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Abstract

In recent years, autonomous navigation for mobile robots has been considered a highly
active research field. Within this context, we are interested to apply the Simultaneous
Localization And Mapping (SLAM) approach for a wheeled mobile robot. The Extended
Kalman Filter has been chosen to perform the SLAM algorithm. In this work, we explicit
all steps of the approach. Performances of the developed algorithm have been assessed
through simulation in the case of a small scale map. Then, we present several experiments
on a real robot that are proceeded in order to exploit a programmed SLAM unit and to
generate the navigation map. Based on experimental results, simulation of the SLAM
method in the case of a large scale map is then realized. Obtained results are exploited in
order to evaluate and compare the algorithm’s consistency and robustness for both cases.
Keywords: mobile robot, localisation, EKF, SLAM, consistency

1 Introduction

Relatively to the artificial intelligence, cartog-
raphy is a highly crucial step for localization and
autonomous navigation of a mobile robot. Starting
from an initial position, a robot relies on its exte-
roceptive sensors to build a map for the navigation
environnement. The robot localizes itself and learns
to react in function of existing constraints. But ob-
taining the most suitable map is not always obvi-
ous for several reasons. On one hand, program-
ming the map manually is a difficult and time re-
quiring operation. Besides, every observer has its
own perspective. On the other hand, the navigation
environnement is usually dynamic and affected by

frequent changements. In this context, Simultane-
ous Localization And Mapping (SLAM) is consid-
ered a solution for described restrictions. SLAM
first appeared with Smith, Self and Cheeseman [17]
and developed by Leonard and Durrant-Whyte [6].
The general idea of SLAM is an observation of the
whole environnement in a closed loop. The robot
must assess when to observe every existing object
from a known and a precise position. So, the al-
gorithm’s task is to update the robot’s position ev-
ery sample time depending on its current position.
This way, we guarantee less uncertainty on obtain-
ing information by estimation. Yet, another source
of uncertainty comes from odometry. Odometric er-
rors are very common in mobile robots navigation.
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In order to avoid them, we rely on different exte-
roceptive sensors. In our case, the laser telemeter
is the chosen sensor providing the robot’s position.
In the literature, the SLAM approach has proved
its efficiency and robustness especially when it ap-
plies the Extended Kalman Filter (EKF). The EKF
SLAM is the first technique to be implemented and
every later solution has been drifted from it. It has
proved its efficiency when applied for several types
of robots [19]. The main characteristic of the con-
ventional EKF is the fact of its simple implementa-
tion and operating with white gaussian noise. Sev-
eral improved versions of the EKF based SLAM
appear in recent works. We can indeed mention
the Compressed Extended Kalman Filter (CEKF)
which divides the state vector into an active and
passive parts. When the robot is in a local area,
the algorithm updates only the active part. Once the
robot moves, the whole update is performed. The
Unscented Kalman filter (UKF) is another modified
version of the classic EKF. The UKF avoids deriv-
ing the Jacobian matrices and seeks to reduce esti-
mation errors [2, 10]. The Augmented Kalman Fil-
ter (AKF) tends to improve the algorithm accuracy
and compensate systematic errors essentially odo-
metric ones. It creates and estimates a new system
of odometric parameters [5, 22]. Limitations of the
EKF are noted especially in the case of large scale
navigation environments. Thus, several approaches
appeared for SLAM such as the Fast SLAM, tiny
SLAM and Linear SLAM. The Fast SLAM is con-
sidered the most successful algorithm, it uses a
Rao-Blackwellized particle filter and operates with
non-gaussian noises. Unlike the EKF SLAM, fast
SLAM relies on posterior estimation over a robot’s
poses [13, 14, 18]. As for the tiny SLAM, it uses
the Incremental Maximum Likelihood (IML) and
based on two effective optimization methods: ge-
netic and Monte Carlo algorithms in order to im-
prove the approach’s accuracy and speed. However,
for large scale and complicated environments, the
algorithm becomes slower and gives questionable
results [16]. For large scale maps, the linear SLAM
appears as a significant solution. This method is
based on joining submaps already obtained by con-
ventional SLAM techniques. Significant results are
shown by solving a sequence of linear least squares
problems [4, 8, 21].

