
159JAISCR, 2018, Vol. 8, No. 3, pp.

ONE-MATCH-AHEAD FORECASTING IN TWO-TEAM
SPORTS WITH STACKED BAYESIAN REGRESSIONS

Max W. Y. Lam

Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong,

Shatin, Hong Kong

Submitted: 10th February 2017; Accepted: 10th April 2017

Abstract

There is a growing interest in applying machine learning algorithms to real-world ex-
amples by explicitly deriving models based on probabilistic reasoning. Sports analytics,
being favoured mostly by the statistics community and less discussed in the machine
learning community, becomes our focus in this paper. Specifically, we model two-team
sports for the sake of one-match-ahead forecasting. We present a pioneering modeling
approach based on stacked Bayesian regressions, in a way that winning probability can
be calculated analytically. Benefiting from regression flexibility and high standard of
performance, Sparse Spectrum Gaussian Process Regression (SSGPR) – an improved al-
gorithm for the standard Gaussian Process Regression (GPR), was used to solve Bayesian
regression tasks, resulting in a novel predictive model called TLGProb. For evaluation,
TLGProb was applied to a popular sports event – National Basketball Association (NBA).
Finally, 85.28% of the matches in NBA 2014/2015 regular season were correctly predicted
by TLGProb, surpassing the existing predictive models for NBA.
Keywords: Sports analytics, one-match-ahead forecasting, winning probability, Gaussian
process regression

1 Introduction

Sports analytics has received much attention in re-
cent years. Its success greatly contributes to the
business of professional sports, which nowadays
is a multi-billion dollar industry. Well-developed
analytical techniques can, to a large extent, ben-
efit many parties including the sports team man-
agers, the coaches, and even the athletes them-
selves. Examples [1] include opponent analysis,
targeted coaching, player acquisition and tailored
personal training.

In this paper, we deal with a prominent predic-
tion task – one-match-ahead forecasting, which is
defined in a probabilistic manner. Essentially, a pre-
dictive sports model featured with winning prob-

ability calculation is demanding. This is particu-
larly conspicuous in the business of sports wager-
ing, which is another multi-billion dollar industry
on its own. To determine the winning odds of op-
posing sports teams, nowadays wagering markets
mostly adopt the parimutuel schemes [2], in which
the winning odds are mainly driven by the public
preferences to the sports teams, and occasionally
fluctuate on real-time matches. It has been shown
[3] that the public preferences tend to result in over-
estimation of winning probabilities as the general
public are likely to have heavy favorites over their
beloved teams.

In fact, a number of forecasting tasks in sports
analytics appears to be the natural applications of
machine learning algorithms, yet only a limited lit-

 10.1515/jaiscr-2018-0011
 – 172

160 Max W. Y. Lam

erature dealing with these tasks can be found [4].
For the existing approaches, the formulated predic-
tion tasks consider arguably shallow information as
some in-depth factors including the individual per-
formance of each player and the contribution of dif-
ferent player positions were not taken into account.
This triggers our initiative that explicit modeling of
the individual ability of each player and its contri-
bution to the match outcome will improve the exist-
ing approaches in terms of predictive accuracy.

Specifically, a pioneering modeling approach
based on stacked Bayesian regressions is proposed.
Benefiting from regression flexibility and high stan-
dard of performance, Sparse Spectrum Gaussian
Process Regression (SSGPR) [5], being an im-
proved algorithm for the standard Gaussian Process
Regression (GPR) [6], was used to solve Bayesian
regression tasks. Noted that, Bayesian regression
infers the predictive distributions from inferences
rather than predicting point estimates by optimiz-
ing pre-defined rules. This makes it well-suited for
analytical calculation of winning probability. Our
modeling approach coupled with stacked SSGPR
results in a novel predictive model called TLGProb,
standing for Two-Layer Gaussian Process Regres-
sion Model for Winning Probability Calculation.

To our understanding, this paper is the first
work that explicitly models sports by associating
the players’ abilities with teams’ strengths using
stacked regressions. As the first step, we restrict
our analysis on two-team sports in order to make
sense of the resultant modeling approach. Noted
that two-team sports still covers most of the pop-
ular sports nowadays such as football, basketball,
and baseball. Generally modeling sports with more
than two teams could be more complex, but is still
possible and is left to the future work.

National Basketball Association (NBA), being
a two-team sports as well as one of the most popular
sports events around the world, was used to evalu-
ate our proposed modeling approach. After training
TLGProb with a regular reason of NBA, we tested
its performance on the subsequent season. Finally,
the trained TLGProb correctly predicted the win-
ning teams of 1,049 matches out of 1,230 matches
in NBA 2014/2015 season, attaining 85.28% accu-
racy.

In the following Sections, we first introduce
Bayesian regression in Section 2. This Section ends

with a discussion on the elegant properties of the
GPR framework and several merits of SSGPR. In
Section 3, we define our own notations and for-
mulate the task of one-match-ahead forecasting in
two-team sports from a probabilistic perspective.
Our modeling approach is subsequently described
in Section 4, followed by the results of compara-
tive experiments in Section 5. Finally, we conclude
our work and identify some potential future works
in Section 6.

2 Bayesian Regression

To enable readers understanding the remainder of
this paper, we first review Bayesian regression in
this Section. Regression is a task of predicting an
output y⋆ given the associated D-dimensional input
x⋆, after training on the data set of N input-output
pairs Dtrain ≡ {(xi,yi)}N

i=1. To appreciate Bayesian
inference, the output yi is commonly assumed to be
generated by a latent function f (xi) corrupted by a
Gaussian noise of constant variance

yi = f (xi)+ εi, εi ∼ N
(
0,σ2) . (1)

With this setup, Bayesian regression simply boils
down to a Bayesian inference of the latent function
f (·), as described in the next Section.

2.1 Bayesian Linear Regression (BLR)

The starting point is given by the standard Bayesian
Linear Regression (BLR), where we assume that the
latent function f (·) is a simple linear function

f (x) = w⊤x. (2)

Given the vector of outputs y = [y1, ...,yN]
⊤ and the

N × D input matrix X = [x1, ...,xN]
⊤, we get the

likelihood distribution:

p(y|X,w) = N
(

w⊤x,σ2I
)
. (3)

To derive the posterior, we have to define a prior
over the weights w. For mathematical elegance, a
zero-mean multivariate Gaussian prior is commonly
used

p(w) = N (0,Σ) . (4)

Then, we can apply Bayes’ rule to derive the poste-
rior, which is

p(w|X,y) = N
(

H−1X⊤y,σ2H−1
)
, (5)

161ONE-MATCH-AHEAD FORECASTING IN . . .

where
H = X⊤X+σ2Σ−1. (6)

By integrating over all possible w with respect to
(5),

p(y⋆|X,y,X⋆)=
∫

p(y⋆|w,X,y,X⋆) p(w|X,y)dw,

(7)
we obtain the predictive distribution for new inputs
X⋆ = [x⋆1, ...,x⋆T]⊤,

p(y⋆|X,y,X⋆) = N
(

X⋆⊤H−1X⊤y,

σ2
(

1+X⋆⊤H−1X⋆
))

.
(8)

To enable non-linear fitting in the Bayesian frame-
work, BLR can be generalized by mapping each in-
put x to a non-linear feature space with a non-linear
function ϕθ(x) parametrized by the hyperparame-
ters θ

f (x) = w⊤ϕθ(x). (9)

As in (8), we can obtain a similar predictive distri-
bution by replacing x with ϕθ(x)

p(y⋆|X,y,X⋆;θ) = N
(

Φ⋆
θ
⊤A−1Φ⊤

θ y,

σ2
(

1+Φ⋆
θ
⊤A−1Φ⋆

θ

))
,

(10)

where
Φθ = [ϕθ(x1), ...,ϕθ(xN)]

⊤, (11)

Φ⋆
θ = [ϕθ(x⋆1), ...,ϕθ(x⋆T)]

⊤, (12)

and
A = Φ⊤

θ Φθ +σ2Σ−1. (13)

2.2 Gaussian Process Regression (GPR)

An alternative to specifying the feature map ϕθ(x)
is to use the kernel tricks. We define a positive def-
inite function

kθ(x,x′) =
(

Σ1/2ϕθ(x)
)⊤(

Σ1/2ϕθ(x′)
)
, (14)

which is called the kernel function or the covariance
function as it holds a unique statistical meaning in
Gaussian process [7]

f (x)∼ GP
(
m(x), kθ(x, x′)

)
, (15)

which means that

kθ(x,x′) = E
[

f (x) f (x′)
]
. (16)

To convey with words, the kernel function basically
measures the correspondence of every pair of func-
tion outputs using the input pairs. Treating a gener-
alized BLR from a Gaussian process perspective is
known as Gaussian Process Regression (GPR) [6].

