
JAISCR, 2018, Vol. 8, No. 2, pp. 133

LEARNING STRUCTURES OF CONCEPTUAL MODELS
FROM OBSERVED DYNAMICS USING EVOLUTIONARY

ECHO STATE NETWORKS

Hassan Abdelbari and Kamran Shafi

1School of Engineering and Information Technology,
University of New South Wales at Canberra,

Northcott Drive, Campbell, ACT, 2600, Australia,
Email: hassan.abdelbari@student.adfa.edu.au, k.shafi@adfa.edu.au

Submitted: 4th March 2017; Accepted: 29th March 2017

Abstract

Conceptual or explanatory models are a key element in the process of complex system
modelling. They not only provide an intuitive way for modellers to comprehend and
scope the complex phenomena under investigation through an abstract representation but
also pave the way for the later development of detailed and higher-resolution simulation
models. An evolutionary echo state network-based method for supporting the develop-
ment of such models, which can help to expedite the generation of alternative models for
explaining the underlying phenomena and potentially reduce the manual effort required,
is proposed. It relies on a customised echo state neural network for learning sparse con-
ceptual model representations from the observed data. In this paper, three evolutionary
algorithms, a genetic algorithm, differential evolution and particle swarm optimisation are
applied to optimize the network design in order to improve model learning. The proposed
methodology is tested on four examples of problems that represent complex system mod-
els in the economic, ecological and physical domains. The empirical analysis shows that
the proposed technique can learn models which are both sparse and effective for generat-
ing the output that matches the observed behaviour.
Keywords: Complex systems modelling, Conceptual models, Causal loop diagrams,
Computational intelligence, Echo state networks, Evolutionary algorithms

1 Introduction

Many approaches for modelling a complex sys-
tem involve developing high-level conceptual mod-
els, also referred to as mental or explanatory, as an
initial step in the modelling process in order to map
the interdependencies among the system’s compo-
nents. Such models often work as intermediate rep-
resentations which lead to the development of final
detailed models that, in turn, can be used to develop
simulations that mimic the system’s behaviour; for
instance, in system dynamics (SD) modelling [1],

the conceptual modelling step is represented using
causal loop diagrams (CLDs) which are later con-
verted into stock and flow diagrams (SFDs) to build
a SD simulation. Similarly, in agent-based mod-
elling (ABM), a unified modelling language (UML)
is commonly used as an initial step toward imple-
menting the behaviours of the agents [2].

There are several representations for developing
conceptual models, including CLDs [1], influence
diagrams [3], the business process modelling no-
tation (BPMN) [4], event graphs [5], process flow
diagrams [6], simulation activity diagrams [7] and

 10.1515/jaiscr-2018-0010
 – 154

134 Hassan Abdelbari, Kamran Shafi

UML, to name a few. Choosing an appropriate one
depends mainly on the modelling approach used. In
particular, CLDs are considered powerful tools for
developing such models due to their capability to
represent visual hypotheses about the dynamics of
a systems using feedback loops and time delays.

However, as the process for building these con-
ceptual models is generally very manual, it in-
volves intensive amount of time, effort and human
resources. Although there is no easy alternative
to process, recent advances in computational intel-
ligence and machine learning techniques provide
promising means of ameliorating some of the te-
dious tasks, including data analysis, knowledge ex-
traction, model generation, and the testing of a large
number of models in a short time [8–10]. In ad-
dition to saving on resources, integrating such ap-
proaches for modelling support can help to comple-
ment human cognitive abilities that have proven to
have limitations when dealing with large amounts
of data and exploring large model spaces [11].

In a recent work, the authors investigated using
of echo state networks (ESNs) [12] to learn CLD-
like models [13] by training the network on obser-
vational data. Our basic motivation for exploring
the use of ESNs for this purpose emanated from
observing a number of similarities between the ar-
chitectures of an ESN reservoir (see Section 2.2
for details) and a CLD, such as the use of nodes,
directed connections with polarities and feedback
loops. Extensive experimentation using a number
of variants of ESNs for several case studies showed
that an ESN can be adopted to learn matching CLD-
like structures from the given data representing a
system’s output behaviour. In a sense, this enables
simulations of learned causal models and the gen-
eration of system behaviour. This additional fea-
ture is quite useful as it allows the accuracy of a
learned conceptual model to be tested at an early
stage without the need to convert it into a full-scale
simulation. To achieve the above, several modifica-
tions to the standard ESN architecture, including re-
moving a number of links between different layers
that only contribute to network complexity rather
than improve the learning performance, restricting
the number of ESN reservoir neurons used accord-
ing to the number of system variables and reducing
the output nodes to the number of output variables,
have been proposed.