In spite of the fact that the EKF is the most used
technique, we can not deny the efficiency of rela-

tively newer approaches as the use of genetic al-
gorithms. Several approches appear with multiple
techniques as the Island model Genetic Algorithm
[11] or the use particle filter and steady-state ge-
netic algorithm [7, 15].

The rest of this work is organized as follows:
Section 2 is deals with a general presentation of the
SLAM approach. We focus on the difference be-
tween localisation and cartography leading to the
appearance of SLAM. In Section 3, we deal with
simulation of the EKF SLAM algorithm behaviour.
The robot is located in the map in presence of all
existing features and tracking a defined trajectory.
Section 4 describes real tests and experiments re-
alized on a mobile robot to exploit Core SLAM, an
integrated unit on the robot. The purpose is generat-
ing the navigation map as it is seen by the robot dur-
ing its movement. Simulation of the SLAM method
basing on the obtained map is realized. Results are
then analysed to give an idea about the consistency
of the EKF SLAM. Finally, conclusions are pre-
sented in Section 5.

2 Presentation of SLAM Basis

On one hand, the localisation process relies es-
sentially on dead reckoning, sensors feedback and
control results. The robot position is then estimated
combining all results within a probabilistic distri-
bution. In spite of the highly precise position, com-
putation is very complex. Besides, we discard in
the process all characteristics of the navigation en-
vironnement. In the other hand, the cartography is
the step of building a map of the navigation envi-
ronnement by exploiting exteroceptive sensors data.
However, carrying out manually the carthography
is considered as a hard operation. In this case, the
robot position depends on avoidable changements
and the dynamic aspect of navigation areas. Both
localisation and cartography limitations and inac-
curacy are overcame with SLAM. The robot gains
the ability to locate itself and distinguish the most
suitable instant in order to observe existing land-
marks. In this way, localisation and cartography are
operating simultaneously which represent the basis
of SLAM. The probabilistic distribution to perform
SLAM is presented by the following expression
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P(xk,M | Z0:k,U0:k,x0), (1)

with:

– X0:k = {x0 . . .xk}: state vector,

– Z0:k = {z0 . . .zk}: observation vector,

– U0:k = {u0 . . .uk}: Control law vector,

– M: vector of landmarks positions.

A simplified SLAM performance can be
translated into a scheme described by the Figure 1.

Figure 1. SLAM performance

3 EKF SLAM Simulation

In this part, an EKF SLAM based simulation
is realized for a mobile robot. The robot follows a
specific trajectory.

3.1 Extended Kalman Filter Algorithm
Formulation

EKF SLAM depends on existing elements on
the navigation environnement called landmarks so
it can update the robot’s position [12]. Both robot
and landmarks positions are kept in guard by the
algorithm while processing.

We explicit the implementation of the EKF
SLAM for a robot navigation in a defined environ-
nement with stationary features. The process model
depends essentially on both robot and map land-
marks coordinates presented respectively by Xt and

Mt . It is defined by the state vector which dimen-
sion is equal to(2n+3).

X = f (Xt ,Mt) =
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(2)

(x,y,θ) is the robot position while (xa1,ya1, . . . ,xan,yan)
define n landmarks positions.

During the robot movement, we control both
of its speeds: linear and angular ones presented by
u = (v,ω).