Due to the marginalization property of Gaussian
process, while we have a finite set of inputs, the vec-
tor of the corresponding function outputs

f = [f (x1), f (x2), ..., f (xN)]
⊤ , (17)

is simply a multivariate Gaussian

p(f;θ) = N (m,Kθ) , (18)

characterized by the mean vector

m = [m(x1), m(x2), ..., m(xN)]
⊤ , (19)

and the kernel matrix

Kθ =




kθ(x1,x1) ... kθ(x1,xN)
...

. . .
...

kθ(xN ,x1) ... kθ(xN ,xN)


 . (20)

To infer the function outputs f (x⋆i) of unseen test
inputs x⋆1, ...,x⋆T , we can derive the predictive distri-
bution through Bayes’ rule by taking (18) as prior
and (1) as likelihood. In fact, the resulted predictive
distribution is identical to substituting (14) into (10)
and setting Σ = I, yielding

p(y⋆|X,y,X⋆;θ) = N
(
m̂, K̂θ

)

m̂ = m⋆+K⋆
θ
(
Kθ +σ2I

)−1
(y−m)

K̂θ = K⋆⋆
θ −K⋆

θ
(
Kθ +σ2I

)−1 K⋆
θ
⊤,

(21)

where

m⋆ = [m(x⋆1), m(x⋆2), ..., m(x⋆T)]
⊤ , (22)

K⋆
θ =




kθ(x⋆1,x1) ... kθ(x⋆1,xN)
...

. . .
...

kθ(x⋆T ,x1) ... kθ(x⋆T ,xN)


 , (23)

and

K⋆⋆
θ =




kθ(x⋆1,x⋆1) ... kθ(x⋆1,x⋆T)
...

. . .
...

kθ(x⋆T ,x⋆1) ... kθ(x⋆T ,x⋆T)


 . (24)

In practice, the mean function m(x) is commonly
set to be zero. However, kθ(x,x′) should be care-
fully chosen since the performance of GPR is

Max W. Y. Lam

erature dealing with these tasks can be found [4].
For the existing approaches, the formulated predic-
tion tasks consider arguably shallow information as
some in-depth factors including the individual per-
formance of each player and the contribution of dif-
ferent player positions were not taken into account.
This triggers our initiative that explicit modeling of
the individual ability of each player and its contri-
bution to the match outcome will improve the exist-
ing approaches in terms of predictive accuracy.

Specifically, a pioneering modeling approach
based on stacked Bayesian regressions is proposed.
Benefiting from regression flexibility and high stan-
dard of performance, Sparse Spectrum Gaussian
Process Regression (SSGPR) [5], being an im-
proved algorithm for the standard Gaussian Process
Regression (GPR) [6], was used to solve Bayesian
regression tasks. Noted that, Bayesian regression
infers the predictive distributions from inferences
rather than predicting point estimates by optimiz-
ing pre-defined rules. This makes it well-suited for
analytical calculation of winning probability. Our
modeling approach coupled with stacked SSGPR
results in a novel predictive model called TLGProb,
standing for Two-Layer Gaussian Process Regres-
sion Model for Winning Probability Calculation.

To our understanding, this paper is the first
work that explicitly models sports by associating
the players’ abilities with teams’ strengths using
stacked regressions. As the first step, we restrict
our analysis on two-team sports in order to make
sense of the resultant modeling approach. Noted
that two-team sports still covers most of the pop-
ular sports nowadays such as football, basketball,
and baseball. Generally modeling sports with more
than two teams could be more complex, but is still
possible and is left to the future work.

National Basketball Association (NBA), being
a two-team sports as well as one of the most popular
sports events around the world, was used to evalu-
ate our proposed modeling approach. After training
TLGProb with a regular reason of NBA, we tested
its performance on the subsequent season. Finally,
the trained TLGProb correctly predicted the win-
ning teams of 1,049 matches out of 1,230 matches
in NBA 2014/2015 season, attaining 85.28% accu-
racy.

In the following Sections, we first introduce
Bayesian regression in Section 2. This Section ends

with a discussion on the elegant properties of the
GPR framework and several merits of SSGPR. In
Section 3, we define our own notations and for-
mulate the task of one-match-ahead forecasting in
two-team sports from a probabilistic perspective.
Our modeling approach is subsequently described
in Section 4, followed by the results of compara-
tive experiments in Section 5. Finally, we conclude
our work and identify some potential future works
in Section 6.

2 Bayesian Regression

To enable readers understanding the remainder of
this paper, we first review Bayesian regression in
this Section. Regression is a task of predicting an
output y⋆ given the associated D-dimensional input
x⋆, after training on the data set of N input-output
pairs Dtrain ≡ {(xi,yi)}N

i=1. To appreciate Bayesian
inference, the output yi is commonly assumed to be
generated by a latent function f (xi) corrupted by a
Gaussian noise of constant variance

yi = f (xi)+ εi, εi ∼ N
(
0,σ2) . (1)

With this setup, Bayesian regression simply boils
down to a Bayesian inference of the latent function
f (·), as described in the next Section.

2.1 Bayesian Linear Regression (BLR)

The starting point is given by the standard Bayesian
Linear Regression (BLR), where we assume that the
latent function f (·) is a simple linear function

f (x) = w⊤x. (2)

Given the vector of outputs y = [y1, ...,yN]
⊤ and the

N × D input matrix X = [x1, ...,xN]
⊤, we get the

likelihood distribution:

p(y|X,w) = N
(

w⊤x,σ2I
)
. (3)

To derive the posterior, we have to define a prior
over the weights w. For mathematical elegance, a
zero-mean multivariate Gaussian prior is commonly
used

p(w) = N (0,Σ) . (4)

Then, we can apply Bayes’ rule to derive the poste-
rior, which is

p(w|X,y) = N
(

H−1X⊤y,σ2H−1
)
, (5)

162 Max W. Y. Lam

greatly dependent on it. We use the kernel func-
tion to encode curvature assumptions of the latent
function f (x), such as noisiness, smoothness and
periodicity. Different choices of kernel function re-
sult in different regression models [8], including
splines, semi-parametric regression, multiple ker-
nel learning, and Bayesian neural networks with in-
finitely many hidden units [9]. In the light of this
flexibility, we may select a proper kernel function
with regards to the predictive performances of dif-
ferent kernels in validation dataset. It is advised
to refer to [8] for more details of automatic kernel
function selection.

The superiority of GPR over other kernel ma-
chines lies in its ability to derive a theoretically
grounded objective function for hyperparameters θ,
i.e., the analytically tractable marginal likelihood

θ∗ = argmaxθ p(y|X;θ)≡ argminθ − log p(y|X;θ)
(25)

where

− log p(y|X;θ) ∝ (y−m)⊤
(
Kθ +σ2I

)−1
(y−m)

+ log
��Kθ +σ2I

�� .
(26)

However, a computational bottleneck exists in
training GPR as the inversion of Kθ +σ2I in gen-
eral requires O(N3) operations and O(N2) storage.
In our regression problem, where N can scale up to
104, the standard algorithm for GPR is obviously
too slow and not feasible, thus an improved algo-
rithm for GPR is required.

2.3 Sparse Spectrum Gaussian Process Re-
gression (SSGPR)

Towards computational efficiency, an improved al-
gorithm called Sparse Spectrum Gaussian Pro-
cess Regression (SSGPR) [5] was proposed. De-
spite speeding up GPR, SSGPR does not sacrifice
the predictive performance of standard GPR, on
the contrary, SSGPR improves over GPR [5, 10].
What’s more, with some tricks in SSGPR, instead
of specifying the kernel function, it is possible to
analytically learn an optimal kernel function for
GPR. Though, in exchange, we need to make one
assumption – the kernel function is stationary

kθ
(
x,x′

)
= kθ

(
x−x′

)
. (27)

Then, according to Wiener-Khintchine theorem [11,
12], the power spectral density and the autocorrela-
tion function of a wide sense stationary stochastic
process constitute a Fourier pair. In the case of sta-
tionary Gaussian process, the autocorrelation func-
tion is simply the kernel function, thus we have

kθ
(
x−x′

)
=

∫

RD
e2πiω⊤(x−x′)S(ω)dω. (28)

On top of that, by Bochner’s theorem [13], we know
that any stationary kernel function kθ (u) can be rep-
resented as the Fourier transform of a positive fi-
nite Borel measure. In other words, S(ω) is propor-
tional to certain probability measure p(ω), and can
be written as

S(ω) = ηp(ω). (29)

By substituting (29) into (28), we now can express
any stationary kernel function kθ (u) as the expec-
tation of an inner product of two complex exponen-
tials with respect to the probability measure p(ω)

kθ(x,x′) = ηEp

[
e2πiω⊤(x−x′)

]
. (30)

Noted that the real part of this inner product has an
exploitable structure – a sum of inner product

Re
{

e2πiω⊤(x−x′)
}
=cos

(
2πω⊤ (

x−x′
))

=cos
(

2πω⊤x
)

cos
(

2πω⊤x′
)

+ sin
(

2πω⊤x
)

sin
(

2πω⊤x′
)
.