The work presented in this paper builds on the
above studies and explores the use of different evo-
lutionary algorithms (EAs) to further optimize the
design of an ESN in order to improve its learning
performance in terms of matching both the struc-
ture and output of the target model. Three differ-
ent evolutionary optimisation methods, a genetic al-
gorithm (GA) [14], differential evolution (DE) [15]
and particle swarm optimisation (PSO) [16], are ap-
plied to optimize the design of an ESN’s parame-
ters and weights. A fitness function that takes into
account both the model’s complexity and its out-
put error as well as a varying penalty term for han-
dling infeasible solutions are designed (see Section
3.2.2 for details). The evolutionary ESN method-
ology for learning sparse and interpretable models
is tested on four problems that represent examples
of complex system models selected from different
business, ecological and physical domains. They
have varying degrees of structural and output com-
plexity to demonstrate the domain-independence of
the applied approach.

A thorough analysis of the experimental re-
sults highlights the trade-off between the output
and structural errors of the learned models as well
as convergence properties of the evolutionary pro-
cess. This empirical analysis demonstrates that
the evolved ESNs perform better than conventional
non-evolutionary ones in terms of matching both
the target model’s structure and observed behaviour.

Overall, this work relates to the broader field of
model learning and identification for complex sys-
tems. It includes a large body of research focus-
ing mainly on representing complex system dynam-
ics as mathematical relationships, such as ordinary
differential equations [17], partial differential equa-
tions [18] and difference equations [19]. These ap-
proaches are most commonly applied in the engi-
neering and physical science domains [20]. Gen-
erally, mathematical modelling approaches rely on
making a number of assumptions and simplifica-
tions that can significantly affect a model’s fidelity
and adopting complex functional forms that limit
their capbility to provide a logical explanation of
a system’s behaviour. Computational or machine
learning-based approaches, such as artificial neu-
ral networks [21], evolutionary computation [22]
and fuzzy systems [23], rely on direct model learn-
ing from system observations. Generally, they are

135LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

quite powerful in terms of their capability to model
complex and non-linear behaviours. However, their
learned models are often black box and have low in-
terpretability. Other more process-based or system-
atic approaches, such as SD and ABM, involve sev-
eral modelling steps and rely on subject matter ex-
perts being heavily involved in studying the under-
lying system, collecting relevant data, identifying
the system variables and so on. Such approaches
often produce highly interpretable and logical mod-
els but can be quite resource intensive in terms of
both time and effort. They are also more prone to
subjective bias and judgmental error due to their na-
ture. Our proposed approach is essentially compu-
tational but could be positioned to complement both
human input into the development process for mod-
els and black box models.

The rest of this paper is organised as follows:
Section 2 provides the necessary background in-
formation on conceptual models and ESNs. Sec-
tion 3 describes the proposed methodology applied
to learn conceptual models. Section 4 discusses
the experimental settings and examples of the com-
plex system models used to evaluate the proposed
methodology. Section 5 presents and analyses the
empirical results, and Section 6 concludes the pa-
per.

2 Background

2.1 Conceptual Models

Conceptual models are defined as high-level ab-
stract representations of a real-world system or phe-
nomenon developed by domain experts that cap-
ture system components and their interrelationships
[24]. A typical one consists of two main compo-
nents: system variables; and links between those
that represent a certain type of relationship. Con-
ceptual models can be represented in different ways
(e.g., CLDs, UMLs, influence diagrams). Specifi-
cally, a CLD [25] is a formal method for represent-
ing conceptual models and is commonly used in SD
modelling approach. It describes the relationships
among system variables as directed links with neg-
ative or positive polarities that indicate direct or rel-
ative causal changes between two variables, respec-
tively. A feedback loop in a CLD refers to a closed
chain of causal relationships and delays. In general,
conceptual models and, in particular, CLDs, cannot

be simulated directly but need to be converted to a
formal model to run a simulation and generate sys-
tem behaviour.

An example of a conceptual model represented
as a CLD is shown in Figure 1, where skills level
and earned income are examples of systems vari-
ables, the connection between transportation net-
work and drivers of economy a causal link and
the connection between educational level and skills
level a feedback loop. This model describes a re-
gional development system in the Atlantic region in
Canada where the education level and diversifica-
tion of economy are the main driving forces affect-
ing its system [26]. It shows that the relationship
between diversification of economy and economic
prosperity, indicating that the system should reject a
mono-industrial economy and encourage other sec-
tors, such as education, and innovations in technol-
ogy. On the other hand, the relationship between
educational level and population retention shows
that an increase in the former decreases the later as
young workers tend to immigrate to main cities.

Figure 1. Conceptual model represented as CLD

2.2 Echo State Networks (ESNs)

An ESN is a special type of recurrent neural
network (RNN) with cycles and feedback loops in
the connections among its different network layers
in contrast to the feedforward neural network that
has direct connections from each layer to the next
without any cycle or feedback. These cycles enable
RNNs to more naturally model temporal data and
non-linear dynamical systems [27].

