F SA-SHADE SHADE CoDE EPSDE JADE dynNP-jDE
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 8.15E+03 9.00E+03 9.78E+04 1.37E+06 7.67E+03 9.52E+04
F3 1.19E+05 4.02E+01 1.08E+06 1.75E+08 4.71E+05 1.71E+06
F4 3.10E-02 1.92E-04 8.18E-02 8.08E+03 6.09E+03 4.76E+01
F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6 0.00E+00 5.96E-01 4.16E+00 9.27E+00 2.07E+00 1.19E+01
F7 3.06E+00 4.60E+00 9.32E+00 5.88E+01 3.16E+00 2.62E+00
F8 2.07E+01 2.07E+01 2.08E+01 2.09E+01 2.09E+01 2.10E+01
F9 2.69E+01 2.75E+01 1.45E+01 3.50E+01 2.65E+01 2.20E+01
F10 6.13E-02 7.69E-02 2.71E-02 1.02E-01 4.04E-02 3.63E-02
F11 0.00E+00 0.00E+00 0.00E+00 1.95E-02 0.00E+00 0.00E+00
F12 1.82E+01 2.30E+01 3.98E+01 4.94E+01 2.29E+01 4.07E+01
F13 3.84E+01 5.03E+01 8.04E+01 7.68E+01 4.67E+01 7.10E+01
F14 6.34E-02 3.18E-02 3.60E+00 3.99E-01 2.86E-02 9.39E-03
F15 3.24E+03 3.22E+03 3.36E+03 6.75E+03 3.24E+03 4.39E+03
F16 1.01E+00 9.13E-01 3.38E-01 2.48E+00 1.84E+00 2.32E+00
F17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
F18 7.17E+01 7.25E+01 6.69E+01 1.37E+02 7.76E+01 1.35E+02
F19 1.33E+00 1.36E+00 1.61E+00 1.84E+00 1.44E+00 1.27E+00
F20 1.03E+01 1.05E+01 1.06E+01 1.30E+01 1.04E+01 1.13E+01
F21 2.81E+02 3.09E+02 3.02E+02 3.05E+02 3.04E+02 2.94E+02
F22 9.75E+01 9.81E+01 1.17E+02 3.09E+02 9.39E+01 1.03E+02
F23 3.58E+03 3.51E+03 3.56E+03 6.74E+03 3.36E+03 4.36E+03
F24 2.01E+02 2.05E+02 2.21E+02 2.91E+02 2.17E+02 2.04E+02
F25 2.80E+02 2.59E+02 2.57E+02 2.99E+02 2.74E+02 2.55E+02
F26 2.00E+02 2.02E+02 2.18E+02 3.56E+02 2.15E+02 2.00E+02
F27 4.11E+02 3.88E+02 6.20E+02 1.21E+03 6.70E+02 3.90E+02
F28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
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Table 19: Relative performance of SA-SHADE at different memory reset rates at 30D. Reported values are the av-
erages of 51 independent runs for each function. Error values reaching within 10−8 of the global optimum of the
function are reported as 0.00+E00. The best result is highlighted in bold.

