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Abstract

In this paper, we describe how several soft computing tools can be used to assist in high
throughput screening of potential drug candidates. Individual small molecules (ligands)
are assessed for their potential to bind to specific proteins (receptors). Committees of
multilayer networks are used to classify protein-ligand complexes as good binders or bad
binders, based on selected chemical descriptors. The novel aspects of this paper include
the use of statistical analyses on the weights of single layer networks to select the appro-
priate descriptors, the use of Monte Carlo cross-validation to provide confidence measures
of network performance (and also to identify problems in the data), the addition of new
chemical descriptors to improve network accuracy, and the use of Self Organizing Maps
to analyze the performance of the trained network and identify anomalies. We demon-
strate the procedures on a large practical data set, and use them to discover a promising
characteristic of the data. We also perform virtual screenings with the trained networks
on a number of benchmark sets and analyze the results.

Keywords: drug discovery, virtual screening, multilayer network, SOM

1 Introduction

Biochemistry sees drugs as ligands, which are small
molecules or ions that bind to specific regions of
protein macromolecules. Ligands are used by your
cells to control the behavior of proteins, basically
like an on-off switch. When ligands bind to their
target region (see Figure 1), the protein and ligand
change shape to make the tightest fit possible and
reach the lowest energy state. If the ligand is an ag-
onist, it induces the active conformation of the pro-
tein. If it is an antagonist, it will keep the protein
in an inactive state. Protein-ligand interactions are
driven by intermolecular forces (ionic bonds, hy-
drogen bonds, van der Waals (vdW) forces, etc.) as

well as entropy and solvent related effects, which
create a non-covalent protein-ligand complex. The
shape and energy of these complexes are unique for
every ligand, and this is what determines their bio-
logical functionality. In the lab, biochemists must
use an assay to determine the binding affinity of
novel ligands. These assays are quite accurate, but
also expensive and time consuming.

Computational chemists can generate enormous
libraries of drug-like molecules, and need a way to
very rapidly screen out those that aren’t likely to
bind so that any likely binders can be confirmed
experimentally. This technique is referred to as
high throughput virtual screening (HTVS). Com-
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puters can use 3d structures to simulate the physics
of protein-ligand interactions and attempt to pre-
dict their binding affinities. These programs start
with a rigid protein structure and dock ligands into
their target region through energy minimization fol-
lowing steepest decent and molecular dynamics cal-
culations. Programs such as Autodock 4 [5] can
approach experimental accuracy, but are too com-
putationally intensive for high throughput applica-
tions; consider the vast chemical space occupied
by drug-like molecules (estimated at 10> unique
molecules [6]). Docking programs are now avail-
able that take advantage of multicore processors and
are able to produce the correct conformation of lig-
ands. Autodock Vina is orders of magnitude faster
than its predecessor and yet more accurate in deter-
mining binding conformation of candidate ligands
[2]. Vina’s estimate of affinity, however, is hardly
better than a guess.

Neural networks have been used previously in
HTVS as a "post-docking” processing step in dif-
ferent ways [1]. Instead of trying to predict affinity,
our networks have been trained to classify docked
complexes into good binders and bad binders (hav-
ing greater than 25uM affinity or less). With
the rising number and accuracy of crystallographic
and NMR complexes in online databases, there is
more and more potential for so called knowledge-
based functions to accomplish the affinity predic-
tion. These functions are statistical analyses of
complexes in the databases. Pairs of atoms that are
often found close to each other are considered to
be energetically favorable. NNscore [1] is knowl-
edge based and uses atom type pairs and their preva-
lences as seen in the databases. But it is also empiri-
cal, because it characterizes complexes on coulomb
energy, vdW forces, number of ligand torsions, and
other significant physical descriptors.

In this paper, we extend the work of [1] in
several ways. First, we use Monte Carlo cross-
validation to provide confidence measures of net-
work performance and to identify problems in the
data. In addition, we use Self Organizing Maps
to analyze the performance of trained networks and
identify anomalies. We were able to use these meth-
ods to discover a very interesting characteristic of
a commonly used data set that has the potential to
significantly increase accuracies of binding predic-
tions. We also added new chemical descriptors to

the network inputs, which increased the classifica-
tion accuracy of the networks.

A general outline of this paper is as follows: In
Section 2, we discuss how the training set was com-
piled and how the inputs are computed. Section 3
covers the architectures of our networks, how irrel-
evant inputs are removed, how we use the Self Or-
ganizing Maps (SOMs), and how we perform our
benchmark (virtual screen) using the trained net-
works. (Our networks are trained to classify com-
plexes as good binders or bad binders. In the bench-
marking process, we use the same networks to or-
der a new library of compounds from best binder to
worst, so that the best binders can be synthesized.
To perform the ranking, we use the network output
activations. Any activation above 0.5 would be con-
sidered a good binder, but a larger activation would
indicate that the compound is farther from the de-
cision boundary.) In Section 4, we discuss results
from single layer networks and compare with re-
sults from multi-layer networks of different sizes.
We also show hit histograms of the trained SOM
and discuss insights into training data provided by
various SOM figures. Finally, we look at the com-
plexes that are difficult to classify and the results
from our Benchmarking.

Figure 1. Figure of Protein-ligand Complex [8].

2 Materials

The data we used to develop our neural net-
work classifier was partially comprised of the 3446
protein-ligand complexes of the “refined” set on the
PDBbind database [3]. This set was curated from
the Protein Data Bank to only include high quality
complexes with experimentally determined struc-
tures and binding affinity data. Diversity was con-
sidered to represent affinities ranging from 10 mM
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- 1pM, and excessively redundant proteins and lig-
ands were also removed. Only about 700 complexes
had affinities greater than 25uM (weak binders)
compared to 2700 less than 25uM (strong binding
complexes). This imbalance arises from a general
lack of structural data for weak binding complexes.
If we train on this data alone, we can expect the
networks will reflect the same bias and give more
false positives. To provide a more balanced train-
ing set, we included the 1431 “weak binding” com-
plexes generated by Durrant et al [1]. These were
created by docking the NCI Diversity Set II — a set
of 1364 random drug-like ligands — into the 3446
receptors that were already part of the training set,
using Autodock Vina. Only those complexes with
final energies between O and -4 kcal/mol (accord-
ing to Vina) were used to create this weak binding
set. The final training set consisted of 2741 good
binders and 2130 bad binders. Structural files for
each complex in the PDB refined set were down-
loaded. For each complex, there is one ligand file
in MOL2 format and one receptor file in PDB for-
mat. These files need to be in PDBQT format, and
some required information must be added. In Fig-
ure 2, we have outlined the procedure for prepar-
ing the correct PDBQT format from the formats
available on the PDBBind database. Starting with
the ligands, we used Raccoon [4] and MGLTools
v.1.5.4 to add hydrogen atoms, merge non-polar hy-
drogens with their parent atom, delete lone pairs,
assign gasteiger charges, and convert to PDBQT
format. For the protein receptors, we used Reduce
to add hydrogens, and MGLTools v1.5.4 to merge
non-polar hydrogens and assign gasteiger charges.
Autodock 4 atom-types were assigned to all atoms.