A typical ESN consists of three layers: input;
hidden (dynamic reservoir); and output. An ex-
ample of an ESN standard architecture with input

Hassan Abdelbari, Kamran Shafi

UML, to name a few. Choosing an appropriate one
depends mainly on the modelling approach used. In
particular, CLDs are considered powerful tools for
developing such models due to their capability to
represent visual hypotheses about the dynamics of
a systems using feedback loops and time delays.

However, as the process for building these con-
ceptual models is generally very manual, it in-
volves intensive amount of time, effort and human
resources. Although there is no easy alternative
to process, recent advances in computational intel-
ligence and machine learning techniques provide
promising means of ameliorating some of the te-
dious tasks, including data analysis, knowledge ex-
traction, model generation, and the testing of a large
number of models in a short time [8–10]. In ad-
dition to saving on resources, integrating such ap-
proaches for modelling support can help to comple-
ment human cognitive abilities that have proven to
have limitations when dealing with large amounts
of data and exploring large model spaces [11].

In a recent work, the authors investigated using
of echo state networks (ESNs) [12] to learn CLD-
like models [13] by training the network on obser-
vational data. Our basic motivation for exploring
the use of ESNs for this purpose emanated from
observing a number of similarities between the ar-
chitectures of an ESN reservoir (see Section 2.2
for details) and a CLD, such as the use of nodes,
directed connections with polarities and feedback
loops. Extensive experimentation using a number
of variants of ESNs for several case studies showed
that an ESN can be adopted to learn matching CLD-
like structures from the given data representing a
system’s output behaviour. In a sense, this enables
simulations of learned causal models and the gen-
eration of system behaviour. This additional fea-
ture is quite useful as it allows the accuracy of a
learned conceptual model to be tested at an early
stage without the need to convert it into a full-scale
simulation. To achieve the above, several modifica-
tions to the standard ESN architecture, including re-
moving a number of links between different layers
that only contribute to network complexity rather
than improve the learning performance, restricting
the number of ESN reservoir neurons used accord-
ing to the number of system variables and reducing
the output nodes to the number of output variables,
have been proposed.

The work presented in this paper builds on the
above studies and explores the use of different evo-
lutionary algorithms (EAs) to further optimize the
design of an ESN in order to improve its learning
performance in terms of matching both the struc-
ture and output of the target model. Three differ-
ent evolutionary optimisation methods, a genetic al-
gorithm (GA) [14], differential evolution (DE) [15]
and particle swarm optimisation (PSO) [16], are ap-
plied to optimize the design of an ESN’s parame-
ters and weights. A fitness function that takes into
account both the model’s complexity and its out-
put error as well as a varying penalty term for han-
dling infeasible solutions are designed (see Section
3.2.2 for details). The evolutionary ESN method-
ology for learning sparse and interpretable models
is tested on four problems that represent examples
of complex system models selected from different
business, ecological and physical domains. They
have varying degrees of structural and output com-
plexity to demonstrate the domain-independence of
the applied approach.

A thorough analysis of the experimental re-
sults highlights the trade-off between the output
and structural errors of the learned models as well
as convergence properties of the evolutionary pro-
cess. This empirical analysis demonstrates that
the evolved ESNs perform better than conventional
non-evolutionary ones in terms of matching both
the target model’s structure and observed behaviour.

Overall, this work relates to the broader field of
model learning and identification for complex sys-
tems. It includes a large body of research focus-
ing mainly on representing complex system dynam-
ics as mathematical relationships, such as ordinary
differential equations [17], partial differential equa-
tions [18] and difference equations [19]. These ap-
proaches are most commonly applied in the engi-
neering and physical science domains [20]. Gen-
erally, mathematical modelling approaches rely on
making a number of assumptions and simplifica-
tions that can significantly affect a model’s fidelity
and adopting complex functional forms that limit
their capbility to provide a logical explanation of
a system’s behaviour. Computational or machine
learning-based approaches, such as artificial neu-
ral networks [21], evolutionary computation [22]
and fuzzy systems [23], rely on direct model learn-
ing from system observations. Generally, they are

136 Hassan Abdelbari, Kamran Shafi

layer of size K, dynamic reservoir of size N and
output layer of size L is shown in Figure 2. The
input layer is connected to the dynamic reservoir,
and could be connected to the output layer, through
the input weight matrix Win ∈ RN×K . The dynamic
reservoir’s neurons are connected with each other
through the reservoir weight matrix W ∈ RN×N and
also to the output layer through the output weight
matrix Wout ∈ RL×(N+K). Finally, the output layer
could be connected to the reservoir layer through
the feedback weight matrix Wback ∈ RN×L [12].