(31)

To exploit this structure, the trick is to define a par-
ticular feature map ϕθ(·)

ϕθ(x) =
√

η
M

[ϕsin(x)⊕ϕcos(x)]⊤ , (32)

where ⊕ is the operator of vector concatenation,

ϕsin(x) =
[
sin

(
2πω̃⊤

1 x
)
, ...,sin

(
2πω̃⊤

Mx
)]

, (33)

ϕcos(x) =
[
cos

(
2πω̃⊤

1 x
)
, ...,cos

(
2πω̃⊤

Mx
)]

,

(34)
and ω̃1, ..., ω̃M are sampled from pθ(ω). What is
tricky is that this feature function is in fact a Monte
Carlo approximation of the real part of (30) while
setting Σ = I in (14). When viewing this as an ap-
proximation of kernel function, we need to derive
p(ω) first in order to sample ω. That is, we still
need to choose a kernel function in advance and ob-
tain p(ω) in closed form using Fourier transform.

163ONE-MATCH-AHEAD FORECASTING IN . . .

To escape from selecting a kernel function in
advance, a tricky approach is to make use of the ob-
jective function derived in (25). In particular, we
include the scaling constant η and the spectral fre-
quencies in the vector of hyperparameters

θ = [σ,η,ω1, ...,ωM]. (35)

Then, we jointly optimize the marginal likelihood
with respect to the hyperparameters. Though learn-
ing the spectral frequencies by optimization departs
from Monte Carlo approximation of the stationary
kernel function, it in some sense allows us to learn
an optimal stationary kernel function that fits our
problem at hand. In other words, we learn an opti-
mal kernel function instead of approximating a pre-
defined kernel function.

It has been shown that, optimizing the spectral
frequencies rather than sampling the spectral fre-
quencies improves a lot in terms of predictive accu-
racy due to the additional flexibility [5, 10]. What’s
more, in SSGPR, the computational cost of train-
ing is reduced to O(NM2), while the memory cost
is reduced to O(NM). Here, we manually set M
according to our computational resources and the
scalability of the problem. Different from other
speed-up algorithms for GPR [14] that use a set
of sparse inputs to represent the whole set of in-
puts, we pose sparsity assumption on the spectrum
of stationary kernel function in a way that all the
data points are used to train the regression. In prac-
tice, SSGPR with a sufficiently small M << N is
able to achieve predictive performance comparable
to a standard GPR with universal kernel (e.g. RBF
kernel).

3 Problem Formulation

In this paper, our goal is to analytically derive the
winning probability of two teams competing on the
next match while only the historical data before the
match are used. For easy reference, two compet-
ing teams is commonly denoted by the home team
and the visiting team. In other words, we wish to
answer how likely is the home team or the visit-
ing team to win the next game. We call this task
one-match-ahead forecasting. The governing as-
sumption is that, players’ abilities on consecutive
matches change smoothly, even though their perfor-
mances on consecutive matches vary occasionally.

With this assumption, the past performances of the
players in two competing teams are sufficient to in-
fer the result of next match.

Formally, the result of any match is regarded as
an ordered pair,

(
GH

k ,G
V
k

)
, which denotes the game

points attained by the home team and the visiting
team respectively on the kth match. For the next
match where the match result is unknown, it is natu-
ral for us to use random variables, i.e.,

(
gH

k+1,g
V
k+1

)
.

To calculate the winning probabilities of the
next match, we only need to concern the signed de-
viation of the game points attained by two compet-
ing teams, that is, our target is only a single ran-
dom variable, gk+1 = gH

k+1 − gV
k+1, since the win-

ning probabilities of the home team and the visiting
team can be directly determined by Pr(gk+1 > 0)
and Pr(gk+1 < 0).

By above assumption, the distribution of gk+1 is
very much dependent on the past performances of
both the home team and the visiting team. In other
words, given that the players’ performances and the
results of first k matches are known, essentially an
exploitable estimator for gk+1 should be computed.
We define this abstractly as a regression task

gk+1 = f (p1:k)+ εk+1, εk+1 ∼ N (0,σ2), (36)

where p1:k is the performances of team’s players in
first k matches. Now, our goal is to find a “model”
f (·) so that it best explain the association between
the result of next match and past performances of
the players in two competing teams.

4 Our Modeling Approach

4.1 Notation and Terminology

For the ease of explanation, we use NBA as an ex-
ample of two-team sports throughout this Section.
For our concern, historical data of NBA is divided
into multiple seasons. Here, we define a season as a
sequence of matches

My =
(
My

1,M
y
2, ...,M

y
k, ...

)
,

where My denotes the season that starts in y and
My

k denotes the kth scheduled match of the season.
To refer to a specific team on the match My

k, we de-
note the home team and the visiting team by TH

k and
TV

k respectively. The set of all teams in the season

Max W. Y. Lam

greatly dependent on it. We use the kernel func-
tion to encode curvature assumptions of the latent
function f (x), such as noisiness, smoothness and
periodicity. Different choices of kernel function re-
sult in different regression models [8], including
splines, semi-parametric regression, multiple ker-
nel learning, and Bayesian neural networks with in-
finitely many hidden units [9]. In the light of this
flexibility, we may select a proper kernel function
with regards to the predictive performances of dif-
ferent kernels in validation dataset. It is advised
to refer to [8] for more details of automatic kernel
function selection.

The superiority of GPR over other kernel ma-
chines lies in its ability to derive a theoretically
grounded objective function for hyperparameters θ,
i.e., the analytically tractable marginal likelihood

θ∗ = argmaxθ p(y|X;θ)≡ argminθ − log p(y|X;θ)
(25)

where

− log p(y|X;θ) ∝ (y−m)⊤
(
Kθ +σ2I

)−1
(y−m)

+ log
��Kθ +σ2I

�� .
(26)

However, a computational bottleneck exists in
training GPR as the inversion of Kθ +σ2I in gen-
eral requires O(N3) operations and O(N2) storage.
In our regression problem, where N can scale up to
104, the standard algorithm for GPR is obviously
too slow and not feasible, thus an improved algo-
rithm for GPR is required.

2.3 Sparse Spectrum Gaussian Process Re-
gression (SSGPR)

Towards computational efficiency, an improved al-
gorithm called Sparse Spectrum Gaussian Pro-
cess Regression (SSGPR) [5] was proposed. De-
spite speeding up GPR, SSGPR does not sacrifice
the predictive performance of standard GPR, on
the contrary, SSGPR improves over GPR [5, 10].
What’s more, with some tricks in SSGPR, instead
of specifying the kernel function, it is possible to
analytically learn an optimal kernel function for
GPR. Though, in exchange, we need to make one
assumption – the kernel function is stationary

kθ
(
x,x′

)
= kθ

(
x−x′

)
. (27)

Then, according to Wiener-Khintchine theorem [11,
12], the power spectral density and the autocorrela-
tion function of a wide sense stationary stochastic
process constitute a Fourier pair. In the case of sta-
tionary Gaussian process, the autocorrelation func-
tion is simply the kernel function, thus we have

kθ
(
x−x′

)
=

∫

RD
e2πiω⊤(x−x′)S(ω)dω. (28)

On top of that, by Bochner’s theorem [13], we know
that any stationary kernel function kθ (u) can be rep-
resented as the Fourier transform of a positive fi-
nite Borel measure. In other words, S(ω) is propor-
tional to certain probability measure p(ω), and can
be written as

S(ω) = ηp(ω). (29)

By substituting (29) into (28), we now can express
any stationary kernel function kθ (u) as the expec-
tation of an inner product of two complex exponen-
tials with respect to the probability measure p(ω)

kθ(x,x′) = ηEp

[
e2πiω⊤(x−x′)

]
. (30)

Noted that the real part of this inner product has an
exploitable structure – a sum of inner product

Re
{

e2πiω⊤(x−x′)
}
=cos

(
2πω⊤ (

x−x′
))

=cos
(

2πω⊤x
)

cos
(

2πω⊤x′
)

+ sin
(

2πω⊤x
)

sin
(

2πω⊤x′
)
.