From the molecular descriptions of the
molecules in the data base, we need to compute
a limited number of descriptors that can be input to
the neural network. Figure 3 shows 244 descriptors
that we considered. We decided to start with the
same 194 descriptors that were used in [1]. We will
train a single layer network and use the weights to
gage the contribution each input has toward the fi-
nal decision. If our first set of inputs train to high
accuracy, we can remove those inputs that corre-
spond to the smallest weights (based on a t-test, as
will be described later). This process of removing
inputs and retraining can be repeated until only the
significant descriptors remain without sacrificing
accuracy. In Figure 3, all of the colored atoms/atom

pairs were removed by this process. Each color
represents one round of removing inputs. Green
atoms/atom pairs were removed in the first training,
light blue in the second, blue in the third, magenta
in the fourth, red in the fifth, and orange in the sixth
round of training.

The inputs used in the initial training fall into
four main categories: proximity counts, electro-
static forces, van der Waals forces, and ligand char-
acteristics. The proximity list counts pairs of atoms
between the receptor and ligand within 24 of each
other. The number is counted separately for each
atom type pair. A similar proximity list counts
pairs within 4A. Electrostatic force is a function of
proximity, but also of partial atomic charge. This
force is calculated for atoms within 44 of each other
and then summed for each unique atom type pair.
Van der Waals forces were approximated using the
Leonard-Jones potential
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This force is calculated for atoms within 34 - 5.54
of each other and summed for each unique atom
type pair. Finally, the ligand is characterized by
counting the number and type of atoms it contains
along with the number of torsions that remain after
binding.

We have developed networks based on the 194
inputs that were proposed by Durrant et al [1] to
provide a basis for comparison. We have also de-
veloped networks using the additional 50 Van der
Waals forces. We will compare the performances
of these networks on various testing sets and also
on several benchmark virtual screens.

| Proteins as FDB ]

-Add missing H

Reduce (-bulld) -optimize H-bond networks
-check for flipped Asn,
Gin, His

I Ligands as MOL2 |

-Merge nen-polar Hydrogens
-Delete lone pairs

-Activate backbone
rotatable bonds
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MGL Tools
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Figure 2. Flowchart showing file processing steps

[8].
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Il 3rd
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3 6th Removed

Number of Atom Types in Ligand

NA, 1, 5, HD, C, A, BR, CL, F, N, P, SA. w13

Atom type pairs within 24

(HD-N), (A-HD], (C-HD), (C-0A), (HD-HD), (HD-MG], (HD- | +14
0A).

of Ligand Bonds +1

Atom type pairs within 4A

(FE-N), (F-N), (SA-54),

(A1), (A-SA), (A-BR), (A-CL), (A-C), (HD-I), (N-SA), (A-8), (A-HD), |+83
(C-N), (OA-P), (A-N}, (A-NA), (A-OA), (A-P), (A-5), (A-ZN), (BR-C]),

(C-C), (C-CL), (C-F), (C-FE), (C-HD], (C-MG), (C-NA), (C-OA}, (C-F),

(C-S), (C-ZN), (F-HD), (F-OA), (F-SA), (HD-HD), (HD-MG), (HD-OA),
(HD-S), (HD-SA), (HD-ZN), (MG-NA), (MG-OA), (NA-OA), (NA-5A),
(N-N), (N-NA), (N-DA), (N-P), {N-5], (N-ZN), (OA-S), (OA-SA), (OA-

ZN).

Coulomb Atom Type Pairs

(A-N), [F-58), (F-0A), (A-T), (HD-SA), (HD-1), (A-OR), (BR-C), (F- +83
HD), (A-NA), (C-C),(CL-N), (C-SA), (N-ZN), (A-A), (A-C), (A-CL), (A-F),
(A-HD}, (A-NA), (A-P), (A-5), (A-SA), (A-ZN), (C-C), (C-F), (CL-N}, (CL-
OR), (C-MG), (C-N), (C-NA), (C-OA), (C-P), (C-S), (C-5A), (C-ZN), (F-
HD), (HD-HD), (HD-MG), (HD-NA),(HD-0A), (HD-S), (HD-ZN), (1-04),
(MG-NA), (MG-0A), (MN-OA), (NA-OA), (NA-SA), (N-N), (N-NA), (N-OA),
(N-P), (N-S), (N-SA), (N-ZN), (OA-5), (OA-ZN).

van der Waals Atom Type Pairs

(NA-ZN), (MG-NA),
(A-A), (A-C), (A-CL), (A-N), (A-NA), (A-OA), (A-S], (A-SA), (BR-N), (C-C}, (C-CL),
(€-F), (CL-N), (CL-DA), {C-MG), (C-N}, (C-NA), (C-OA), (C-5), (C-SA), (C-ZN), (FE-N),
(FE-OA), (F-N), (F-OA), (MG-0A), (NA-OA), (N-N), (N-NA), (OA-OA).

+50

Total number of dimensions that characterize each complex 244
Number of insignificant inputs discarded -73
Final number of inputs utilized 171

Figure 3. Descriptors used as neural network
inputs.

3 Methods

3.1 Feedforward Neural Networks

In order to classify protein-ligand complexes
into good binder and bad binder categories, we will
use feedforward neural networks. We will use both
single layer and two layer networks. As discussed
in a later section, the single layer network will be
used to determine which inputs (descriptors) are rel-
evant to the classification process. The single layer
network also provides a baseline for classification
accuracy. After the relevant inputs have been se-
lected, a committee of multilayer networks will be
used to make the final classification.

Figure 4 shows the single layer network we will
use. It uses a log sigmoid activation function, and is
equivalent to logistic regression. The network will
be trained to minimize mean square error.

Inputs Tan-Sigmoid Layer

Inputs Log-Sigmoid Layer
N7 A\

P a
R x1 w \ n
1XR j@?’i

19 b
R N 1x1 1

a = logsig(Wp+b)
Figure 4. Single Layer Network [8].

Figure 5 shows a two layer network. The hidden
layer uses a tan sigmoid activation function, and the
output layer uses a softmax activation function. The
network will be trained to minimize cross-entropy.
The number of neurons in the hidden layer will be
adjusted for robust generalization performance. In
addition to the two layer network, we also tested
networks with three, four and five layers. The hid-
den layer activations were always of the tan sigmoid
type.

Softmax Layer

T N7 A

a' = tansig(W'p+b’) a’ = softmax(Wa'+b’)

Figure 5. Two Layer Network [8].