The main difference between ESNs and RNNs
resides in their design and training procedures. In
a typical RNN, although all the weights are ad-
justed during training, due to its feedback loops
and cycles, the training suffers from problems such
as poor convergence and computationally expensive
parameters updates [28].

The power of an ESN lies in its straightforward
design and training procedure for network weights
all of which, except Wout , are fixed with only Wout

trained using a relatively simple procedure. Both
Win and Wback are initialised randomly with a scale
value of δ and W designed using a few steps to
ensure that the network maintains an echo state
property. This property ensures that, if the net-
work runs for a very long time, its state will be
uniquely identified by its historical input/output sig-
nals and, if a new input signal is presented to it, it
will be capable of generating a suitable correspond-
ing output one [29]. Mathematically, the echo state
property is connected to the algebraic properties of
W , the spectral radius of which should not exceed
unity [30], and can be defined as follows:

Definition 2.1. Echo State Property. An ESN net-
work N : X×U −→ X has an echo state property
with respect to the input signals set U if, for any
left infinite input sequence u−∞ ∈U−∞ and any two
state vector sequences belonging to network state’s
set X x−∞,y−∞ ∈ X−∞ and compatible with u−∞, it
holds that x0 = y0.

In order to design W to have this property, a
weight matrix W0 is generated randomly ∈ [−1,1]
with a given connectivity probability parameter ρ.
Then, the maximum eigenvalue of W0 is calculated
and W0 divided by this value to build a weight ma-
trix W1 which, finally, is multiplied by a chosen
value called spectral radius α ∈ [0,1[. After initial-
ising all network weights, except the output ones,

the network reservoir states are updated according
to the following equation

x(t +1) = (1− γ)x(t)+ γ f (Winu(t +1)+

Wx(t)+Wbacky(t)),
(1)

where x(t + 1) and x(t) refer to the activation val-
ues of the reservoir’s neurons at times t + 1 and t,
respectively, where all initial values of the reser-
voir’s neurons are set to zero, u(t + 1) the external
input signal at time t + 1, y(t) the network output
at time t, f (.) the activation function which could
be sigmoid or tanh and γ the leaking rate parameter
which controls the speed of the reservoir’s dynam-
ics [31]. This equation is applied for the number of
steps equal to the size of the training data set and the
reservoir’s neuron states are collected in a matrix
M, before which their first initial states are ignored.
The number of these discarded steps is called the
washout size.

After collecting the reservoir states in matrix M,
the output weights are trained by a straightforward
step as

Wout = M−1Y target , (2)

where Ytarget is the desired output from the train-
ing data set and M−1 the morse-pseudo inverse for
states matrix M.

After determining the output weights, the net-
work’s output is calculated as

y(t) = f (x(t)Wout), (3)

where y(t) is the output at time t and f () the activa-
tion function that could be sigmoid, tanh or linear.

Figure 2. Standard ESN architecture

137LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

3 Learning Conceptual Models Us-
ing Evolutionary Echo State Net-
works

The proposed methodology for learning con-
ceptual models from observable outputs involves
three main steps: customising an ESN so that its
reservoir can be used to represent conceptual mod-
els; optimising as ESN’s design parameters using
the given EAs; and evaluating the learned models.
Figure 3 depicts the overall process for model learn-
ing. The data collection step involves identifying
the key system variables from the system of inter-
est and is the only, and critical, input required to
encode the ESN. A customised ESN is set up us-
ing the given number of system variables with an
EA employed to search for the design parameters
of this ESN that learn by minimising the error with
the target outputs collected from system observa-
tions. Finally, the structural error of the best model
learned is computed by comparing it with a known
or expert-driven one. Note that a known model
structure is not used to train the network but only
to evaluate the goodness of the model learned by
the ESN. The process of customising the ESN and
evolving its design using EAs is further elaborated
below.

Figure 3. Overview of conceptual model learning
process using evolutionary ESNs

3.1 ESN Modifications

Several ESN variants based on different net-
work architectures were recently investigated [13]
and their performances in terms of learning tar-
get causal models and outputs were compared with
those of the standard ESN. In summary, the exten-
sive empirical analysis conducted in the above work

showed that, under given assumptions (as discussed
below), an ESN encoded with the same number of
reservoir nodes as the number of system variables
and same number of I/O nodes as the number of ob-
servable output system variables is not only able to
produce the target output’s behaviour but also learn
sparse causal models closely match the target mod-
els structurally. The dynamic reservoir neurons are
also labelled implicitly with the names of the sys-
tem variables using an adjacency matrix conven-
tion. While ESN learning does not take into ac-
count any semantic information between variables,
using such labelling allows us to impose this associ-
ation indirectly and also use it to evaluate the close-
ness of the resultant models to the target CLD struc-
ture. This relates to our main assumption in adopt-
ing ESNs to represent causal structures, that is, the
inclusiveness of system variables provided by the
modeller are the only, and complete, set of variables
that define the observed behaviour. This assumption
is important for preserving the implicit mapping im-
posed in our setup between system variables and
network nodes, as explained above. It could be seen
as forcing the network to overfit the data using the
given number of variables. However, it should note
that our goal is to learn the most plausible struc-
tures and not predict future values. Nonetheless,
we use the standard cross-validation process to train
the network which shows that the generalisation is
maintained and the error is minimised over the test
data.