The navigation equation is then defined by:

f (Xt ,u) =


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As a result, we obtain the corresponding Jacobian
matrix:
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For every observed landmark ”li”, we calculate its
relative position using the observation model:
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The resulted jacobian matrix is then presented by:
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In order to avoid them, we rely on different exte-
roceptive sensors. In our case, the laser telemeter
is the chosen sensor providing the robot’s position.
In the literature, the SLAM approach has proved
its efficiency and robustness especially when it ap-
plies the Extended Kalman Filter (EKF). The EKF
SLAM is the first technique to be implemented and
every later solution has been drifted from it. It has
proved its efficiency when applied for several types
of robots [19]. The main characteristic of the con-
ventional EKF is the fact of its simple implementa-
tion and operating with white gaussian noise. Sev-
eral improved versions of the EKF based SLAM
appear in recent works. We can indeed mention
the Compressed Extended Kalman Filter (CEKF)
which divides the state vector into an active and
passive parts. When the robot is in a local area,
the algorithm updates only the active part. Once the
robot moves, the whole update is performed. The
Unscented Kalman filter (UKF) is another modified
version of the classic EKF. The UKF avoids deriv-
ing the Jacobian matrices and seeks to reduce esti-
mation errors [2, 10]. The Augmented Kalman Fil-
ter (AKF) tends to improve the algorithm accuracy
and compensate systematic errors essentially odo-
metric ones. It creates and estimates a new system
of odometric parameters [5, 22]. Limitations of the
EKF are noted especially in the case of large scale
navigation environments. Thus, several approaches
appeared for SLAM such as the Fast SLAM, tiny
SLAM and Linear SLAM. The Fast SLAM is con-
sidered the most successful algorithm, it uses a
Rao-Blackwellized particle filter and operates with
non-gaussian noises. Unlike the EKF SLAM, fast
SLAM relies on posterior estimation over a robot’s
poses [13, 14, 18]. As for the tiny SLAM, it uses
the Incremental Maximum Likelihood (IML) and
based on two effective optimization methods: ge-
netic and Monte Carlo algorithms in order to im-
prove the approach’s accuracy and speed. However,
for large scale and complicated environments, the
algorithm becomes slower and gives questionable
results [16]. For large scale maps, the linear SLAM
appears as a significant solution. This method is
based on joining submaps already obtained by con-
ventional SLAM techniques. Significant results are
shown by solving a sequence of linear least squares
problems [4, 8, 21].

In spite of the fact that the EKF is the most used
technique, we can not deny the efficiency of rela-

tively newer approaches as the use of genetic al-
gorithms. Several approches appear with multiple
techniques as the Island model Genetic Algorithm
[11] or the use particle filter and steady-state ge-
netic algorithm [7, 15].

The rest of this work is organized as follows:
Section 2 is deals with a general presentation of the
SLAM approach. We focus on the difference be-
tween localisation and cartography leading to the
appearance of SLAM. In Section 3, we deal with
simulation of the EKF SLAM algorithm behaviour.
The robot is located in the map in presence of all
existing features and tracking a defined trajectory.
Section 4 describes real tests and experiments re-
alized on a mobile robot to exploit Core SLAM, an
integrated unit on the robot. The purpose is generat-
ing the navigation map as it is seen by the robot dur-
ing its movement. Simulation of the SLAM method
basing on the obtained map is realized. Results are
then analysed to give an idea about the consistency
of the EKF SLAM. Finally, conclusions are pre-
sented in Section 5.

2 Presentation of SLAM Basis

On one hand, the localisation process relies es-
sentially on dead reckoning, sensors feedback and
control results. The robot position is then estimated
combining all results within a probabilistic distri-
bution. In spite of the highly precise position, com-
putation is very complex. Besides, we discard in
the process all characteristics of the navigation en-
vironnement. In the other hand, the cartography is
the step of building a map of the navigation envi-
ronnement by exploiting exteroceptive sensors data.
However, carrying out manually the carthography
is considered as a hard operation. In this case, the
robot position depends on avoidable changements
and the dynamic aspect of navigation areas. Both
localisation and cartography limitations and inac-
curacy are overcame with SLAM. The robot gains
the ability to locate itself and distinguish the most
suitable instant in order to observe existing land-
marks. In this way, localisation and cartography are
operating simultaneously which represent the basis
of SLAM. The probabilistic distribution to perform
SLAM is presented by the following expression
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To estimate both robot and landmark positions, we
follow Extended Kalman Filter steps.