For classification purposes, we will use com-
mittees of multi-layer networks. Each network in
the committee will provide a vote on the classifi-
cation (good or bad binder), and the class with the
most votes will be the final choice. (When we use
the networks for benchmarking, we will average the
network activations, and use that to rank the com-
plexes. See Section 3.3.)

Both single layer and multi-layer networks will
be trained using the scaled conjugate gradient algo-
rithm [9], as implemented in the Neural Network
Toolbox for MATLAB [11].

3.1.1 Training, Validation and Test Sets

In order to develop confidence ranges for the
performance of the networks, we used Monte Carlo
cross-validation (also known as repeated random
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subsampling validation). For every Monte Carlo
trial, we divided the data into two sets. The first set
consisted of a randomly sampled 85% of the data,
and the second (test) set consisted of the remaining
15% of the data. For the training of each member of
the committee of networks, the first set (85% of the
data) was randomly divided again into a training set
(70% of the full data set) and a validation set (15%
of the full data set). Each committee member is
trained to optimize the performance of the network
on its assigned training set. The validation set is
monitored during training, and training stops when
performance on the validation set does not improve
for 300 iterations. The weights with the minimum
validation error are then used. This early stopping
procedure helps avert overfitting. Each member of
the committee is thus trained on a somewhat dif-
ferent data set (and with a different set of initial
weights). To summarize, on each Monte Carlo trial
a committee of multiple feedforward networks are
trained. The committee of networks then vote on
the test set, and the error is calculated. After all
of the Monte Carlo trials are complete, the mean
and standard deviation of the test set errors are then
computed. Since the test sets are different for each
Monte Carlo trial, and since the test sets are not
used in any way for training, the distribution of the
Monte Carlo errors can be expected to be represen-
tative of typical future errors. The procedure is il-
lustrated in Figure 6. The dotted, arrowed lines rep-
resent a random sampling process. The solid ar-
rowed lines represent a simple transfer. A different
independent test set is used for each Monte Carlo
trial. Each test set is used to compute the error for
one committee. A different independent validation
set is selected for each network in the committee.

Full Data Set
;5 Monte Carlo 1

LI
; Monte Carlo 2
R——

Y Y Y Y
[ | L | i i e | |
Network, Network, ,, Network, ; Network, ,
\.________1“___________./ 2
Committee 1 [_] Committee 2 || =<
D Training I:] Validation I:l Testing

Figure 6. Data Selection Procedure.

3.1.2 Consistently Misclassified Data

We used Monte Carlo cross-validation in a
novel way in this work. As described above, each
Monte Carlo trial has a committee of networks.
Each committee removes a test set that won’t be
used to train the networks inside that committee.
Instead we use the test sets to compute the error
for each committee. Then we report the average
over all committees and the standard deviation. We
are able to show that there is significant variation
in network performance over a committee. Further-
more, at the completion of each Monte Carlo trial,
we also applied the full data set to the committee of
networks, in order to classify every protein-ligand
complex (whether in training, validation or testing
sets). We then kept track of the number of times
each protein-ligand complex is misclassified. We
would expect that a given complex would be more
likely to be classified correctly when it is included
in the training or validation set, and more likely
to be misclassified when it is included in the test
set. However, if some complexes were misclassi-
fied much more often than others, this could indi-
cate problems. If a complex is frequently misclassi-
fied, this could indicate that there is a problem with
the data, or it could indicate that the complex is in
a region of the input space that is poorly sampled,
with few neighboring complexes. It could also in-
dicate that the descriptors used in the network input
are insufficient to characterize the binding quality
of the complex. Later in this paper, we will investi-
gate consistently misclassified data.

3.1.3 Removing Irrelevant Inputs

In addition to the use of Monte Carlo cross-
validation to assess the generalization capabilities
of the neural network classifiers, we also used it in
a novel way to remove irrelevant descriptors from
the network inputs. We trained single layer net-
works, using Monte Carlo cross-validation, as de-
scribed above. We then considered the distribution
of weights across the Monte Carlo trials. Since in a
single layer network each weight corresponds to a
single input, the distribution of a specific weight can
indicate the importance of the corresponding input.
If an input (descriptor) is not informative about the
binding strength of protein-ligand complexes, then
we would expect the weights for that input to vary
randomly over the Monte Carlo trials, with a mean
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value near zero. Using the average value and sam-
ple standard deviation of each weight, we can per-
form a one-sample t-test to test the hypothesis that
the mean is different than zero. After computing the
t-statistic, a p-value can be found. If the p-value is
below a statistical significance level (we used 0.01),
then we would reject the hypothesis that the mean
is zero. If it is above the significance level, we can-
not reject the hypothesis that the mean is zero, and
we will then remove that input. After the inputs are
removed, the networks are retrained, and the pro-
cess is repeated until no more inputs have p-values
above 0.01.

3.2 Self Organizing Map

In addition to feedforward networks, we also
use the Self Organizing Map (SOM) [12], which
is an unsupervised clustering network. The SOM
is a topology preserving network, in that neurons
within the network have neighbor relationships that
are preserved by the training process. We will use
the SOM to cluster the training data. This will show
us which complexes have similar inputs. We will
also be able to visualize the distribution of mis-
classified complexes, and improve the training of
the feedforward networks. (We use the standard
SOM described in [12], using Euclidean distance,
and train with the batch SOM algorithm.)

3.3 Benchmarking

Virtual screening, known as VS, refers to the
computational methodology of evaluating large
compound libraries to identify novel ligands or in-
hibitors. VS can be separated into ligand and
structure-based screening. Ligand-based virtual
screening finds novel drugs by comparing com-
pounds to known inhibitors or ligands, while
structure-based methods dock compounds into a 3-
dimensional structure of the target before evaluat-
ing their affinity. NNScore [1] and our networks
are structure-based scoring functions that evaluate
potential ligands after they have been docked into a
target receptor.

As described in Section 3.1.1, we can evalu-
ate a network’s performance in correctly identifying
strong and weak binders by the percent error on an
independent test set. In practice, however, the goal
of a VS is not to minimize percent error over a large

test set, but rather to order a compound library from
best binder to worst. This is because only the top
scoring ligands will be tested experimentally.

Receiver operating characteristic (ROC) curves
can be generated when performing a VS on libraries
with known ligands, and the area under these curves
(AUROC) provides a better assessment of a virtual
screen’s performance [15] than percent error. The
AUROC corresponds to the chance that a random
known ligand will be ranked above a random inac-
tive, and it is independent of the ratio of ligands to
inactives in the library being screened. Random se-
lection of strong and weak binders should give an
AUROC of 0.5. A perfect screen with no mistakes
would have an AUROC of 1, and all true ligands
would be ranked above all inactives.