Other modifications include the removal of di-
rect links between the input and output neurons,
output neurons to reservoir and self connections of
the reservoir neurons. Most of these extra connec-
tions are considered optional and only marginally
improve the network’s performance, if at all. On the
other hand, they considerably complicate the archi-
tecture and hinder the learning of a sparse model.
Figure 4 shows the standard ESN and a customised
one that represents the conceptual model example
shown in Figure 4(b).

We build on these modifications and employ
EAs to further tune the design of our customised
ESN in order to improve its performance.

Hassan Abdelbari, Kamran Shafi

layer of size K, dynamic reservoir of size N and
output layer of size L is shown in Figure 2. The
input layer is connected to the dynamic reservoir,
and could be connected to the output layer, through
the input weight matrix Win ∈ RN×K . The dynamic
reservoir’s neurons are connected with each other
through the reservoir weight matrix W ∈ RN×N and
also to the output layer through the output weight
matrix Wout ∈ RL×(N+K). Finally, the output layer
could be connected to the reservoir layer through
the feedback weight matrix Wback ∈ RN×L [12].

The main difference between ESNs and RNNs
resides in their design and training procedures. In
a typical RNN, although all the weights are ad-
justed during training, due to its feedback loops
and cycles, the training suffers from problems such
as poor convergence and computationally expensive
parameters updates [28].

The power of an ESN lies in its straightforward
design and training procedure for network weights
all of which, except Wout , are fixed with only Wout

trained using a relatively simple procedure. Both
Win and Wback are initialised randomly with a scale
value of δ and W designed using a few steps to
ensure that the network maintains an echo state
property. This property ensures that, if the net-
work runs for a very long time, its state will be
uniquely identified by its historical input/output sig-
nals and, if a new input signal is presented to it, it
will be capable of generating a suitable correspond-
ing output one [29]. Mathematically, the echo state
property is connected to the algebraic properties of
W , the spectral radius of which should not exceed
unity [30], and can be defined as follows:

Definition 2.1. Echo State Property. An ESN net-
work N : X×U −→ X has an echo state property
with respect to the input signals set U if, for any
left infinite input sequence u−∞ ∈U−∞ and any two
state vector sequences belonging to network state’s
set X x−∞,y−∞ ∈ X−∞ and compatible with u−∞, it
holds that x0 = y0.

In order to design W to have this property, a
weight matrix W0 is generated randomly ∈ [−1,1]
with a given connectivity probability parameter ρ.
Then, the maximum eigenvalue of W0 is calculated
and W0 divided by this value to build a weight ma-
trix W1 which, finally, is multiplied by a chosen
value called spectral radius α ∈ [0,1[. After initial-
ising all network weights, except the output ones,

the network reservoir states are updated according
to the following equation

x(t +1) = (1− γ)x(t)+ γ f (Winu(t +1)+

Wx(t)+Wbacky(t)),
(1)

where x(t + 1) and x(t) refer to the activation val-
ues of the reservoir’s neurons at times t + 1 and t,
respectively, where all initial values of the reser-
voir’s neurons are set to zero, u(t + 1) the external
input signal at time t + 1, y(t) the network output
at time t, f (.) the activation function which could
be sigmoid or tanh and γ the leaking rate parameter
which controls the speed of the reservoir’s dynam-
ics [31]. This equation is applied for the number of
steps equal to the size of the training data set and the
reservoir’s neuron states are collected in a matrix
M, before which their first initial states are ignored.
The number of these discarded steps is called the
washout size.

After collecting the reservoir states in matrix M,
the output weights are trained by a straightforward
step as

Wout = M−1Y target , (2)

where Ytarget is the desired output from the train-
ing data set and M−1 the morse-pseudo inverse for
states matrix M.

After determining the output weights, the net-
work’s output is calculated as

y(t) = f (x(t)Wout), (3)

where y(t) is the output at time t and f () the activa-
tion function that could be sigmoid, tanh or linear.

Figure 2. Standard ESN architecture

138 Hassan Abdelbari, Kamran Shafi

(a) Standard ESN architecture

(b) Example of concaptual model

(c) Customised ESN

Figure 4. Illustrative example of standard and
customised ESN structures

3.2 Optimising ESN Design Parameters
and Weights

ESNs have two sets of parameters that need to
be identified, a weights set Sw and design parame-
ters set Sd as

Sw = {Win,W,Wback},
Sd = {α,δ,γ,ρ,N},

(4)

where Win is input weights matrix, W the reservoir
weights matrix, Wback the feedback weights matrix,
α the spectral radius of W , ρ the connectivity prob-
ability of W , δ the scale of weights for both Win and
Wback, γ the leaking rate used in the update equation
for the network states and N the size of the dynamic
reservoir neurons.