F R=0.05 R=0.1 R=0.2 R=0.3 R=0.4
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 1.29E+04 8.15E+03 1.06E+04 1.16E+04 6.18E+05
3 5.37E+01 1.19E+05 1.11E+08 4.48E+07 9.65E+07
4 2.52E-03 3.10E-02 3.29E+02 3.40E-01 6.78E+00
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 8.80E-01 0.00E+00 5.43E-01 1.58E+00 8.80E-01
7 2.78E+00 3.06E+00 1.31E+01 9.38E+00 6.64E+00
8 2.08E+01 2.05E+01 2.07E+01 2.08E+01 2.08E+01
9 2.69E+01 2.69E+01 2.69E+01 2.72E+01 2.72E+01
10 5.81E-02 6.13E-02 7.49E-02 7.01E-02 7.69E-02
11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 2.00E+01 1.82E+01 2.00E+01 2.10E+01 1.98E+01
13 5.40E+01 3.84E+01 4.16E+01 4.54E+01 4.49E+01
14 1.32E-02 6.34E-02 2.46E-02 2.68E-02 2.57E-01
15 3.24E+03 3.24E+03 3.26E+03 3.31E+03 3.35E+03
16 1.00E+00 1.01E+00 8.74E-01 1.00E+00 1.00E+00
17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
18 7.67E+01 7.17E+01 7.09E+01 7.14E+01 7.06E+01
19 1.45E+00 1.33E+00 1.44E+00 1.43E+00 1.42E+00
20 1.07E+01 1.03E+01 1.07E+01 1.06E+01 1.06E+01
21 2.88E+02 2.81E+02 2.83E+02 2.96E+02 2.80E+02
22 1.09E+02 9.75E+01 1.13E+02 1.02E+02 1.24E+02
23 3.72E+03 3.58E+03 3.67E+03 3.74E+03 3.84E+03
24 2.09E+02 2.01E+02 2.13E+02 2.16E+02 2.08E+02
25 2.83E+02 2.80E+02 2.86E+02 2.85E+02 2.85E+02
26 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
27 8.57E+02 4.11E+02 6.95E+02 8.10E+02 7.64E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
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Table 16: Relative performance of SA-SHADE against state-of-the-art adaptive variants of DE at 30D. Reported
values are the averages of 51 independent runs for each function. Error values reaching within 10−8 of the global
optimum of the function are reported as 0.00+E00. The best result is highlighted in bold.

F SA-SHADE SHADE CoDE EPSDE JADE dynNP-jDE
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 8.15E+03 9.00E+03 9.78E+04 1.37E+06 7.67E+03 9.52E+04
F3 1.19E+05 4.02E+01 1.08E+06 1.75E+08 4.71E+05 1.71E+06
F4 3.10E-02 1.92E-04 8.18E-02 8.08E+03 6.09E+03 4.76E+01
F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6 0.00E+00 5.96E-01 4.16E+00 9.27E+00 2.07E+00 1.19E+01
F7 3.06E+00 4.60E+00 9.32E+00 5.88E+01 3.16E+00 2.62E+00
F8 2.07E+01 2.07E+01 2.08E+01 2.09E+01 2.09E+01 2.10E+01
F9 2.69E+01 2.75E+01 1.45E+01 3.50E+01 2.65E+01 2.20E+01
F10 6.13E-02 7.69E-02 2.71E-02 1.02E-01 4.04E-02 3.63E-02
F11 0.00E+00 0.00E+00 0.00E+00 1.95E-02 0.00E+00 0.00E+00
F12 1.82E+01 2.30E+01 3.98E+01 4.94E+01 2.29E+01 4.07E+01
F13 3.84E+01 5.03E+01 8.04E+01 7.68E+01 4.67E+01 7.10E+01
F14 6.34E-02 3.18E-02 3.60E+00 3.99E-01 2.86E-02 9.39E-03
F15 3.24E+03 3.22E+03 3.36E+03 6.75E+03 3.24E+03 4.39E+03
F16 1.01E+00 9.13E-01 3.38E-01 2.48E+00 1.84E+00 2.32E+00
F17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
F18 7.17E+01 7.25E+01 6.69E+01 1.37E+02 7.76E+01 1.35E+02
F19 1.33E+00 1.36E+00 1.61E+00 1.84E+00 1.44E+00 1.27E+00
F20 1.03E+01 1.05E+01 1.06E+01 1.30E+01 1.04E+01 1.13E+01
F21 2.81E+02 3.09E+02 3.02E+02 3.05E+02 3.04E+02 2.94E+02
F22 9.75E+01 9.81E+01 1.17E+02 3.09E+02 9.39E+01 1.03E+02
F23 3.58E+03 3.51E+03 3.56E+03 6.74E+03 3.36E+03 4.36E+03
F24 2.01E+02 2.05E+02 2.21E+02 2.91E+02 2.17E+02 2.04E+02
F25 2.80E+02 2.59E+02 2.57E+02 2.99E+02 2.74E+02 2.55E+02
F26 2.00E+02 2.02E+02 2.18E+02 3.56E+02 2.15E+02 2.00E+02
F27 4.11E+02 3.88E+02 6.20E+02 1.21E+03 6.70E+02 3.90E+02
F28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
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Another interesting observation is that some of
the functions respond well to low reset rates and
some to higher ones, keeping in line with the no
free lunch theorem [66]. A detailed analysis may
be performed in the future to determine the gener-
alized reset rate intervals depending upon the char-
acteristics of a function.