We need to say something about how the AU-
ROC will be computed for a committee of multi-
layer networks. When computing percent error, the
committee decision is obtained by a vote of the in-
dividual networks. The target for a good binding
complex would be (1,0), but the actual network out-
puts can range continuously between O to 1, with
the sum of the two activations always equal to 1 (be-
cause of the softmax activation function). A mem-
ber network vote is considered positive, if the first
output neuron activation is larger than the second
(a; > a»).

In order to rank the protein-ligand complexes,
which is needed to compute the AUROC, we will
define the score to be the average of the differences
between the two activations (a; — ay) across all of
the committee members. Complexes with a higher
score will be considered better binders, since we
would expect these binders to be farther from the
decision boundary. (This same procedure is used in

[1].)

To show how our networks might perform in a
real VS, we need a larger set of known active and
decoy ligands that have been docked into a diverse
set of protein receptors, so that we can calculate
area under ROC curves. The diverse set of recep-
tors is required because scoring functions are no-
toriously system dependent, and performance can
vary greatly from receptor to receptor. Follow-
ing Durrant et al, we decided to use the original
Directory of Useful Decoys set of 40 diverse re-
ceptors and 2950 ligands with known affinity [14].
For every ligand, the DUD also provides 36 de-
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coys. These decoys are chemically similar to the
active ligands, but presumed to be inactive. In a
real virtual screen, we wouldn’t expect compounds
to be similar to each other or to known ligands
in any way. Instead of using the decoys as inac-
tives, we will use 1528 molecules of the NCI Di-
versity Set III as presumed inactives. This diverse
set of drug-like molecules will be more representa-
tive of a typical VS, and is made publicly available
at http://dtp.nci.nih.gov . Furthermore, since
this is the same Benchmarking set used by Durrant,
we will be able to compare results and verify that
our networks are performing as expected.

All ligands, decoys, and receptors were pro-
cessed as described in the materials section to add
appropriate information. Ligands will be docked
into their respective receptors along with the Di-
versity Set III using AutoDock Vina with default
parameters and exhaustiveness 8. The dimensions
and centers for the docking boxes were taken from
the DUD. Only the top scoring Vina docking was
re-scored with our networks.

4 Results and Discussion

4.1 Single Layer Results

We developed two different sets of networks for
predicting binding quality. In one set, we used the
194 descriptors originally proposed by Durrant et
al [1]. In the second set, we added an additional 50
descriptors based on Van der Waals forces (see Eq.
1). The additional descriptors enabled the networks
to achieve lower test set errors, so in the following
sections we will describe model development prin-
cipally for the larger input case. We will be com-
paring the two sets at various points in the paper.
The 194 descriptor case will be referred to as the
Coulomb networks, since only coulomb forces were
considered, and the 244 input case as the vdW net-
works, since van der Waals forces were added.

Table 4.1 shows the results of training the sin-
gle layer network as the descriptors in the input
are removed for the vdW case. The average per-
cent error over 100 Monte Carlo trials, on the inde-
pendent test sets, is provided, along with the sam-
ple standard deviation. (We want to emphasize that
all of the errors reported in this paper are on test
sets that were not used in any way to train the net-

works that are being tested.) In addition, the ta-
ble shows the average sensitivity and specificity for
each case, along with their corresponding sample
standard deviations. The original input contains 244
descriptors. The descriptors with p-values greater
than 0.01 were then removed, to produce 195 de-
scriptors. After the simplified network was trained,
new p-values were computed, and additional de-
scriptors were removed. This continued until 149
descriptors remained, at which time subsequent p-
values remained less than 0.01. To further inves-
tigate the importance of the remaining descriptors,
we removed additional inputs, approximately 20 at
a time, using p-value ranking. It was possible to re-
move a total of 195 of the original inputs (leaving
49 descriptors) without any significant decrease in
performance. (When starting with the 194 descrip-
tors from the Coulomb case, we found that we could
reduce to 72 descriptors without degrading perfor-
mance, although the overall error was smaller for
the vdW case, as we will see later.)

Table 1. Single Layer Network Performance

Inputs| Error STD | Sens STD | Spec STD
244 | 17.1% 1.63 | 89.8% 1.43 | 75.5% 3.19
195 17.6% 1.30 | 89.5% 1.3 75.2% 3.08
174 | 16.9% 1.55 | 89.8% 1.29 | 76.4% 2.70
149 | 16.8% 1.47 | 89.8% 1.16 | 76.0% 2.58
129 | 16.7% 1.72 | 89.6% 1.06 | 77.0% 2.73
109 | 16.2% 1.63 | 89.9% 1.04 | 77.2% 2.10
&9 15.8% 1.36 | 90.0% 0.90 | 77.9% 1.77
69 15.6% 1.45 | 89.9% 0.72 | 78.6% 1.60
49 15.4% 1.30 | 89.7% 0.87 | 79.1% 1.07
29 157% 1.44 | 89.2% 0.46 | 79.0% 0.82
19 15.6% 1.24 | 89.1% 0.34 | 79.1% 0.59
14 157% 1.49 | 89.0% 0.40 | 78.6% 0.49
9 19.1% 1.38 | 87.7% 0.65 | 72.6% 0.59
4 22.1% 1.27 | 86.4% 0.56 | 66.7% 1.09
2 28.2% 1.56 | 82.5% 0.81 | 58.5% 1.25

4.2 Multilayer Results

Table 2 shows the average performance of the
10 member committee of two layer networks with
10 neurons in the hidden layer, using the number
of inputs that were found using the single layer net-
work. As we can see, the pattern is very similar to
the single layer case.

It should also be noted that in each case there
is a significant variation among the 50 Monte Carlo
trials. For example, the lowest average percent er-
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ror of 14.3% occurs with 49 descriptors in the input
vector, but the sample standard deviation of the 50
trials is 1.05, which means we could expect a range
of percent errors on any one trail to go from 12.2%
to 16.14%. This suggests that with data of the type
we have used, it would not be appropriate to report
results on a single test set, since performance can
vary significantly with small variations in data se-
lection.