Since the training of network Wout is straightfor-
ward and fast, its design parameters can be found
by trying different parameter combinations in Sd
and training the network for each given large N
value that can range from hundreds to thousands of
neurons [31]. The method for doing this could be
challenging and requires experience in tuning de-
spite the guidance provided by researchers [28,31].
Identifying ESN design parameters could be formu-
lated as a search problem whereby an ESN model
that minimises the error between the outputs from
the target system and model is sought. Intelligent
search methods, such as EAs can be used for this
task.

EAs are population-based algorithms developed
according to the concepts of natural selection and
fitness-based survival. They are commonly used
for difficult optimisation problems whereby a set,
or population, of solutions is evolved iteratively by
applying selection and recombination operators and
generating new solutions in each step.

In recent years, several works in the literature
proposed optimising an ESN design using EAs.
They focused on optimising different features of an
ESN architecture, including its weights [32], topol-
ogy [33], design parameters [34] or combinations
of them [35]. Applying EAs to optimize ESN de-
signs have shown to produce better network perfor-
mances than those with recommended settings [36].

In this work, three well-known EAs, a GA, DE
and PSO are employed to optimize an ESN’s design
parameters (as discussed above), input weights Win

and reservoir weights W . The following Sections
provide details for the encoding scheme and fitness
evaluation mechanism used in our implementation
of these three algorithms to tune an ESN.

3.2.1 Encoding

Consider a customised ESN with N reservoir
neurons, K neurons for the input layer, and L neu-
rons for the output layer where N is equal to the

139LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

number of system variables and K and L to the sys-
tem’s observable output variables (Figure 4). The
numbers of input weights in Win matrix, reservoir
weights in W matrix and design parameters are
N×K, N×K and 4, respectively. A solution is de-
scribed by an M real-coded values vector (flat) rep-
resentation, where M = 4+N×K+N×N. The first
four genes represents the design parameters α, δ, γ
and ρ, respectively which are initialised uniformly
randomly from [0,1]. The next N×K and N×N
genes represent the input and reservoir weights, re-
spectively which are initialised uniformly randomly
from [−1,1]; for example, for a network with 2 in-
put neurons and 10 reservoir ones, the total length
M is 124 (sum of 4, 20 and 100 real-coded values
for the design parameters, input weights and reser-
voir weights, respectively).

3.2.2 Fitness Evaluation

The objective function is designed to minimise
two terms: the error (ε) between the observed sys-
tem output and trained ESN output measured as
the normalised root mean square error (NRMSE)
[29]; and the density of the learned model deter-
mined in this work by the ESN’s reservoir connec-
tivity probability (ρ). ρ is used as a surrogate mea-
sure of structural similarity of the learned and tar-
get models as the structure of the later is consid-
ered unknown in the learning process. The moti-
vation for using ρ comes from the observation that
most expert-developed conceptual models are quite
sparse. On the other hand, final trained ESNs tend
to be very dense. Introducing the minimisation of ρ
in the fitness function enables the selection pressure
to be increased to learn sparse yet accurate mod-
els. A simple mean weighted sum method is used
to combine these two terms into the objective func-
tion as

O =
w1ε+w2ρ

2
, (5)

where w1 and w2 ∈ [0,1] refer to the weights as-
signed to each of the two error terms, respectively.
Later, in the experimental Section, we conduct a
sensitivity analysis to determine the best combina-
tion of weights. The output error (ε), measured as
the NRMSE, is computed as

ε(ys,ye) =

√
∑T

n=1(ys(n)− ye(n))2

T σ2
ys

, (6)

where ys(n) refers to the target system’s output,
ye(n) the output generated from the learned model,
T the length of the target’s output test sequence and
σ2

ys
the variance of the target’s output.

As previously mentioned, all the ESN design
parameters are generated randomly from a uniform
distribution in the [0,1] range. Therefore, ρ is
already bounded while the ε value is unbounded
[0,∞]. In order to bound the ε value to be within
[0,1] and avoid any bias in the fitness caused by this
unbounded value, we apply the following rule

ε(ys,ye) =

{
1 if ε(ys,ye)> 1
ε(ys,ye) otherwise.

(7)

3.2.3 Handling of Infeasible Solutions

Since the reservoir connections are randomly
initialised based on a given ρ value, there is a pos-
sibility that some of the solutions in the population
result in disconnected networks. A solution is con-
sidered feasible if the learned structure is at least
weakly connected.