(31)

To exploit this structure, the trick is to define a par-
ticular feature map ϕθ(·)

ϕθ(x) =
√

η
M

[ϕsin(x)⊕ϕcos(x)]⊤ , (32)

where ⊕ is the operator of vector concatenation,

ϕsin(x) =
[
sin

(
2πω̃⊤

1 x
)
, ...,sin

(
2πω̃⊤

Mx
)]

, (33)

ϕcos(x) =
[
cos

(
2πω̃⊤

1 x
)
, ...,cos

(
2πω̃⊤

Mx
)]

,

(34)
and ω̃1, ..., ω̃M are sampled from pθ(ω). What is
tricky is that this feature function is in fact a Monte
Carlo approximation of the real part of (30) while
setting Σ = I in (14). When viewing this as an ap-
proximation of kernel function, we need to derive
p(ω) first in order to sample ω. That is, we still
need to choose a kernel function in advance and ob-
tain p(ω) in closed form using Fourier transform.

164 Max W. Y. Lam

My is defined as Ty. For simplicity, in the remain-
der of this Section we use Tk to denote TH

k and TV
k

which implies that the equation is applicable to both
teams.

Table 1. Features representing each player’s
performance or ability

Feature Description
FG Field goals per minute
FGA Field goals attempts per minute
FG% Field goals percentage
3P 3-point field goals per minute
3PA 3-point field goals attempts per minute
3P% 3-point field goals percentage
FT Free throws per minute
FTA Free throw attempts per minute
FT% Free throws percentage
ORB Offensive rebounds per minute
DRB Defensive rebounds per minute
TRB Total rebounds per minute
AST Assists per minute
STL Steals per minute
BLK Blocks per minute
TOV Turnovers per minute
PF Personal fouls per minute

In our notion, a team Tk on the kth match is
modeled as a set of n players {P1,P2, ...,Pn}, in
which the order of players does not matter. Usually,
for team sports, players are assigned to different po-
sitions. For example, in basketball, there are 3 main
positions – Center, Forward and Guard. Each posi-
tion corresponds to a subset of players. It is notable
that some players may take 2 positions at the same
time, so these subsets are not necessarily disjoint.
To encode the information of player positions, we
define G (p)

k , a set of players on the kth match that
are assigned to the pth position, such that

Tk =
P∪

p=1

G (p)
k , (37)

where P is the number of positions in our concern-
ing sports. To enable a mapping from a player to
his position, we define a function that returns the
position index

p = Ik(Pi). (38)

4.2 Modeling Player’s Ability

For any player Pi ∈Tk, we describe his performance
on the kth match by a D-dimensional vector pi

k. We
call this the player’s performance. For example, in
NBA, we use 17 attributes, as shown in Table 1, to
describe players’ performances. In general, we de-
fine a match-dependent function ρ

pi
k = ρ(Pi,Tk), (39)

which gives the performance vector of the player Pi

in the team Tk.

Figure 1. Time series plot of 3-point field goals
(3P) and field goals (FG) of LeBron James in NBA

2014/2015 season.

Now, we can express all players’ past perfor-
mances in vector form. This seems fascinating be-
cause we may apply techniques in time series fore-
casting to predict players’ performances on the next
match. It is essential that the values of players’
performances usually fluctuate a lot from matches
to matches. One example is illustrated on Figure
1, where LeBron James’ performances on 3-point
field goals and field goals are investigated. It is sus-
pected that directly using players’ performance for
regression task defined in (36) is not likely to be
meaningful. Therefore, we introduce a concept of
player’s ability. We argue that a player’s perfor-
mance and his true ability are different quantities.
Players sometimes make good use of their talents
but sometimes not. Essentially, a player’s perfor-
mance is not only affected by the player’s ability but
also affected by other factors, such as opponents’
abilities and team strategies. For practical concern,
we consider all the other factors as noise, and pro-

165ONE-MATCH-AHEAD FORECASTING IN . . .

pose that a player’s performance is an unbiased esti-
mator of his ability. It is reasonable in a sense that a
player’s performance should be consistent with his
ability at that time.

While treating the player’s ability as another
quantity, we denote it by ai

k, which is again a D-
dimensional vector so that the consistency with
player’s performance is preserved. Since players
are trained from time to time and gaining experi-
ences across the season of matches, players’ abil-
ities should change with time. In this regard, we
define another match-dependent function α

ai
k = α(Pi,Tk), (40)

which gives the ability vector of the player Pi in
the team Tk before the (k + 1)th match. While a
player’s performance is treated as an estimator of
his ability, we write

ai
k = E

[
pi

k
]
. (41)

4.3 Inferring Player’s Ability

Under this estimation model, it is now possible to
infer player’s ability by applying time-series tech-
niques like smoothing [15]. In our approach, we
employed a simple but effective method – expo-
nential smoothing [16]. We made a small change
to the standard exponential smoothing procedure to
enhance the adaptiveness of the model for differ-
ent kinds of sports. To formulate our smoothing
method, we define a count-up index set of matches
participated by the player Pi before the kth match

Q i
k =

{
q ∈ Z+ : Pi ∈

(
Tk ∩Tk−q

)}
. (42)

Then, for any player Pi, the inferred ability is deter-
mined by

ai
k =

{
ai

0 if Q i
k = /0;

(1− cλ)pi
k + cλai

k−r else,
(43)

where c ∈ [0,1) is a constant that controls the
weight of time dependency on the past perfor-
mances, r = minQ i

k is the number of matches that
have been passed since last match participated by
Pi, λ is a scaling factor that is proportional to the
time difference between the (k − r)th match and
the kth match, and ai

0 is the initialization function
of player’s ability while no past performances is
recorded in our data

ai
0 =

1���G (p)
k

��� ∑
P j∈G (p)

k

ρ(P j,Tk) , (44)

in which p is the position index as defined in (38).
Note that, the only difference between our method
and the standard exponential smoothing is the pres-
ence of λ. When λ is large, α(Pi,Tk) will have
less dependence on previous ability α(Pi,Tk−r), but
having more dependence on current performance
ρ(Pi,Tk). This is reasonable because more recent
performances are more relevant to current ability.

For NBA games, the time difference of the same
player joining any two consecutive matches is usu-
ally within 1-6 days. Therefore we simply set λ =
d/3, where d is the time difference in days. After
setting λ, we can obtain c by optimization

c∗ = argminc∈[0,1)∥α(Pi,Tk−r)−ρ(Pi,Tk)∥2
2.
(45)

Two examples of inferring player’s ability from
player’s performance are shown on Figure 1. In
these two plots, it is observed that the red solid
line has significant clearer trend than the blue dot-
ted line. For instance, we can witness an improve-
ment of 3-point field goals from early 2014-12 to
late 2015-01 from the red solid line, whereas, it is
difficult to be witnessed from the blue dotted line
due to several sudden drops in that period.

4.4 Inferring Team’s Strength

To avoid the abuse of terminology, we refer the
team’s strength to the actual ability of the team as
opposed to the team’s performance on the court.
For any team Tk, the team’s strength is denoted by
s(Tk). With the inferred abilities of the players in
the team, we now come up with an estimation of
team’s strength to enable quantitative comparison
of two opposing teams. It is sensible that a team’s
strength is dependent on its players’ abilities. In
common treatment of feature extraction, this can be
achieved by directly concatenating the ability vec-
tors of the players in the same team

s(Tk) = ⊕
Pi∈Tk

α(Pi,Tk). (46)

However, in practical sense, direct concatena-
tion of ability vectors is often problematic for the
training of regression model since the vector of
team’s strength would then be sizable in terms of
its dimensionality. Take basketball game as an ex-
ample, as shown in Table 1, each player’s ability

Max W. Y. Lam

My is defined as Ty. For simplicity, in the remain-
der of this Section we use Tk to denote TH

k and TV
k

which implies that the equation is applicable to both
teams.