Table 2. Two Layer Network Performance

Inputs| Error STD | Spec STD | Sens STD
244 | 144% 122 | 92.6% 0.39 | 79.9% 0.67
195 | 144% 1.25 | 92.8% 0.35 | 79.6% 0.83
174 | 13.9% 1.38 | 92.8% 0.38 | 79.8% 0.78
149 | 144% 1.23 | 92.8% 0.42 | 79.5% 0.82
129 | 144% 1.30 | 92.8% 0.32 | 79.4% 0.79
109 | 143% 1.35 | 92.9% 0.28 | 78.7% 0.80
89 143% 1.22 | 92.9% 0.27 | 78.4% 0.65
69 143% 1.11 | 93.0% 0.28 | 78.4% 0.48
49 143% 1.05 | 92.6% 0.27 | 78.0% 0.45
29 153% 1.24 | 91.5% 0.31 | 77.9% 0.55
19 149% 1.13 | 91.3% 0.27 | 77.7% 0.51
14 154% 1.23 | 91.5% 0.27 | 77.0% 0.62
9 172% 1.02 | 92.2% 0.42 | 72.0% 0.45
4 21.0% 1.53 | 86.5% 0.49 | 69.1% 0.85
2 28.1% 1.56 | 80.4% 0.8 61.6% 1.05

Figure 7 shows a comparison among the aver-
age percent errors of the one layer and two layer
networks for both the Couloumb and vdW descrip-
tor sets, as the number of inputs is changed. (Inputs
were removed in the order of their p-values.) There
are several things that we can take from this fig-
ure. First, we can see that the two layer networks
do have consistently smaller errors for every set of
inputs than the one layer networks, although the
amount of reduction is not extremely large. Second,
the patterns of the curves are very similar. Even
though the p-values that were used to remove the
inputs were determined using the single layer net-
work, the results on the two layer network follow
the same pattern. This gives us some confidence in
the technique we have proposed for removing irrel-
evant inputs. In addition, the use of the vdW de-
scriptors provides a noticeable reduction in percent
error. It is worth emphasizing again the errors re-
ported here are on independent test sets that were
not used in any way in training the networks.

At a significance level of 1%, 95 inputs were
removed (resulting in 149 remaining inputs). An-

other 100 inputs were removed (with the next high-
est p values) without any significant increase in the
percent error. This pattern is demonstrated in both
the single layer and multi-layer results (and a simi-
lar pattern is seen with both Coulomb and vdW de-
scriptor sets), which again provides corroboration
for the use of single layer p-values to assist in input
removal.
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Figure 7. Percent Error Comparison.

Table 3 shows network performance as the
number of hidden layer neurons HN) are varied
(with 49 inputs to the network). In addition to the
two layer network, we tested deep networks with
2, 3 and 4 hidden layers (including many that are
not shown in the table). There is a consistent, if
not large, difference between the multilayer perfor-
mance and the single layer performance, but having
more than ten hidden neurons provides little addi-
tional improvement, and no improvement is seen
when using deeper networks. (These results are
for the vdW descriptors, but the same patterns were
seen for the Coulomb case. The pattern does not
depend on the number of inputs to the networks.)

It might be possible that, with a much larger
data set, improvements could be seen with deeper
networks. With only 4871 data points, it is not pos-
sible to make full use of a large network. Most
of the data is experimentally measured, using X-
ray crystallography, NMR spectroscopy, or cryo-
electron microscopy. These techniques are time
consuming and expensive, therefore, it is not prac-
tical in the near future to obtain an experimental
data set of vastly larger size. Perhaps, with a much
larger data set, we might find a deeper network that
would have improved performance, but we don’t
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have enough data to demonstrate whether or not that
is possible. On the other hand, we might find, with
additional data (or additional features), that a bet-
ter shallow network would be sufficient. Unfortu-
nately, the current data doesn’t enable us to say.

Table 3. Adjusting the Number of Hidden Neurons

HN | Error STD| Spec STD| Sens STD

0| 154%1.30| 89.7%0.87 | 79.1%1.07

2 | 154%4.34| 91.6%1.53| 76.5%11.0

31 149%1.24| 91.6%0.83 | 78.1%1.00

4 | 149%1.23 | 91.7%0.82 | 77.9%1.23

5| 152%2.19| 91.8%0.93 | 77.7%5.64

10 | 14.7%1.32| 91.6%0.60 | 78.7%1.28

20 | 149%1.14| 91.5%0.53 | 79.4%1.09

40 | 14.8%1.36 | 91.3%0.55 | 80.1%1.04
10,10 | 14.9%1.15| 91.6%0.57 | 78.8%1.17
10,20 | 14.8%1.23 | 91.5%0.55| 78.9%1.01
20,10 | 14.8%1.20| 91.6%0.52| 79.2%1.16
10,20,10 | 14.8%1.24 | 91.8%0.58 | 78.6%1.16
10,20,10,10 | 14.9%1.15| 91.8%0.58 | 78.5%1.08

Table 4 shows network performance as the
number of committee members are adjusted. Each
individual network had one hidden layer with 10
neurons. To compute the error, a vote is taken of the
committee members. If 50% or more of the mem-
bers indicate that the ligand is a good binder, that
is the committee decision. As with previous results,
the error is always computed on an independent test
set that is never used in training any of the commit-
tee members. The results show that little improve-
ment is obtained when using more than 10 networks
in the committee. Therefore, in the remainder of the
paper we will be using committees of 10 two layer
networks, with 10 neurons in the hidden layer.

Table 4. Adjusting the Number of Networks in a

Commitee

Nets | Error STD | Spec STD | Sens STD
1 14.7% 1.32 | 91.6% 0.60 | 78.7% 1.28
5 147% 1.27 | 92.1% 0.30 | 78.6% 0.61
10 14.3% 1.05 | 92.6% 0.27 | 78.0% 0.45
20 143% 1.20 | 92.5% 0.24 | 78.3% 0.42
30 14.8% 0.98 | 92.5% 0.23 | 78.3% 0.32
4.3 Self-Organizing Map Analysis

Approximately 600 of the 4872 data points
were always misclassified, whether they were in-
cluded in the training, validation or testing data
sets. We would generally expect that data points

would be less likely to be misclassified when they
were included in the training set, and more likely
to be misclassified when they were in the testing
set. This would not be the case, however, if the in-
puts from different classes were so similar to each
other as to be indistinguishable. In order to in-
vestigate whether or not this is the case, we will
cluster the input vectors to determine their similari-
ties. The clustering method we will use is the Self-
Organizing Map (SOM). The SOM is a topology
preserving network, in that neurons within the net-
work have neighbor relationships that are preserved
by the training process. After training, the inputs
from the training set are characterized by a small
set of prototype vectors - one for each neuron in the
SOM.

To illustrate the process, we will consider the
147 most important input elements from the origi-
nal 244, as determined by p-values less than 0.01.
We will train a 10x10 SOM (100 neurons) with an
hexagonal grid to cluster the input vectors. The
neuron numbers of the SOM are indicated in Fig-
ure 8 inside the circles at the corners of the figure.
(Neuron 1 is at the lower left, and numbers increase
along each row from left to right, with Neuron 100
at the top right.) After training, we expect that the
cluster represented by Neuron 1 will be near the
clusters represented by Neurons 2 and 11. This will
better enable us to judge the distribution of inputs in
the training set. (To validate the SOM operation, we
performed a chemical analysis of the clusters and
found that the structures of the complexes within a
given cluster are indeed similar, and that the chem-
ical structures differ from cluster to cluster.)
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Figure 8. SOM Hits.



182

Daniel Hagan, Martin Hagan

Figure 8 is a hit histogram of the trained SOM.
The sizes of the hexagons represent the number of
input vectors that are in each cluster. Here we can
see that Neuron 4 has the largest cluster, with 146
input vectors. The green hexagons represent clus-
ters in which more than 50% of the input vectors
are good binders. The light blue hexagons repre-
sent clusters in which more than 50% of the input
vectors are bad binders.