In order to define the connectivity of the
learned model, we use the definition of connectiv-
ity for directed graphs form graph theory [37] since
the learned models could be considered directed
graphs. An undirected graph G = (V,E) consists of
two sets, vertices or nodes V and edges E. G is con-
sidered directed if all its edges are directed and is
called Gd (Figure 5(a)). A directed edge is an edge
with one of its endpoints designed as a head and the
other as a tail. Gd could be disconnected (Figure
5(b)), strongly connected (Figure 5(c)) or weakly
connected (Figure 5(d)). It is strongly connected
if there is a path between every pair of vertices in
V . On the other hand, it is weakly connected if the
underlying undirected graph (G) is connected, that
is, if it can be traversed using a search algorithm,
such as the depth first search [38], every vertex in
it is visited. Since we search for models with small
connectivity parameter ρ values, weak connectivity
will be sufficient to ensure they are connected.

Hassan Abdelbari, Kamran Shafi

(a) Standard ESN architecture

(b) Example of concaptual model

(c) Customised ESN

Figure 4. Illustrative example of standard and
customised ESN structures

3.2 Optimising ESN Design Parameters
and Weights

ESNs have two sets of parameters that need to
be identified, a weights set Sw and design parame-
ters set Sd as

Sw = {Win,W,Wback},
Sd = {α,δ,γ,ρ,N},

(4)

where Win is input weights matrix, W the reservoir
weights matrix, Wback the feedback weights matrix,
α the spectral radius of W , ρ the connectivity prob-
ability of W , δ the scale of weights for both Win and
Wback, γ the leaking rate used in the update equation
for the network states and N the size of the dynamic
reservoir neurons.

Since the training of network Wout is straightfor-
ward and fast, its design parameters can be found
by trying different parameter combinations in Sd
and training the network for each given large N
value that can range from hundreds to thousands of
neurons [31]. The method for doing this could be
challenging and requires experience in tuning de-
spite the guidance provided by researchers [28,31].
Identifying ESN design parameters could be formu-
lated as a search problem whereby an ESN model
that minimises the error between the outputs from
the target system and model is sought. Intelligent
search methods, such as EAs can be used for this
task.

EAs are population-based algorithms developed
according to the concepts of natural selection and
fitness-based survival. They are commonly used
for difficult optimisation problems whereby a set,
or population, of solutions is evolved iteratively by
applying selection and recombination operators and
generating new solutions in each step.

In recent years, several works in the literature
proposed optimising an ESN design using EAs.
They focused on optimising different features of an
ESN architecture, including its weights [32], topol-
ogy [33], design parameters [34] or combinations
of them [35]. Applying EAs to optimize ESN de-
signs have shown to produce better network perfor-
mances than those with recommended settings [36].

In this work, three well-known EAs, a GA, DE
and PSO are employed to optimize an ESN’s design
parameters (as discussed above), input weights Win

and reservoir weights W . The following Sections
provide details for the encoding scheme and fitness
evaluation mechanism used in our implementation
of these three algorithms to tune an ESN.

3.2.1 Encoding

Consider a customised ESN with N reservoir
neurons, K neurons for the input layer, and L neu-
rons for the output layer where N is equal to the

140 Hassan Abdelbari, Kamran Shafi

(a) Directed graph (b) Disconnected

(c) Strongly connected (d) Weakly connected

Figure 5. Types of connectivity for directed graph.

Several approaches for handling infeasible so-
lutions generated during an evolutionary search are
proposed [39]. We adopt the method of adding a
varying penalty term to the fitness function. As this
method does not discard every infeasible solution in
earlier generations of the evolution, it allows poten-
tially useful genetic material into better solutions.
However, the penalty term increases as the search
progresses (as the number of generations increase)
to prevent infeasible solutions taking over the space
for feasible solutions in the population [40].

The varying penalty term for each solution is
calculated as

Pv = [(
g
G

A).d +
g
G

B].v, (8)

where Pv refers to the varying penalty function, g
the current generation, G the maximum number of
generations, A the severity factor, B the penalty
threshold factor, d the level or severity of a violation
and v a binary value that indicates if the solution is
infeasible or not and is calculated for a solution with
structure S and output error ε(S) as

v =

{
1 if S is disconnected or ε(S)> 1,
0 otherwise.

(9)

The number of violations (d) for each solution
with structure S and output error ε(S) is calculated
as

d =





2 if S is disconnected and ε(S)> 1,
1 if S is disconnected or ε(S)> 1,
0 otherwise.