– State prediction: The predicted state estimate
is expressed as:

X∗
t = f (X̂t−1,ut)

– Covariance prediction: The predicted covari-
ance estimate is given by:

P∗
t = A.P̂t−1.AT +Q

– Observation prediction: This step handles pre-
diction’s measurement or innovation.

Y ∗
t = h(X∗

t )

– Observation: Measurements and data associa-
tion are realized. Thus, estimated positions and
noise are obtained.

– Correction of the predicted state: In this step,
we obtain both updated state and covariance es-
timates.

X̂t = X∗
t +K(Y −Y ∗

t )

P̂t = P∗
t −KHP∗

t

where K is the Kalman gain:

K = P∗
t HT (H.P∗

t .H
T +PY )

−1

3.2 Simulation Results: Case of a Small
Scale Map

A simulation-based analysis of the EKF algo-
rithm for the SLAM method is realised in this Sec-
tion. We aim to show the robot’s behaviour while
tracking a defined way through the EKF SLAM al-
gorithm. We define in this simulation a set of way-
points for the robot to reach. Stationary landmarks
are presented in dots in presence of a squared ob-
stacle. The robot starts to move with a speed of 2
m/s from its initial position defined by (30, 25) and
a initial orientation equal to 0◦.

The trajectory is presented in Figure 2.

All along the trajectory, both real and estimated
robots positions are drawn with triangles and fol-
lowing each other. Every time a landmark is seen,
uncertainty gaussian ellipses are applied around it.

Described features of the map are presented by Fig-
ure 3.

Figure 2. Defined trajectory and landmarks

Figure 3. Real and estimated robots positions are
presented with triangles. All seen landmarks are

surrounded by gaussian ellipses.

Performances of EKF SLAM is evaluated for
two different cases. First, the robot’s perception of
landmarks is limited. Subsequently, only 16 of 54
defined landmarks are seen. The resulted loop is
executed in 27.3 seconds. Figure 4 presents simu-
lation results.

We increase in a second experience the percep-
tion range of the robot sensors. The program be-
comes slower which is justified by taking into ac-
count 36 landmarks. Results of this second case are
shown in Figure 5.
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Figure 4. Navigation path resulted from SLAM
algorithm for a restricted range of perception. The
defined trajectory is presented by continuos line.

Figure 5. Navigation path resulted from SLAM
algorithm. The defined trajectory is presented by

continuos line.

4 SLAM Application on a Mobile
Robot

4.1 Presentation of the Robotic System

Experimental tests are realized on Wifibot, a
well designed robot offering to the user a platform
to develop and manipulate different applications in
an easy way. The Wifi board ensures a wireless
connection of the system with the configured access
point which is provided freely. It uses the Hokuyo
UT M−30LX laser sensor of the robot which covers
270◦ and allows to detect all objects from a highly
long distance. Control and measure acquisitions are

easier and more reliable using the laser telemeter
sensor. By doing 40 scans/second, it can achieve an
accuracy of 0.25◦. SLAM algorithm is applied on
Wifibot through the Core SLAM unit. This unit has
been developed by pioneered researchers in robotic
applications. It uses the laser telemeter’s measures
and odometric data in order to built the navigation
map.

Several units are available and compatible to be
connected to Core SLAM unit. They allow the user
to follow and localize the Wifibot during its move-
ment.

Once units are connected and the robot starts to
move, we obtain a display of the navigation map
with the robot. Figure 6 describes the resulted map
with white and grey colours and where we can find
the robot whose orientation is indicated by an arrow.