This figure also illustrates where the consis-
tently misclassified vectors are located. A red edge
on a hexagon indicates that there are consistently
misclassified vectors in the cluster, and the major-
ity of those vectors are False Positives (bad binders
classified as good). A magenta edge on a hexagon
indicates False Negatives (good binders that are
classified as bad). The thickness of the edge in-
dicates the number of misclassified vectors in the
cluster. For example, Neuron 26 has 84 vectors in
its cluster; the majority are good binders. It also has
a large number of misclassified vectors, and the ma-
jority are False Positives (bad binders that are clas-
sified as good binders). Comparing the colors of the
hexagons with the colors of the edges, we can see
that most misclassified inputs are bad binders that
are classified as good, and they are on the right side
of the feature map, where most good binders are lo-
cated.

Figure 9. SOM Neighbor Distances.

Some additional information on the SOM can
be obtained from the distance matrix, which is
shown in Figure 9. The figure indicates distances
between cluster centers using a color map. Darker
colors indicate larger distances. For example, clus-
ters 4, 5, 13, 14 and 24 have lightly colored connec-

tions. That means that these clusters must contain
similar complexes. We will have more to say about
these clusters in a later section.

There are several things we can say based on an
initial reading of this figure. The good binders gen-
erally fall on the right side of the SOM, and the bad
binders fall on the left side. This tells us that the 147
inputs that we are using are able to characterize the
binding properties of the protein-ligand complex, at
least in a general way, and this is what enables an
accuracy of approximately 80%. However, there are
a number of clusters in which there are many input
vectors that are consistently misclassified. Clusters
27,37, 40, 49 and 80, in particular, have a high per-
centage of misclassified vectors. The highest per-
centages of misclassified vectors occur in clusters
that contain primarily good binders, and the errors
are generally False Postives (bad binders that are
misclassified as good binders). Does this mean that
the existing inputs are not sufficient to distinguish
the binding ability of certain types of protein-ligand
complexes?

As discussed earlier, there are two data sets that
were combined to produce our training set. The first
set consists of the 3446 protein-ligand complexes
of the “refined” set of the PDBbind database [3],
which contains experimentally measured affinities.
Because this set contains a disproportionate num-
ber of good binders, it was suplemented with the
1431 “weak binding” complexes generated by Dur-
rant et al [1]. This data was not developed exper-
imentally, but through docking software. In order
to understand how the networks performed on these
two components of the training set, we analyzed the
SOM clusters to determine if the two components
of the data set occupied similar regions of the in-
put space. (For reference, we will refer to data from
the first component as PDB, and data from the sec-
ond component as DOCKED.) Figure 10 indicates
where the two components of the data set were lo-
cated. The sizes of the hexagons are the same as
those in Figure 8 and indicate the number of inputs
in each cluster. The grey scale in Figure 10 indi-
cates the percentage of DOCKED data in the clus-
ter. Black hexagons contain 100% DOCKED data,
and white hexagons contain 100% PDB data.
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Figure 10. PDB (white) vs DOCKED (black).
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Figure 11. Good binder (white) vs bad binder
(black).

Figure 11 is a companion to Figure 10. It in-
dicates the percentage of bad binders in each clus-
ter. Black hexagons contain 100% bad binders, and
white hexagons contain 100% good binders. By
comparing these two figures with Figure 8, we can
make several observations. First, the SOM cluster-
ing is better able to separate PDB and DOCKED
data than it can separate good binders and bad
binders, since the upper right side of Figure 10 is
almost all white, which indicates PDB data. From
Figure 11, we can see that there are bad binders
within the PDB data, but they occur in different
parts of the input space than the bind binders of the
DOCKED set. This is indicated by the fact that the
shading in the left side of both figures is very simi-
lar, indicating that the bad binders in this part of the
SOM come primarily from the DOCKED set.

If we compare Figures 11 and 10 with Figure
8, we can see that most of the errors occur on the

right side of the SOM. These errors are False Pos-
itives (bad binders classified as good) that are in
the PDB set. The bad binders from the DOCKED
set are generally classified correctly. Based on the
SOM analysis, the DOCKED data that were added
to the PDB set, in order to fortify the number of
bad binders there, do not appear to have the same
type of bad binders that are in the PDB set. For
this reason, they are not as helpful in improving the
performance on the bad binders in the PDB set. It
would improve performance to have additional bad
binders in the DOCKED set that had more similar-
ity to the bad binders in the PDB set.

There are some bad binders in the PDB set that
were correctly classified. For example, consider
cluster 30. From Figure 10 we can see that clus-
ter 30 consists almost entirely of PDB data. From
Figure 11 we can see that it does have a significant
number of bad binders, and Figure 8§ indicates that
most of the inputs in that cluster were correctly clas-
sified.

To summarize, most of the errors are bad
binders in the PDB set that are classified as good
binders. These errors occur mainly in the upper
right quadrant of the SOM. Based on the SOM clus-
tering, those bad binders look more like the good
binders in the PDB set than the bad binders in the
DOCKED set. This suggests that for future devel-
opment we should attempt to develop additional bad
binders that look more like the bad binders in the
PDB set. We can use the SOM to assist in that pro-
cess —as we generate additional bad binders, we can
check them against existing SOM clusters to see if
they are close enough to be helpful.

Most of the complexes that are being misclas-
sified are misclassified whether they are included
within the training set or not. Based on this result,
and the SOM analysis, it appears that we need to use
additional descriptors in order to improve the clas-
sification abilities of the network. It is not a matter
of increasing the numbers of neurons or layers in
the networks.

4.4 Analysis of Misclassified Data

As described earlier, a Monte Carlo analysis of
the training process was performed. For example,
the best results were obtained for a committee of 20
networks, where each network had two layers with
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five neurons in the hidden layer. (For this analy-
sis we are using the Coulomb data, but the vdW
data showed the same pattern.) During the training
process, the network committees were generated
100 times, with different training/validation and test
sets, and the mean and standard deviations of errors
on the 100 different committees were computed. In
addition, we counted the number of times that each
ligand-protein complex in the entire data set (train-
ing, validation and testing) was misclassified over
the 100 Monte Carlo trials. One would expect that
a typical complex would be less likely to be mis-
classified, if it was included in the training (or vali-
dation) set, and more likely to be misclassified, if it
was included in the test set (which is not used to up-
date weights or stop training). At each Monte Carlo
trial, 15% of the data is included in the test set. If
a given complex was always misclassified when it
was included in the test set, and never misclassified
when it was included in the training or validation
sets, then we would expect it to be misclassified,
on average, 15 times out of the 100 Monte Carlo
Trials. Of course, this would be an extreme result.
If the network is being trained effectively, and if the
descriptors in the network inputs are sufficiently ex-
planatory, we would expect the number of misclas-
sifications to he much less.
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Figure 12. Histogram of the Number of
Misclassifications of Each Complex [8].