6 Conclusions

In this paper, we presented the plausibility of
integrating a strategy adaptation mechanism with a
parameter adaptation mechanism. Given fixed con-
trol parameter settings, we first demonstrate, on a
test suite of 28 benchmark functions, that no sin-
gle mutation strategy performs significantly better
than all other mutation strategies. Then, we show
that similar results are observed in the presence of
control parameter adaption. This built the case of
automating the mutation strategies with or with-
out control parameter adaptation. We then incorpo-
rated a strategy adaptation mechanism into a well
known history based parameter adaptation mech-
anism, SHADE. We compare the enhanced ver-
sion SA-SHADE with other well known adaptive
mechanisms and show the competitive results ob-
tained by SA-SHADE. SA-SHADE performs sig-
nificantly better than well known adaptive vari-
ants, i.e., CoDE, EPSDE, and dynNP-jDE and
is highly competitive compared to SHADE, and
JADE. SHADE, though being higher ranked, was
not found to be statistically significantly different
when compared with CoDE and dynNP-jDE. Thus,
SA-SHADE improves upon SHADE in this regard.
The memory reset rate R of SA-SHADE is found
to have crucial impact on its performance wherein
lower reset rates are found to be relatively more
conducive than higher ones. Another important
conclusion that can be drawn from the results is that
strategy adaptation is a useful mechanism both in
presence and absence of control parameter adapta-
tion, and we propose that it should always be used
while optimizing with DE.

Future work includes investigating the impact
of different adaptive strategies on multiple classes
of benchmark functions and classifying strengths
and weaknesses of each mechanism accordingly.
Further to that, the utility of a population size adap-

tation mechanism into SA-SHADE is also proposed
as future work.
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Another interesting observation is that some of
the functions respond well to low reset rates and
some to higher ones, keeping in line with the no
free lunch theorem [66]. A detailed analysis may
be performed in the future to determine the gener-
alized reset rate intervals depending upon the char-
acteristics of a function.

6 Conclusions

In this paper, we presented the plausibility of
integrating a strategy adaptation mechanism with a
parameter adaptation mechanism. Given fixed con-
trol parameter settings, we first demonstrate, on a
test suite of 28 benchmark functions, that no sin-
gle mutation strategy performs significantly better
than all other mutation strategies. Then, we show
that similar results are observed in the presence of
control parameter adaption. This built the case of
automating the mutation strategies with or with-
out control parameter adaptation. We then incorpo-
rated a strategy adaptation mechanism into a well
known history based parameter adaptation mech-
anism, SHADE. We compare the enhanced ver-
sion SA-SHADE with other well known adaptive
mechanisms and show the competitive results ob-
tained by SA-SHADE. SA-SHADE performs sig-
nificantly better than well known adaptive vari-
ants, i.e., CoDE, EPSDE, and dynNP-jDE and
is highly competitive compared to SHADE, and
JADE. SHADE, though being higher ranked, was
not found to be statistically significantly different
when compared with CoDE and dynNP-jDE. Thus,
SA-SHADE improves upon SHADE in this regard.
The memory reset rate R of SA-SHADE is found
to have crucial impact on its performance wherein
lower reset rates are found to be relatively more
conducive than higher ones. Another important
conclusion that can be drawn from the results is that
strategy adaptation is a useful mechanism both in
presence and absence of control parameter adapta-
tion, and we propose that it should always be used
while optimizing with DE.

Future work includes investigating the impact
of different adaptive strategies on multiple classes
of benchmark functions and classifying strengths
and weaknesses of each mechanism accordingly.
Further to that, the utility of a population size adap-

tation mechanism into SA-SHADE is also proposed
as future work.
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