Table 1. Features representing each player’s
performance or ability

Feature Description
FG Field goals per minute
FGA Field goals attempts per minute
FG% Field goals percentage
3P 3-point field goals per minute
3PA 3-point field goals attempts per minute
3P% 3-point field goals percentage
FT Free throws per minute
FTA Free throw attempts per minute
FT% Free throws percentage
ORB Offensive rebounds per minute
DRB Defensive rebounds per minute
TRB Total rebounds per minute
AST Assists per minute
STL Steals per minute
BLK Blocks per minute
TOV Turnovers per minute
PF Personal fouls per minute

In our notion, a team Tk on the kth match is
modeled as a set of n players {P1,P2, ...,Pn}, in
which the order of players does not matter. Usually,
for team sports, players are assigned to different po-
sitions. For example, in basketball, there are 3 main
positions – Center, Forward and Guard. Each posi-
tion corresponds to a subset of players. It is notable
that some players may take 2 positions at the same
time, so these subsets are not necessarily disjoint.
To encode the information of player positions, we
define G (p)

k , a set of players on the kth match that
are assigned to the pth position, such that

Tk =
P∪

p=1

G (p)
k , (37)

where P is the number of positions in our concern-
ing sports. To enable a mapping from a player to
his position, we define a function that returns the
position index

p = Ik(Pi). (38)

4.2 Modeling Player’s Ability

For any player Pi ∈Tk, we describe his performance
on the kth match by a D-dimensional vector pi

k. We
call this the player’s performance. For example, in
NBA, we use 17 attributes, as shown in Table 1, to
describe players’ performances. In general, we de-
fine a match-dependent function ρ

pi
k = ρ(Pi,Tk), (39)

which gives the performance vector of the player Pi

in the team Tk.

Figure 1. Time series plot of 3-point field goals
(3P) and field goals (FG) of LeBron James in NBA

2014/2015 season.

Now, we can express all players’ past perfor-
mances in vector form. This seems fascinating be-
cause we may apply techniques in time series fore-
casting to predict players’ performances on the next
match. It is essential that the values of players’
performances usually fluctuate a lot from matches
to matches. One example is illustrated on Figure
1, where LeBron James’ performances on 3-point
field goals and field goals are investigated. It is sus-
pected that directly using players’ performance for
regression task defined in (36) is not likely to be
meaningful. Therefore, we introduce a concept of
player’s ability. We argue that a player’s perfor-
mance and his true ability are different quantities.
Players sometimes make good use of their talents
but sometimes not. Essentially, a player’s perfor-
mance is not only affected by the player’s ability but
also affected by other factors, such as opponents’
abilities and team strategies. For practical concern,
we consider all the other factors as noise, and pro-

166 Max W. Y. Lam

is represented by a 17-dimensional vector. Nor-
mally having 13 players in a team including the re-
serves, vector concatenation in (46) will produce a
221-dimensional vector. In this case, our regres-
sion model simply needs much more training data to
ensure the prediction stability and preventing from
over-fitting. Yet, being limited by the number of
sports events, the number of training samples is usu-
ally not enough to meet this requirement.

A possible solution here is to employ some
well-known dimensionality reduction methods,
such as principal component analysis (PCA) and
linear discriminant analysis (LDA). Nonetheless,
these methods do not encode the domain knowl-
edge from the sport itself. Alternatively, we design
a dimensionality reduction method that is domain-
specific for sports games. The main idea is to train,
for each player position, an embedding function
that maps player’s ability vector to a point estimator
that represents the player’s contribution to his team.
In fact, there are a number of such estimators pro-
posed in the research community of sports analytics
[17]. Examples include the plus-minus score, the
player efficiency rating, and the individual offen-
sive and defensive ratings. The estimator we used
is called Adjusted Plus-Minus (APM) score [18].
One main advantage of using APM score is that
each player’s APM score is independent of the abil-
ities of that player’s opponents and teammates, by
contrast, the traditional plus-minus score is highly
opponent-dependent. In this sense, APM score is a
good measure of a player’s individual contribution.
Formally, we denote the APM score of player Pi by
z(Pi,Tk). Using this point estimate, we can define
the embedding function gp for the pth position

z(Pi,Tk) = gp(α(Pi,Tk)). (47)

Here, it is vital that we have different embed-
ding functions for different player positions because
players in different positions usually have distinctly
distributed ability vectors even though they con-
tribute equally in terms of APM score. For example,
in basketball, Guard is likely to get higher values on
3P, while Forward is likely to get higher values on
FG.

To find a suitable embedding function, we treat
it as a regression problem: for all Tk ∈ Ty, Pi ∈G (p)

k ,

our inferred function ĝp(·) is defined by

z(Pi,Tk) =ĝp(α(Pi,Tk))+

+ εp,k, εp,k ∼ N (0,σ2
p),

(48)

which is regarded as the first Bayesian regression
task in our modeling approach. In our proposed
model – TLGProb, we adopt the GPR framework

ĝp(ai
k)∼GP

(
m(ai

k), k(ai
k, a j

k)
)

s.t. Ik(Pi)= Ik(P j),

(49)
where the mean function m(·) and the kernel func-
tion k(·, ·) can be flexibly determined with respect
the error measure in SSGPR.

Using the convention of z(Pi,Tk), we now de-
termine team’s strength by

s(Tk) = ⊕
Pi∈Tk

z(Pi,Tk). (50)

This function returns an n-dimensional vector,
where n is the number of players in the team. Now,
the size of the vector is acceptable since n is usu-
ally small in team sports. In addition, similar to the
definition of player’s performance, we define a vari-
able to address the actual performance of the team.
Naturally, it would be the game points scored by the
team. Similar to the assumptions that are made for
the players, the game point attained by the team is
dependent on team’s strength.

As mentioned in Section 3, we only concern
about the game points differential gk+1, which
should be the realization of two teams’ strengths.
The second regression task is thus formed

gk+1 = f̂ (sk)+ εk, εk ∼ N
(
0,σ2) , (51)

where
sk = s(TH

k)⊕ s(TV
k). (52)

In TLGProb, we again handle it with SSGPR:

f̂ (sk)∼ GP (0, k(sk, sk′)) , (53)

where k(·, ·) can be determined empirically. This
regression is trained subsequently after the the first
regression model are well-trained in terms of mean
squared error measure, therefore our approach is in-
terpreted as stacked Bayesian regressions. Figure 2
shows a block diagram of our modeling approach.

167ONE-MATCH-AHEAD FORECASTING IN . . .

Figure 2. Block diagram of our modeling approach with stacked Bayesian regressions

Table 2. Accuracies attained by baseline predictive models

Baseline Predictive Model Accuracy
Random Guessing 50%
Counting Victories of Last 5 Games 64.64%
Counting Victories of Last 10 Games 65.67%
Counting Victories of Last 20 Games 64.21%
Counting Victories of Last 50 Games 67.09%

5 Experiments

Our modeling approach coupled with stacked SS-
GPR results in a novel predictive model called TL-
GProb. In this Section, we analyze the results of
applying TLGProb to NBA 2014/2015 season, and
compare its predictive performance to other simi-
lar works. The implementation of TLGProb that
we present in this Section is available on Github.,1

which is built upon our own Python implementation
of SSGPR available on Github.2

5.1 NBA Dataset

NBA historical data was retrieved from Basketball-
Reference,3 which is a site that stores NBA matches
data starting from 1948. It provides box score statis-
tics, which can be converted to the player perfor-
mance statistics that we used in Table 1. For data
collection, we implemented our own robot for con-
tinuous update of matches data using Selenium,4 –
a Python library that enables browser automation.

5.2 Training Mechanism

Before applying TLGProb to NBA 2014/2015 sea-
son, it is first trained with matches data in NBA
2013/2014 regular season. The training process
contributes to the two regression task in our model.
While using SSGPR to solve for these regression
tasks in TLGProb, we can take advantage of its
modeling flexibility by random initialization of hy-
perparameters θ. Though there exists a number
of local minimas in optimization, in practice we
can still guarantee exploitable performance for each
random initialization by using stochastic optimiza-
tion with appropriate stopping criteria. In particu-
lar, we used one of the most popular stochastic op-
timization algorithm – Adam [19]. Predictive per-
formance of SSGPR were computed using 5-fold
cross validation. After training 50 randomly initial-
ized SSGPR instances, the one that gives the least
mean squared error was selected for our evaluation.

5.3 Evaluation Metric

Our model was evaluated over 1,230 matches in
NBA 2014/2015 season. Since we only have two
teams competing on each match, winning team pre-

1https://github.com/MaxInGaussian/TLGProb
2https://github.com/MaxInGaussian/SSGP
3http://www.basketball-reference.com
4http://www.seleniumhq.org

Max W. Y. Lam

is represented by a 17-dimensional vector. Nor-
mally having 13 players in a team including the re-
serves, vector concatenation in (46) will produce a
221-dimensional vector. In this case, our regres-
sion model simply needs much more training data to
ensure the prediction stability and preventing from
over-fitting. Yet, being limited by the number of
sports events, the number of training samples is usu-
ally not enough to meet this requirement.