Figure 12 is a histogram of the number of mis-
classifications that occur for each of the 4871 com-
plexes. Notice that over 600 of the complexes are
misclassified in every Monte Carlo trial (100 times).
This result was very unexpected. This means that
even when these complexes are in the training set,
they are misclassified every time. As illustrated in

Figure 8, the consistently misclassified complexes
consist of both good and bad binders. In addi-
tion, they must be distributed throughout the input
space, since they appear in almost every cluster in
the SOM network. This suggests that there must
be good binders that look like bad binders and bad
binders that look like good binders. This raises the
question as to whether these consistently misclassi-
fied complexes have anything in common.

To test this, we divided the data into two sets.
One set contained all complexes that were misclas-
sified more than 50% of the time, and the other set
contained all complexes that were misclassified less
than 50% of the time. The two data sets were then
trained separately. We would, of course, expect that
the complexes that were usually correctly classified
in the full data set would also be correctly classi-
fied in the smaller data set, where the original mis-
classified complexes were removed. We would not,
however, expect that the complexes that were al-
ways misclassified should now be accurately classi-
fied, when the correctly classified complexes were
removed. There is no reason, a priori, to expect that
the misclassified complexes have anything in partic-
ular in common with each other. If the consistently
misclassified complexes were simply very difficult
to classify, then they should still be difficult to clas-
sify when the correctly classified complexes are re-
moved. (For example, if the difficult data consisted
of random labels, it would produce percent errors of
50%, which could not be improved.)

There were 4871 complexes in the original data
set. Of these, 2741 were good binders and 2130
were bad. We found 854 complexes that were mis-
classified more than 50% of the time. Of these,
246 were good binders and 608 were bad. There
were 4017 complexes that were correctly classified
more than 50% of the time. Of these, 2495 were
good, and 1522 were bad. This means that bad
binders were more likely to be misclassified than
good binders, but significant numbers of both bad
and good binders were contained in both the mis-
classified data set and the correctly classified data
set.

Using just the single layer network, we trained
both the well-classified complexes and the mis-
classified complexes. For the well-classified com-
plexes, we found, as expected, that the accu-
racy improved. The mean percent error over 100
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Monte Carlo trials was 6.23%. This is much less
than the approximately 20% error on the full data
set (Coulomb data). The average sensitivity was
94.5%, and the average specificity was 93.9%. Both
of these numbers are significantly higher than the
results on the full data set.

For the misclassified data set, the results were
unexpected. We found that the average percent er-
ror was 16.3%. This is less than the approximately
20% error on the full data set. The average sensi-
tivity was 92.6%, and the average specificity was
71.6%. The specificity is approximately the same
as the results for the full data set and the sensitivity
is higher. Remember that the error on these com-
plexes was close to 100% when they were included
in the full data set.

It appears that there is some consistent differ-
ence between the complexes that were consistently
misclassified and those that were not. To investigate
this further, we inspected the weights of the single
layer network to see how they differed between the
two data sets. First, consider Figure 13. This is
a plot of the weights for the single layer network,
with 144 inputs, that was trained on the complexes
that were misclassified less than 50% of the time
when trained on the full data set. There are three
curves in the figure. The blue curve is the mean of
the weights for the 100 Monte Carlo runs. The red
line is two standard deviations above the mean, and
the green line is two standard deviations below the
mean. Almost all of the Monte Carlo runs fell be-
tween the red and green lines. The data was very
consistent when these 144 inputs were used. (For
space reasons, the plot of the weights for the com-
plete data set is not shown, but the shape of that
plot was almost identical to the originally well clas-
sified case, although the weights were much smaller
— with a maximum of about 3, instead of 80.)

Now, consider Figure 14. These are the weights
for the single layer network that was trained only
on the complexes that were misclassified more than
50% of the time when trained on the full data set.
These weights follow a very different pattern than
the other case. The weight pattern shown in Figure
13 is able to correctly classify the majority of the
complexes in the original data set. However, there
is a set of 600 to 800 complexes that seem to re-
quire a different type of classifier, represented by
the weights in Figure 14. In certain regions of the

weight matrix, the weights for the originally mis-
classified data are approximately the negative of the
weights for the well classified data, but this does not
hold completely.
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Figure 13. Weights when trained only on
well-classified data [8].
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Figure 14. Weights when trained only on
misclassified data [8].

Figure 15 shows a scatter plot of the weights
from the full set versus the weights from the
misclassified set. The best fit linear equation is
—0.44x + 0.34, with an R value of 0.8. There is
a generally negative relationship, but there is a sig-
nificant amount of variation. There are some inputs
that have the largest weights in the complete data set
(also the well classified), but small weights in the
originally misclassified. In the future, we will in-
vestigate those descriptors that are important for the
originally well classified data, but apparently not
consequential for the originally misclassified data.
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Figure 15. Weights from full set versus weights
from misclassified set [8].

4.5 Benchmarking

In Section 3.3, we noted that the objective of
developing the neural network models is not nec-
essarily to minimize the percent classification error
on a test set of potential ligand-protein complexes,
but rather to order a library of compounds from best
binder to worst binder, so that the best binders can
be synthesized and tested experimentally. This pro-
cess is called a Virtual Screen (VS). To see how our
networks might perform in a VS, we used the 40
benchmark sets from Durrant et al [1], as described
in Section 3.3.

Since the objective of a VS is only to find
the strongest binding ligands, using percent error
over the entire benchmark set as a measure of per-
formance is not particularly informative. It was
demonstrated in [15] that the Area Under the Re-
ceiver Operating Characteristic Curve (AUROC)
provides a better assessment of the performance of
a VS than percent error. An AUROC value of 0.5
would represent a scoring method that was no better
than guessing. An AUROC value of 1.0 would rep-
resent a perfect scoring method that always ranked
the strongest binding ligand first, and ranked all true
ligands higher than all inactives.

Table 5 provides a comparison of AUROC val-
ues for several different screening methods on the
40 benchmark sets described in Durrant et al [1].
The first column is the abbreviation for the re-
ceptor involved in the screen; the second column
gives the AUROC value for the scoring function de-
scribed in [1] (NNScore); the third column gives

the value for the single layer network trained with
the vdW descriptors (SL vdW); the fourth column
gives the value for the committee of multilayer net-
works trained with only the Coulomb descriptors
(ML Coul); and the final column shows the results
for the committee of multilayer networks trained
with the vdW descriptors (ML vdW). The last row
gives the average AUROC values over all 40 bench-
mark sets.