Figure 6. The observed environnement through
Core SLAM units

4.2 Experimental Tests

In order to read the obtained map, we needed
to exploit all inputs and outputs and proceed with
several tests on the robot.

The Core SLAM unit’s output named
MAPS characteristics (size, res, orig) is an array
of 4 components describing the map. We have:

– map size = 2048,

– res xy = 20,

– map origin x = 20480,

– map origin y = 20480.

Knowing that we have a map of 2048 pixel with a
resolution of 20mm/pixel, we obtain a square with
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To estimate both robot and landmark positions, we
follow Extended Kalman Filter steps.

– State prediction: The predicted state estimate
is expressed as:

X∗
t = f (X̂t−1,ut)

– Covariance prediction: The predicted covari-
ance estimate is given by:

P∗
t = A.P̂t−1.AT +Q

– Observation prediction: This step handles pre-
diction’s measurement or innovation.

Y ∗
t = h(X∗

t )

– Observation: Measurements and data associa-
tion are realized. Thus, estimated positions and
noise are obtained.

– Correction of the predicted state: In this step,
we obtain both updated state and covariance es-
timates.

X̂t = X∗
t +K(Y −Y ∗

t )

P̂t = P∗
t −KHP∗

t

where K is the Kalman gain:

K = P∗
t HT (H.P∗

t .H
T +PY )

−1

3.2 Simulation Results: Case of a Small
Scale Map

A simulation-based analysis of the EKF algo-
rithm for the SLAM method is realised in this Sec-
tion. We aim to show the robot’s behaviour while
tracking a defined way through the EKF SLAM al-
gorithm. We define in this simulation a set of way-
points for the robot to reach. Stationary landmarks
are presented in dots in presence of a squared ob-
stacle. The robot starts to move with a speed of 2
m/s from its initial position defined by (30, 25) and
a initial orientation equal to 0◦.

The trajectory is presented in Figure 2.

All along the trajectory, both real and estimated
robots positions are drawn with triangles and fol-
lowing each other. Every time a landmark is seen,
uncertainty gaussian ellipses are applied around it.

Described features of the map are presented by Fig-
ure 3.

Figure 2. Defined trajectory and landmarks

Figure 3. Real and estimated robots positions are
presented with triangles. All seen landmarks are

surrounded by gaussian ellipses.

Performances of EKF SLAM is evaluated for
two different cases. First, the robot’s perception of
landmarks is limited. Subsequently, only 16 of 54
defined landmarks are seen. The resulted loop is
executed in 27.3 seconds. Figure 4 presents simu-
lation results.

We increase in a second experience the percep-
tion range of the robot sensors. The program be-
comes slower which is justified by taking into ac-
count 36 landmarks. Results of this second case are
shown in Figure 5.
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a length equal to 40960 mm. Te map’s origin is sit-
uated in the coordinate center (20480, 20480). Re-
alized tests on Wifibot lead a great amount of data
which makes very difficult to understand the way
of Core SLAM map’s allocation in the memory.
So, we have limited our experience to test the robot
by proposing 3 different positions around only 100
pixels of the map. These three positions are defined
as follows:

– 1023 × 2048+1023: central position,

– 1000 × 2048+1023: left position,

– 1046 × 2048+1023: right position.

An obstacle is indeed put for the realized test and
situated in the level of the central and left positions.
Figure 7 explains these 3 robot’s positions in pres-
ence of the obstacle.

Simulation display of Core SLAM map is pre-
sented in Figure 8.

Figure 7. Proposed test to obtain a sample of Core
SLAM data

Figure 8. Observed environnement by the robot
though Core SLAM units

We can notice that the robot is already in the
center of the map. White colour is obviously the

space that the robot can see while the grey is an
undefined area in the environment. The obstacle is
clearly situated in front and on the left of the robot.
For previous 3 defined positions, we obtain 3 sets
of values where {0,128,255} are repeated several
times. In figures 9, 10 and 11, we present corre-
sponding values for each position.