A possible solution here is to employ some
well-known dimensionality reduction methods,
such as principal component analysis (PCA) and
linear discriminant analysis (LDA). Nonetheless,
these methods do not encode the domain knowl-
edge from the sport itself. Alternatively, we design
a dimensionality reduction method that is domain-
specific for sports games. The main idea is to train,
for each player position, an embedding function
that maps player’s ability vector to a point estimator
that represents the player’s contribution to his team.
In fact, there are a number of such estimators pro-
posed in the research community of sports analytics
[17]. Examples include the plus-minus score, the
player efficiency rating, and the individual offen-
sive and defensive ratings. The estimator we used
is called Adjusted Plus-Minus (APM) score [18].
One main advantage of using APM score is that
each player’s APM score is independent of the abil-
ities of that player’s opponents and teammates, by
contrast, the traditional plus-minus score is highly
opponent-dependent. In this sense, APM score is a
good measure of a player’s individual contribution.
Formally, we denote the APM score of player Pi by
z(Pi,Tk). Using this point estimate, we can define
the embedding function gp for the pth position

z(Pi,Tk) = gp(α(Pi,Tk)). (47)

Here, it is vital that we have different embed-
ding functions for different player positions because
players in different positions usually have distinctly
distributed ability vectors even though they con-
tribute equally in terms of APM score. For example,
in basketball, Guard is likely to get higher values on
3P, while Forward is likely to get higher values on
FG.

To find a suitable embedding function, we treat
it as a regression problem: for all Tk ∈ Ty, Pi ∈G (p)

k ,

our inferred function ĝp(·) is defined by

z(Pi,Tk) =ĝp(α(Pi,Tk))+

+ εp,k, εp,k ∼ N (0,σ2
p),

(48)

which is regarded as the first Bayesian regression
task in our modeling approach. In our proposed
model – TLGProb, we adopt the GPR framework

ĝp(ai
k)∼GP

(
m(ai

k), k(ai
k, a j

k)
)

s.t. Ik(Pi)= Ik(P j),

(49)
where the mean function m(·) and the kernel func-
tion k(·, ·) can be flexibly determined with respect
the error measure in SSGPR.

Using the convention of z(Pi,Tk), we now de-
termine team’s strength by

s(Tk) = ⊕
Pi∈Tk

z(Pi,Tk). (50)

This function returns an n-dimensional vector,
where n is the number of players in the team. Now,
the size of the vector is acceptable since n is usu-
ally small in team sports. In addition, similar to the
definition of player’s performance, we define a vari-
able to address the actual performance of the team.
Naturally, it would be the game points scored by the
team. Similar to the assumptions that are made for
the players, the game point attained by the team is
dependent on team’s strength.

As mentioned in Section 3, we only concern
about the game points differential gk+1, which
should be the realization of two teams’ strengths.
The second regression task is thus formed

gk+1 = f̂ (sk)+ εk, εk ∼ N
(
0,σ2) , (51)

where
sk = s(TH

k)⊕ s(TV
k). (52)

In TLGProb, we again handle it with SSGPR:

f̂ (sk)∼ GP (0, k(sk, sk′)) , (53)

where k(·, ·) can be determined empirically. This
regression is trained subsequently after the the first
regression model are well-trained in terms of mean
squared error measure, therefore our approach is in-
terpreted as stacked Bayesian regressions. Figure 2
shows a block diagram of our modeling approach.

168 Max W. Y. Lam

Table 3. Performance of different regression models

2nd Regression
KRR DT AdaDT GBM RF SSGPR

1s
tR

eg
re

ss
io

n KRR 85.04% 84.03% 84.80% 84.96% 83.82% 84.31%
DT 82.11% 81.68% 84.72% 83.66% 84.55% 84.39%
AdaDT 83.50% 82.00% 84.55% 82.76% 82.28% 82.76%
GBM 82.65% 82.65% 84.39% 84.15% 83.74% 85.04%
RF 85.20% 82.74% 84.39% 84.72% 84.96% 84.15%
SSGPR 85.28% 81.51% 84.96% 84.72% 84.55% 85.28%

KRR DT AdaDT GBM RF SSGPR
LNLPD 4.2973 4.3367 4.3125 4.3016 4.3061 3.2980

diction is nothing more than a binary classification
problem. To evaluate classification performance,
we naturally use the accuracy measure, which is
calculated given the acceptance threshold of win-
ning probability τ

accuracy =
∑
|M2014|
k=1 (Ak)

|A|
, (54)

where

Ak =
((

GH
k > GV

k
)
∧
(
Pr

(
gH

k > gV
k
)
> τ

))

∨
((

GH
k < GV

k
)
∧
(
Pr

(
gH

k < gV
k
)
> τ

))
,

(55)

A= {k ∈ {1, ..., |M2014|} : (Pr(gH
k > gV

k)> τ)
∨(Pr(gH

k < gV
k)> τ)},

(56)

and (A) is a logical indicator function that returns
1 if and only if A is true otherwise 0 is returned.

5.4 Baseline Predictive Models

Without considering much detail of the game, ran-
domly guessing theoretically could achieve a base-
line of 50% accuracy in the long run. Though,
we conceived that rational people normally do not
guess randomly. Therefore, a new set of baseline
models was examined.

To simulate how people choose the game win-
ner, a more reasonable predictor is to look back pre-
vious matches and predict the team with more vic-
tories to be the winner. In total, we tested 4 predic-
tors corresponding to looking back 5, 10, 20 and
50 games. The result is shown on table 2. Pre-
dictors based on the number of victories apparently
worked better than random guessing, while the best
achieved a modest accuracy up to 67%.

5.5 Comparing to Other Regression Mod-
els

In this Section we show that SSGPR is typically
superior to existing state-of-the-art regression mod-
els, while proposing it to the regression tasks pre-
sented in our modeling approach. Towards this ar-
gument, a comparative experiment was conducted.
In additional to our implemented SSGPR, we tried
5 famous non-Bayesian regression models – Kernal
Ridge Regression (KRR) with RBF kernel [20, 21]
, Decision Tree (DT) [22], Ada Boosted Decision
Tree (AdaDT) [23], Gradient Boosting Machine
(GBM) [24] and Random Forests (RF) [25]. We
used Scikit-learn [26] to implement these models,
in which the model parameters are selected by 5-
fold cross validation with grid search algorithm.
The accuracies attained by different combination of
regression models are shown in Table 3. It reveals
that using SSGPR for the first regression task, and
then feeding its outputs to either KRR or SSGPR
will give slightly better accuracy. Yet, to maintain a
Bayesian environment for analytical calculation of
winning probability, in TLGProb, we still stick to
SSGPR in the second regression task.

To justify this claim, we want to show that
Bayesian regression model is more suitable for win-
ning probability calculation. By our definition,
winning probability is computed directly from the
predictive distribution obtained from the regression
model. Here, we measure how well the predictive
distribution is predicted with Average Negative Log
Predictive Density Loss (NLPD) [27, 28],

LNLPD =− 1
2M

M

∑
i=1

(
logVar(y⋆i)+

(y⋆i −µ⋆i)
2

Var(y⋆i)

)
,

(57)

169ONE-MATCH-AHEAD FORECASTING IN . . .

Table 4. Accuracies attained by different predictive models for NBA

Predictive Model for NBA Accuracy
One-Layer Model based on Naive Bayes [29] 67%
One-Layer Model based on Simple Logistics Classifier [30] 69.49%
Sport Journalist [31] 71%
One-Layer Model based on Weka [32] 72.8%
NBA Oracle [31] 73%
One-Layer Model based on Neural Network [33] 74.33%
TLGProb 85.28%

where µ⋆i = freg (X⋆
i) is the predicted testing out-

put from the trained regression model, and (X⋆
i ,y

⋆
i)

is the ith input-output pair in the testing data.
The statistical meaning of NLPD asserts that, the
smaller the NLPD is, the better the regression
model achieved. Noted that for non-Bayesian mod-
els, we get only a point estimate from each predic-
tion. Therefore, we naturally use the Mean Square
Error (MSE) of training to approximate the predic-
tive variance

Var(y⋆)≈ Var(y) = E
[
(y−E [y])2

]

= LMSE =
1
N

N

∑
i=1

(yi −µi)
2 ,

(58)

where µi = freg (Xi) is the predicted training out-
put from the trained regression model, and (Xi,yi)
is the ith input-output pair in the training data. Fi-
nally, the result in Table 3 proves our incentive that
SSGPR, being a Bayesian regression model, is the
best candidate for winning probability calculation
among these regression models.