Table 5. AUROC on benchmarks

Protein NNScore SLvdW ML Coul ML vdW
ACE 0.6190 0.6297 0.7132 0.6202
ACHE 0.9135 0.7986 0.8088 0.8088
ALR2 0.7269 0.6092 0.6148 0.6148
AMPC 0.5955 0.8561 0.8743 0.8743
AR 0.7821 0.4589 0.6235 0.6235
CDK2 0.5922 0.7138 0.6486 0.6773
COMT 0.5021 0.4753 0.4794 0.4620
COX1 0.6826 0.6077 0.6907 0.6282
COX2 0.7784 0.8591 0.7996 0.8736
DHFR 0.6161 0.7916 0.7522 0.7477
EGFR 0.7592 0.8080 0.7742 0.7644
ERAG 0.8460 0.5823 0.7977 0.6319
ERAN 0.9401 0.9273 0.9647 0.9444
FGFR1 0.8226 0.9331 0.9344 0.9213
FXA 0.9110 0.9632 0.9471 0.9622
GART 0.6173 0.8920 0.9199 0.8499
GPB 0.3845 0.8010 0.8752 0.7071
GR 0.8825 0.5174 0.7151 0.5663
HIVPR 0.9541 0.9866 0.9878 0.9889
HIVRT 0.5825 0.4526 0.4668 0.4496
HGMA 0.5136 0.4907 0.5051 0.5099
HSP90 0.8156 0.8367 0.7585 0.7879
INHA 0.8156 0.8308 0.8099 0.8253
MR 0.8428 0.3606 0.7110 0.4120
NA 0.7170 0.7464 0.8204 0.7243
P38 0.8372 0.8630 0.7981 0.8652
PARP 0.4504 0.3435 0.2956 0.3794
PDB 0.7349 0.8986 0.7263 0.8805
PDE5 0.8675 0.8375 0.8617 0.8545
PDGFR 0.7102 0.6526 0.5518 0.6629
PNP 0.6506 0.6232 0.5724 0.5604
PPAR 0.8872 0.9555 0.9122 0.9619
PR 0.7524 0.4010 0.5393 0.4215
RXR 0.8581 0.7492 0.8617 0.7764
SAHH 0.6822 0.7861 0.7621 0.7299
SRC 0.7521 0.8753 0.8400 0.8593
THROM 0.8546 0.9510 0.9423 0.9442
TK 0.4587 0.4951 0.5192 0.4582
TRYPS 0.9095 0.9744 0.9825 0.9712
VEGFR 0.7206 0.8321 0.7769 0.8140
ADA 0.4350 0.5933 0.6463 0.5354
Average 0.7262 0.7259 0.7459 0.7232
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Figure 16. SOM Showing clustering of all
benchmarks.

There are several conclusions we can make
from this study. First, the highlighted row repre-
sents AUROC values for the training data set, which
consisted of complexes from the Protein Data Bank,
along with selected well-docked bad binders. For
this data, the addition of the vdW descriptors pro-
duced significantly higher AUROC values. This
is reasonable, since the vdW descriptors also pro-
duced smaller percent error on the PDB/DOCKED
testing sets, as shown in Figure 7. However, if we
look at the overall average in the final row, all of the
methods produced very similar results. Even the
single layer network did as well as the multilayer
networks. In fact, although it was left out of the ta-
ble for reasons of space, the single layer Coulomb
network performed as well as any of the others.
This result is consistent with Durrant’s benchmark
[1]. Each scoring method performs best on differ-
ent receptors, but the average over all receptors is
around 70% - 75%.

What explains why even the simplest network
performs as well as the more complex methods on
these 40 benchmarks? By adding additional de-
scriptors, and increasing the number of layers and
the number of networks in the committees, we were
able to produce improved test set errors on the
combined PDB/DOCKED data sets. But this did
not translate into improved AUROC values on the
benchmarks.

To help understand this result, we returned to
the SOM analysis from Section 4.3. Using the SOM
that was trained on the PDB/DOCKED data, we lo-
cated the data from all of the benchmark sets in the

original clusters. The results are shown in Figure
16, where the sizes of the blue hexagons indicate
the number of benchmark complexes in each clus-
ter. We can see that the data from all of the bench-
mark sets fit almost entirely in 6 clusters. Interest-
ingly, many of them fall in the neighboring clusters
4, 13, 14 and 24. From Figures 8, 10 and 11, we
know that 4 and 13 are mainly bad binders from the
DOCKED set, while 14 and 24 have a few more
good binders from the PDB set. These clusters
seem to straddle a boundary between good and bad
binders and also between the PDB and DOCKED
sets. The other two clusters (62 and 64) where the
benchmark data are also located seem to fall on a
similar boundary, with both cells containing a mix-
ture of PDB/DOCKED and good/bad binders. It
is worth noting that while many clusters contained
very few complexes, there were none that contained
ZEero.

It is clear that the majority of benchmarks only
sample a very small region of the space spanned by
the training/testing set. Developing improved net-
works on the training/testing set will not necessarily
result in improved virtual screens on the benchmark
set.

5 Conclusions

In this paper, we have described how soft com-
puting can be used in the virtual screening of po-
tential drug candidates. There are several novel as-
pects of our research. We have used a statistical
analysis of the weights of single layer networks to
select relevant inputs, we have used Monte Carlo
cross-validation to provide confidence measures of
network performance and to identify problems in
network training, and we have used Self Organizing
Maps to investigate the training results and identify
anomalies. We applied these techniques to a large
practical data set of protein-ligand complexes. We
were able to classify the complexes into good bind-
ing and bad binding categories with average accu-
racies of more than 85%, which is better than pre-
viously reported results. More importantly, by us-
ing an analysis of the Monte Carlo cross-validation
and Self Organizing Map results, we were able to
discover a characteristic of the data set that has
promise for producing even more accurate results.
By dividing the data into two separate categories,
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and training different network committees on each
category, we were able to achieve average accura-
cies of more than 90%. This division of the data
into the two categories cannot be achieved using
the current descriptors. Future research will look
for biochemical differences between the complexes
in the two categories.

We also used the trained neural network com-
mittees to compute virtual screens on 40 standard
benchmark sets. Although our network committees,
using new chemical descriptors, achieved improved
accuracies on the test sets, they did not produce sig-
nificantly better results on the virtual screens. Using
an SOM analysis, we were able to find that all of the
benchmark data were located in a small portion of
the full input space that was sampled by the train-
ing/testing sets. It will be important in the future
to either concentrate training data in regions where
the virtual screens are to be performed, or to have
benchmark sets that are more representative of the
range of complexes for which the networks will be
used.

This work has also demonstrated the value of
using SOM analysis as part of any virtual screen-
ing process. Because there are a limited amount of
experimental data available for ligand-protein inter-
actions, additional training data must be obtained
with docking software. The SOM can be used to
determine if data obtained from docking are located
in a useful region of the input space and, therefore,
increase the efficiency of the training process.
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