Figure 9. Results of Core SLAM simulation for
the robot’s central position

Figure 10. Results of Core SLAM simulation for
the robot’s left position

Figure 11. Results of Core SLAM simulation for
the robot’s right position
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Realized experiences make it easier to read the
map and understand the way how Core SLAM unit
works. As we already know both robot and obsta-
cle’s positions, understanding those values is not a
difficult task and Core SLAM unit is no longer con-
sidered as a black box. We conclude that for values:

– 0 −→ 128: presence of an obstacle,

– 128: undefined state for the robot,

– 128 −→ 255: free space for navigation.

The map is being read from right side to the
left side and from the bottom to the top. The
achieved experience to exploit Core SLAM unit
demonstrates that it is a very useful in robotic map-
ping and localization especially in uncertain envi-
ronment.

Resulted map based from unit experiments is
considered a large scale map. Simulation of EKF
SLAM performances have been realized on these
new dimensions. As the purpose of the EKF is to
predict the robot position, figures 12 and 13 show
real and estimated trajectories respectively compar-
ing to the one resulted from defined waypoints.

Figure 12. Real trajectory

Figure 13. Estimated trajectory

4.3 Evaluation on SLAM Behaviour

As the robot moves, uncertainty increases. Be-
sides, the environnement is considered a large scale
map. Consequently, we experience failure and in-
evitable inconsistency in the EKF SLAM algorithm.
In several works, consistency of the algorithm is
evaluated by checking the difference between the
true state covariance Pk and the estimated state co-
variance Pk|k . If:

Pk|k −Pk ≥ 0

then the filter is consistent. Otherwise, it is not con-
sistent. This method is used when Pk|k and Pk are
available [3]. In our case, it is difficult to know the
covariance state unlike the process model which we
are able to fix both of its real and estimated states.
For that, we consider the Normalized Estimation
Error Squared (NEES) to evaluate the consistency
of SLAM algorithm [20]. with:

NEES = (X̂k −Xk)
T P−1

k (X̂k −Xk)

In order to evaluate the performance of EKF
SLAM, we rely on Monte Carlo simulation tech-
nique. This method is very useful to test estimators
consistency or compare estimators on the basis of
bias and precision.

Thus, we calculate the average NEES for N
runs. The NEES is noted εk and given by equation
3. The average NEES is then presented as follows:

εk =
1
N

N

∑
i=1

εik (3)

Figure 14. Average Normalized Mean Squared
Estimation Error
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a length equal to 40960 mm. Te map’s origin is sit-
uated in the coordinate center (20480, 20480). Re-
alized tests on Wifibot lead a great amount of data
which makes very difficult to understand the way
of Core SLAM map’s allocation in the memory.
So, we have limited our experience to test the robot
by proposing 3 different positions around only 100
pixels of the map. These three positions are defined
as follows:

– 1023 × 2048+1023: central position,

– 1000 × 2048+1023: left position,

– 1046 × 2048+1023: right position.

An obstacle is indeed put for the realized test and
situated in the level of the central and left positions.
Figure 7 explains these 3 robot’s positions in pres-
ence of the obstacle.

Simulation display of Core SLAM map is pre-
sented in Figure 8.

Figure 7. Proposed test to obtain a sample of Core
SLAM data

Figure 8. Observed environnement by the robot
though Core SLAM units

We can notice that the robot is already in the
center of the map. White colour is obviously the

space that the robot can see while the grey is an
undefined area in the environment. The obstacle is
clearly situated in front and on the left of the robot.
For previous 3 defined positions, we obtain 3 sets
of values where {0,128,255} are repeated several
times. In figures 9, 10 and 11, we present corre-
sponding values for each position.