5.6 Comparing to Other Predictive Models

Several works [29, 30, 31, 32, 33] applying ma-
chine learning models to predict NBA results are
also investigated. Beckler [31] and Cao [30] pro-
posed to use NBA box score statistics of the team
to classify winner of the next match. They tried
Linear Classifier, Logistics Classifier, SVM Clas-
sifier, and Neural Network Classifier for predic-
tion. Miljković [29] merged win-or-lose records
and NBA box score statistics to create a new set of
features and classified match outcomes using Naive
Bayes. Zdravevski [32] used manual feature se-
lection with classification techniques available in
WEKA to predict the winner. Finally, decision tree
gave the highest accuracy. Loeffelholz [33] used
mid-season average statistics as prediction inputs

and used fusion techniques to integrate different
neural networks. Noted that all these models use
only teams’ performances for prediction, whereas
individual performances of team players are ne-
glected. We refer this kind of models as the One-
Layer Model, as opposed to our stacked regression
tasks which we refer as a Two-Layer Model.

The result of comparison in terms of accu-
racy is described in Table 4, in which TLGProb
significantly surpassed the others. When accep-
tance threshold on the winning probability τ is nat-
urally set to be 0.5, TLGProb correctly predicted
the winning teams in 1,049 games out of 1,230
games, giving 85.28% accuracy. Noted that it is
hard to improve the accuracy even just a small
amount since the result of each game is controlled
by many sources of non-deterministic factors, in-
cluding player injuries, player attitudes, team rival-
ries and subjective officiating. We conceive that the
success of our model is very much due to the high
standard performance of SSGPR, explicit consider-
ation of each player’s contribution with position de-
pendency, as well as the stacked regressions – asso-
ciating players’ performances with team’s strength
and associating two teams’ performances with the
match outcome.

5.7 Properties of Winning Probability

One vital feature of our model is winning proba-
bility calculation. In reality, this feature is highly
appealing, especially for the determination of win-
ning odds [2]. Simply concerning the task of one-
match-ahead prediction, we can see that the win-
ning probability returned from TLGProb is benefi-
cial, as it provides us an option to increase the accu-
racy by conservatively rejecting the prediction with
low confidence.

Max W. Y. Lam

Table 3. Performance of different regression models

2nd Regression
KRR DT AdaDT GBM RF SSGPR

1s
tR

eg
re

ss
io

n KRR 85.04% 84.03% 84.80% 84.96% 83.82% 84.31%
DT 82.11% 81.68% 84.72% 83.66% 84.55% 84.39%
AdaDT 83.50% 82.00% 84.55% 82.76% 82.28% 82.76%
GBM 82.65% 82.65% 84.39% 84.15% 83.74% 85.04%
RF 85.20% 82.74% 84.39% 84.72% 84.96% 84.15%
SSGPR 85.28% 81.51% 84.96% 84.72% 84.55% 85.28%

KRR DT AdaDT GBM RF SSGPR
LNLPD 4.2973 4.3367 4.3125 4.3016 4.3061 3.2980

diction is nothing more than a binary classification
problem. To evaluate classification performance,
we naturally use the accuracy measure, which is
calculated given the acceptance threshold of win-
ning probability τ

accuracy =
∑
|M2014|
k=1 (Ak)

|A|
, (54)

where

Ak =
((

GH
k > GV

k
)
∧
(
Pr

(
gH

k > gV
k
)
> τ

))

∨
((

GH
k < GV

k
)
∧
(
Pr

(
gH

k < gV
k
)
> τ

))
,

(55)

A= {k ∈ {1, ..., |M2014|} : (Pr(gH
k > gV

k)> τ)
∨(Pr(gH

k < gV
k)> τ)},

(56)

and (A) is a logical indicator function that returns
1 if and only if A is true otherwise 0 is returned.

5.4 Baseline Predictive Models

Without considering much detail of the game, ran-
domly guessing theoretically could achieve a base-
line of 50% accuracy in the long run. Though,
we conceived that rational people normally do not
guess randomly. Therefore, a new set of baseline
models was examined.

To simulate how people choose the game win-
ner, a more reasonable predictor is to look back pre-
vious matches and predict the team with more vic-
tories to be the winner. In total, we tested 4 predic-
tors corresponding to looking back 5, 10, 20 and
50 games. The result is shown on table 2. Pre-
dictors based on the number of victories apparently
worked better than random guessing, while the best
achieved a modest accuracy up to 67%.

5.5 Comparing to Other Regression Mod-
els

In this Section we show that SSGPR is typically
superior to existing state-of-the-art regression mod-
els, while proposing it to the regression tasks pre-
sented in our modeling approach. Towards this ar-
gument, a comparative experiment was conducted.
In additional to our implemented SSGPR, we tried
5 famous non-Bayesian regression models – Kernal
Ridge Regression (KRR) with RBF kernel [20, 21]
, Decision Tree (DT) [22], Ada Boosted Decision
Tree (AdaDT) [23], Gradient Boosting Machine
(GBM) [24] and Random Forests (RF) [25]. We
used Scikit-learn [26] to implement these models,
in which the model parameters are selected by 5-
fold cross validation with grid search algorithm.
The accuracies attained by different combination of
regression models are shown in Table 3. It reveals
that using SSGPR for the first regression task, and
then feeding its outputs to either KRR or SSGPR
will give slightly better accuracy. Yet, to maintain a
Bayesian environment for analytical calculation of
winning probability, in TLGProb, we still stick to
SSGPR in the second regression task.

To justify this claim, we want to show that
Bayesian regression model is more suitable for win-
ning probability calculation. By our definition,
winning probability is computed directly from the
predictive distribution obtained from the regression
model. Here, we measure how well the predictive
distribution is predicted with Average Negative Log
Predictive Density Loss (NLPD) [27, 28],

LNLPD =− 1
2M

M

∑
i=1

(
logVar(y⋆i)+

(y⋆i −µ⋆i)
2

Var(y⋆i)

)
,

(57)

170 Max W. Y. Lam

Here, the acceptance threshold τ acts as our
confidence on the prediction result such that
matches with winning probability smaller than τ
are rejected. It is expected that, if the calculated
winning probability is a reasonable measure of un-
certainty, then, when we increase the acceptance
threshold, the accuracy should be improved. In our
results, it is exciting that the outputs obtained from
TLGProb truly satisfy our expectation, as plotted on
Figure 3. For example, if we set τ = 0.6, the accu-
racy will be improved to 91.17%, while only 20%
of the matches are rejected.

Taking advantage of the Bayesian framework,
TLGProb is suited to work with Bayesian decision
theory. That is, practitioners can optionally pick the
match results where they have a strong belief in, and
then ignore the matches with less confidence. For a
realistic example, in wagering market, to carefully
determine the winning odds, we should give high
risks on the matches that high winning probability
co-occurs high winning odds.

Figure 3. Plot of accuracies and rejection
percentages when different acceptance thresholds

of winning probability are used

6 Conclusion and Future Work

In this paper, we present a pioneering modeling
approach for one-match-ahead forecasting in two-
team sports featured with winning probability cal-
culation. Our proposed model – TLGProb achieved
85.28% accuracy in NBA 2014/2015 season. The
performance of TLGProb is superior to the existing
NBA predictive models. We conceive that its suc-

cess is mainly due to the high standard performance
of SSGPR, explicit consideration of each player’s
contribution with position dependency, as well as
the stacked regressions – associating players’ per-
formances with team’s strength and associating two
teams’ performances with the match outcome.

Although superior performance in basketball
domain was shown in this paper, we are keen on ap-
plying TLGProb to other two-team sports in the fu-
ture so that comprehensive practicality of TLGProb
can be proved. What’s more, it is potential to extend
our presented modeling approach to multi-teams
sports, or any team-based competitions. It will be
beneficial if our model can be generally applied as
a pre-contest analytical tool.

References
[1] I. Bhandari et al., Advanced Scout: Data Mining and

Knowledge Discovery in NBA Data, Data Mining
and Knowledge Discovery, 1(1), 121–125, 1997.

[2] D. B. Hausch & W. T. Ziemba, Handbook of Sports
and Lottery Markets, Elsevier, 2011.

[3] M. Ottaviani & P. N. Sørensen, Surprised by the
Parimutuel Odds?, The American Economic Re-
view, 99(5), 2129–2134, 2009.

[4] M. Haghighat et al., A Review of Data Mining Tech-
niques for Result Prediction in Sports, Advances in
Computer Science: an International Journal, 2(5),
7–12, 2013.

[5] M. Lázaro-Gredilla et la., Sparse Spectrum Gaus-
sian Process Regression, Journal of Machine Learn-
ing Research, 11(Jun), 1865–1881, 2010.

[6] C. E. Rasmussen & C. K. Williams, Gaussian Pro-
cesses for Machine Learning, MIT Press, 2006.

[7] D. J. MacKay, Introduction to Gaussian Processes.
NATO ASI Series F Computer and Systems Sci-
ences, 168, 133–166, 1998.

[8] D. Duvenaud, Automatic Model Construction with
Gaussian Processes, Doctoral Dissertation, Univer-
sity of Cambridge, 2014.

[9] R. M. Neal, Bayesian Learning for Neural Net-
works, Springer Science & Business Media, 118,
2012.

[10] Y. Gal & R. Turner, Improving the Gaussian Pro-
cess Sparse Spectrum Approximation by Represent-
ing Uncertainty in Frequency Inputs, In: 32nd In-
ternational Conference on Machine Learning, 655–
664, 2015.

171ONE-MATCH-AHEAD FORECASTING IN . . .

[11] N. Wiener, Generalized Harmonic Analysis, Acta
mathematica, 55(1), 117–258, 1930.

[12] A. Khintchine, Korrelationstheorie der Stationren
Stochastischen Prozesse, Mathematische Annalen,
109(1), 604–615, 1934.

[13] S. Bochner, Monotone Funktionen, Stieltjessche
Integrale Und Harmonische Analyse, Mathematis-
che Annalen, 108(1), 378–410, 1933.

[14] J. Quiñonero-Candela et la., A Unifying View of
Sparse Approximate Gaussian Process Regression,
Journal of Machine Learning Research, 6(Dec),
1939–1959, 2005.

[15] J. S. Simonoff, Smoothing Methods in Statistics,
Springer Science & Business Media, 2012.

[16] E. S. Gardner, Exponential Smoothing: The State
of the Art, Journal of Forecasting, 4(1), 1–28, 1985.

[17] D. Oliver, Basketball on Paper: Rules and Tools for
Performance Analysis, Potomac Books, Inc., 2004.

[18] W. L. Winston, Mathletics: How Gamblers, Man-
agers, and Sports Enthusiasts Use Mathematics in
Baseball, Basketball, and Football, Princeton Uni-
versity Press, 2012.

[19] D. Kingma & J. Ba, Adam: A Method for Stochas-
tic Optimization, In: International Conference on
Learning Representations 2014, 1–13, 2014.

[20] C. Saunders et la., Ridge Regression Learning Al-
gorithm in Dual Variables. In: 15th International
Conference on Machine Learning, 515–521, 1998.

[21] S. An et la., Face Recognition Using Kernel
Ridge Regression. In: Computer Vision and Pattern
Recognition 2007, IEEE, 1–7, 2007.

[22] M. Xu et la., Decision Tree Regression for Soft
Classification of Remote Sensing Data, Remote
Sensing of Environment, 97(3), 322–336, 2005.

[23] Y. Freund, & R. E. Schapire, A Desicion-Theoretic
Generalization of On-line Learning and An Applica-
tion to Boosting, In: European Conference on Com-
putational Learning Theory 1995, Springer Berlin
Heidelberg, 23–37, 1995.

[24] J. H. Friedman, Greedy Function Approximation:
a Gradient Boosting Machine, Annals of Statistics,
1189–1232, 2001.

[25] L. Breiman, Random Forests, Machine learning,
45(1), 5–32, 2001.

[26] F. Pedregosa et la., Scikit-learn: Machine Learning
in Python, Journal of Machine Learning Research,
12(Oct), 2825–2830, 2011.

[27] J. Quinonero-Candela et la., Evaluating Predic-
tive Uncertainty Challenge. In: Machine Learning
Challenges. Evaluating Predictive Uncertainty, Vi-
sual Object Classification, and Recognising Tectual
Entailment, Springer Berlin Heidelberg, 1–27, 2006.

[28] J. Kohonen & J. Suomela, Lessons Learned in
the Challenge: Making Predictions and Scoring
Them. In: Machine Learning Challenges. Evaluat-
ing Predictive Uncertainty, Visual Object Classifica-
tion, and Recognising Tectual Entailment, Springer
Berlin Heidelberg, 1–27, 2006.

[29] D. Miljković et la., The Use of Data Mining for
Basketball Matches Outcomes Prediction, In: 8th
International Symposium on Intelligent Systems and
Informatics (SISY), IEEE, 309–312, 2010.

[30] C. Cao, Sports Data Mining Technology Used in
Basketball Outcome Prediction, Masters Disserta-
tion, Dublin Institute of Technology, 2012.

[31] M. Beckler et la., NBA Oracle, htt ps :
//www.mbeckler.org/coursework/2008 −
2009/10701report.pd f , 2013.

[32] E. Zdravevski, & A. Kulakov, System for Predic-
tion of the Winner in a Sports Game, In: ICT Inno-
vations, Springer Berlin Heidelberg, 55–63, 2009.

[33] B. Loeffelholz et la., Predicting NBA Games Using
Neural Networks, Journal of Quantitative Analysis
in Sports, 5(1), 1–15, 2009.

Max W. Y. Lam completed his bache-
lor’s degree in Computer Science from
The Chinese University of Hong Kong
(CUHK). He then continued his re-
search works as a research assistant in
Stanley Ho Big Data Decision Analyt-
ics Research Centre, CUHK. He is cur-
rently in the process of completing his
MPhil degree in Systems Engineering

and Engineering Management. His major research interests
are in machine learning, notably Gaussian process regres-
sion, neural networks, and their applications in probabilistic
decision making.

Max W. Y. Lam

Here, the acceptance threshold τ acts as our
confidence on the prediction result such that
matches with winning probability smaller than τ
are rejected. It is expected that, if the calculated
winning probability is a reasonable measure of un-
certainty, then, when we increase the acceptance
threshold, the accuracy should be improved. In our
results, it is exciting that the outputs obtained from
TLGProb truly satisfy our expectation, as plotted on
Figure 3. For example, if we set τ = 0.6, the accu-
racy will be improved to 91.17%, while only 20%
of the matches are rejected.

Taking advantage of the Bayesian framework,
TLGProb is suited to work with Bayesian decision
theory. That is, practitioners can optionally pick the
match results where they have a strong belief in, and
then ignore the matches with less confidence. For a
realistic example, in wagering market, to carefully
determine the winning odds, we should give high
risks on the matches that high winning probability
co-occurs high winning odds.

Figure 3. Plot of accuracies and rejection
percentages when different acceptance thresholds

of winning probability are used

6 Conclusion and Future Work

In this paper, we present a pioneering modeling
approach for one-match-ahead forecasting in two-
team sports featured with winning probability cal-
culation. Our proposed model – TLGProb achieved
85.28% accuracy in NBA 2014/2015 season. The
performance of TLGProb is superior to the existing
NBA predictive models. We conceive that its suc-

cess is mainly due to the high standard performance
of SSGPR, explicit consideration of each player’s
contribution with position dependency, as well as
the stacked regressions – associating players’ per-
formances with team’s strength and associating two
teams’ performances with the match outcome.

Although superior performance in basketball
domain was shown in this paper, we are keen on ap-
plying TLGProb to other two-team sports in the fu-
ture so that comprehensive practicality of TLGProb
can be proved. What’s more, it is potential to extend
our presented modeling approach to multi-teams
sports, or any team-based competitions. It will be
beneficial if our model can be generally applied as
a pre-contest analytical tool.

References
[1] I. Bhandari et al., Advanced Scout: Data Mining and

Knowledge Discovery in NBA Data, Data Mining
and Knowledge Discovery, 1(1), 121–125, 1997.

[2] D. B. Hausch & W. T. Ziemba, Handbook of Sports
and Lottery Markets, Elsevier, 2011.

[3] M. Ottaviani & P. N. Sørensen, Surprised by the
Parimutuel Odds?, The American Economic Re-
view, 99(5), 2129–2134, 2009.

[4] M. Haghighat et al., A Review of Data Mining Tech-
niques for Result Prediction in Sports, Advances in
Computer Science: an International Journal, 2(5),
7–12, 2013.

[5] M. Lázaro-Gredilla et la., Sparse Spectrum Gaus-
sian Process Regression, Journal of Machine Learn-
ing Research, 11(Jun), 1865–1881, 2010.

[6] C. E. Rasmussen & C. K. Williams, Gaussian Pro-
cesses for Machine Learning, MIT Press, 2006.

[7] D. J. MacKay, Introduction to Gaussian Processes.
NATO ASI Series F Computer and Systems Sci-
ences, 168, 133–166, 1998.

[8] D. Duvenaud, Automatic Model Construction with
Gaussian Processes, Doctoral Dissertation, Univer-
sity of Cambridge, 2014.

[9] R. M. Neal, Bayesian Learning for Neural Net-
works, Springer Science & Business Media, 118,
2012.

[10] Y. Gal & R. Turner, Improving the Gaussian Pro-
cess Sparse Spectrum Approximation by Represent-
ing Uncertainty in Frequency Inputs, In: 32nd In-
ternational Conference on Machine Learning, 655–
664, 2015.