Figure 9. Results of Core SLAM simulation for
the robot’s central position

Figure 10. Results of Core SLAM simulation for
the robot’s left position

Figure 11. Results of Core SLAM simulation for
the robot’s right position
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In Figure 15, we present the heading perfor-
mance during the robot’s navigation. Comparison
between real and estimated headings is considered
a tool for detecting inconsistencies in the behavior
of the EKF SLAM.

Figure 15. Headings uncertainty

The headings’curve is rising with several spikes
which indicate failure of the EKF SLAM. Conse-
quently, we can conclude that at every time, the
heading difference is smaller, the EKF SLAM is
more consistent. In the case of large scale maps,
the algorithm inconsistency is frequent and due to
several elements. It can be caused by observation
time or measurements and process noises as proved
by many studies [1, 3, 9]. To prevent the inflation of
the headings difference and improve the filter per-
formance, optimization techniques are required to
be integrated in the algorithm.

4.4 Consistency Test for EKF SLAM

We present a necessary condition for consis-
tency based on the chi-square distribution test of
a linear gaussian filter. Nεk has a χ2 density with
Ndim(Xk) degrees of freedom. It is primordial to
satisfy for N runs the following condition

εk ∈ [r1,r2]

where r1 and r2 represent limits of the tolerated
probability region. For 100 runs, the 95% probabil-
ity concentration region for εk has to be bounded by
the interval cutting 5% from the upper limit. Rely-
ing on the gaussian table of distribution, the region
can be defined by [0,χ2(0.095)] = [0,5.99].

The obtained result is presented in Figure 16.

Figure 16. Consistency region for SLAM
algorithm

If εk rises higher than the upper bound, the fil-
ter is considered too optimistic and if it tends below
the lower bound, the filter is too conservative or too
pessimistic. In both ways, the filter is counted in-
consistent.

As Figure 16 shows, we conclude that 95% of
the average NEES is found in the tolerance region
for 100 runs. Nevertheless, when observing the
whole curve described by Figure 14, it is clear that
the EKF SLAM algorithm is inconsistent as it rises
in a significant way higher the upper bound value
beyond the iteration 700 besides the presence of an
important spike.

In fact, the inconsistency of EKF SLAM is a
frequent problem especially for large scale maps.
Measurements and observation processes are main
factors besides of existing noisy data.

4.5 Comparison Between EKF SLAM
Consistency for Both Small and Large
Scaled Maps

In order to evaluate more the SLAM algo-
rithm, we realize the consistency test for the case
of the small map. Figure 17 presents the average
NEES for 100 runs. The maximum value doesn’t
rise upper than the tolerance region defined by
[0,χ2(0.095)] = [0,5.99].

Figure 17. Average NEES for a small scaled map
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In the other hand, the orientation uncertainty is
presented in Figure 18. The maximal value of the
orientation difference doesn’t exceed 0.025◦.

Figure 18. Orientation uncertainty for a small
scaled map

The curves show clearly that the filter in this
case is more consistent for longer iterations. As a
result, the robot navigates in a more stable way and
the EKF SLAM will be more performant and ro-
bust.

5 Conclusion

In this paper, we have come to explicit a SLAM
algorithm based on the Extended Kalman Filter. We
have simulated the EKF SLAM on a small scale
map. Then, we have introduced an experimental
method to explore a Core Slam unit package inte-
grated in a mobile robot. The unit in no longer
a black box and its use becomes easier. Obtained
large scale map was subject of evaluating perfor-
mances of SLAM algorithm. Results show that
the proposed method is very useful in tracking a
defined trajectory although the difference between
real and estimated data indicates inaccuracy of the
algorithm. For consistent behaviour, the chi-square
distribution is being used to test the algorithm per-
formance. The average Normalized Estimation Er-
ror Squared besides heading curves show distur-
bances in addition of several spikes. We conclude
that the consistency of the EKF SLAM is unavoid-
able especially in the case of large scale maps. As
a future work, we should consider an optimization
approach to make the SLAM algorithm more con-
sistent and thereafter, to implement it to be tested
on a real mobile robot.
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In Figure 15, we present the heading perfor-
mance during the robot’s navigation. Comparison
between real and estimated headings is considered
a tool for detecting inconsistencies in the behavior
of the EKF SLAM.

Figure 15. Headings uncertainty

The headings’curve is rising with several spikes
which indicate failure of the EKF SLAM. Conse-
quently, we can conclude that at every time, the
heading difference is smaller, the EKF SLAM is
more consistent. In the case of large scale maps,
the algorithm inconsistency is frequent and due to
several elements. It can be caused by observation
time or measurements and process noises as proved
by many studies [1, 3, 9]. To prevent the inflation of
the headings difference and improve the filter per-
formance, optimization techniques are required to
be integrated in the algorithm.

4.4 Consistency Test for EKF SLAM

We present a necessary condition for consis-
tency based on the chi-square distribution test of
a linear gaussian filter. Nεk has a χ2 density with
Ndim(Xk) degrees of freedom. It is primordial to
satisfy for N runs the following condition

εk ∈ [r1,r2]

where r1 and r2 represent limits of the tolerated
probability region. For 100 runs, the 95% probabil-
ity concentration region for εk has to be bounded by
the interval cutting 5% from the upper limit. Rely-
ing on the gaussian table of distribution, the region
can be defined by [0,χ2(0.095)] = [0,5.99].

The obtained result is presented in Figure 16.

Figure 16. Consistency region for SLAM
algorithm

If εk rises higher than the upper bound, the fil-
ter is considered too optimistic and if it tends below
the lower bound, the filter is too conservative or too
pessimistic. In both ways, the filter is counted in-
consistent.

As Figure 16 shows, we conclude that 95% of
the average NEES is found in the tolerance region
for 100 runs. Nevertheless, when observing the
whole curve described by Figure 14, it is clear that
the EKF SLAM algorithm is inconsistent as it rises
in a significant way higher the upper bound value
beyond the iteration 700 besides the presence of an
important spike.

In fact, the inconsistency of EKF SLAM is a
frequent problem especially for large scale maps.
Measurements and observation processes are main
factors besides of existing noisy data.

4.5 Comparison Between EKF SLAM
Consistency for Both Small and Large
Scaled Maps

In order to evaluate more the SLAM algo-
rithm, we realize the consistency test for the case
of the small map. Figure 17 presents the average
NEES for 100 runs. The maximum value doesn’t
rise upper than the tolerance region defined by
[0,χ2(0.095)] = [0,5.99].

Figure 17. Average NEES for a small scaled map
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In the other hand, the orientation uncertainty is
presented in Figure 18. The maximal value of the
orientation difference doesn’t exceed 0.025◦.

Figure 18. Orientation uncertainty for a small
scaled map

The curves show clearly that the filter in this
case is more consistent for longer iterations. As a
result, the robot navigates in a more stable way and
the EKF SLAM will be more performant and ro-
bust.

5 Conclusion

In this paper, we have come to explicit a SLAM
algorithm based on the Extended Kalman Filter. We
have simulated the EKF SLAM on a small scale
map. Then, we have introduced an experimental
method to explore a Core Slam unit package inte-
grated in a mobile robot. The unit in no longer
a black box and its use becomes easier. Obtained
large scale map was subject of evaluating perfor-
mances of SLAM algorithm. Results show that
the proposed method is very useful in tracking a
defined trajectory although the difference between
real and estimated data indicates inaccuracy of the
algorithm. For consistent behaviour, the chi-square
distribution is being used to test the algorithm per-
formance. The average Normalized Estimation Er-
ror Squared besides heading curves show distur-
bances in addition of several spikes. We conclude
that the consistency of the EKF SLAM is unavoid-
able especially in the case of large scale maps. As
a future work, we should consider an optimization
approach to make the SLAM algorithm more con-
sistent and thereafter, to implement it to be tested
on a real mobile robot.
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