(10)

By combining terms in both equations 5 and 8,
the fitness function is calculated as

F = O+Pv. (11)

3.3 Measuring Model Similarity

A model similarity metric is used to measure
the structure resemblance between the learned and
target models. It is not used in the learning pro-
cess since the target system’s conceptual model is
considered unknown and the goal is to learn it us-
ing only the system’s observable output. There
are several approaches proposed in the literature
for comparing conceptual conceptual models based
on some features, such as number of variables,
causal links and feedback loops. In this paper, we
adopt a measure called the distance ratio (DR) [41]
which measures the distance between two concep-
tual models. It uses the information of the number
of nodes and causal links, and their directions rep-
resented in an associated adjacency matrix. Since
both target and learned models share the same in-
formation, we can apply it to measure model simi-
larity. The structure error (ψ), measured using DR,
is calculated as

ψ =
∑p

i=1 ∑p
j=1 |ai j −bi j|

2(p2 − p)
, (12)

where ai j and bi j are the cell indices in the adja-
cency matrices representing the target and learned
models, respectively. Both ai j and bi j can have a
value of one or zero which indicates if there is a
link, or not, between nodes i and j, respectively,
in their corresponding adjacency matrices. The to-
tal number of system variables, (p), is the same for
both models. Simply, ψ ∈ [0,1] provides the aver-
age number of differences between the two struc-
tures normalised over all possible links and indi-
cates their closeness, with lower values indicating
greater similarity.

141LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

4 Experimental Setup

The effectiveness of our methodology was eval-
uated using four examples of complex systems
taken from different domains, one from each of
economics and ecology and two from physical sys-
tems. These examples are considered because they
all have well-developed conceptual models related
to their different system variables and how they be-
have. The target outputs for all four examples are
generated through simulating their SD simulation
models [1]. For all examples, we implement our
own simulation that involved solving model equa-
tions using the Euler method. Each of these systems
and their conceptual model structures are explained
in the Sections below. All the methods adopted,
including ESNs, EAs and measures for computing
the structural similarity between models, are imple-
mented using Matlab 8.5. The experiments are run
on an Intel core i7 CPU 3.4 GHz, with 16 GB of
RAM and Windows 7 (64 bit) machine.

Table 1. Different weight settings of fitness
function

Weights combination
identifier

Weights’ values

WC1 (w1 = 0.9,w2 = 0.1)
WC2 (w1 = 0.8,w2 = 0.2)
WC3 (w1 = 0.7,w2 = 0.3)
WC4 (w1 = 0.6,w2 = 0.4)
WC5 (w1 = 0.5,w2 = 0.5)
WC6 (w1 = 0.4,w2 = 0.6)
WC7 (w1 = 0.3,w2 = 0.7)
WC8 (w1 = 0.2,w2 = 0.8)
WC9 (w1 = 0.1,w2 = 0.9)

In the experiments, a cross-validation method is
used to train our ESN models. The training data is
collected using the outputs generated through the
simulation models for each system, as described
above. Each data set is normalised to have a zero
mean and unit variance, and is split into two sets,
training and test, using 80%/20% splits. For each
example, GA, DE and PSO, are used to evolve the
customised ESN parameters, as explained in Sec-
tion 3.2. During an experiment, the EA is initialised
by generating random solutions (an initial pop-
ulation) following the encoding schema (Section
3.2.1). A network model is created from each so-
lution and the fitness value calculated using Equa-
tion (11). This initial population is evolved over a

number of generations until the maximum number
of generations is reached, a process repeated for 20
independent runs with different seeds.

Each of the above experiments is repeated with
9 different weight settings (Table 1) to test the sensi-
tivity of the objective weights given in Equation (5).
This provides a total of 27 experiments (9 weight
combinations × 3 EAs) for each example.

For the EAs, a real coded GA [42] is used with a
tournament selection mechanism of size 3, an arith-
metic crossover with a range factor of 0.4 and a ran-
dom uniform mutation with a rate of 0.1. A genera-
tional scheme is used during the evolution whereby
a new population of solutions is generated in ev-
ery iteration with a crossover pecentage of 0.7 and
mutation percentage of 0.3. For DE, we use ran-
dom uniform mutation, bin schema crossover and
greedy selection mechanism proposed in [15]. The
lower and upper bounds of the scaling factor are 0.2
and 0.8, respectively, and the crossover probabil-
ity 0.2. For PSO, a static topology [43] and iner-
tia weight method to update particles’ positions and
velocities [44] are used. The inertia weight is 1, in-
ertia weight damping ration 0.99, personal learning
coefficient 1.5 and global learning coefficient 2.0.
For all algorithms, the population size is 100, max-
imum number of generations 100, number of runs
20, severity factor (A) 1000 and penalty threshold
factor (B) zero.

In order to compare the effectiveness of the evo-
lutionary search, an additional experiment is also
repeated for a customised ESN without applying
evolutionary tuning to its design (ESNbase).

For each example, the results (Section 5) show
the best learned models based on the output error
(lowest ε) and structural error (lowest ψ). These
models and their outputs and compared with the
target outputs and structures, and the best models
learned by the ESNbase. We also present an analysis
of the trade-offs between the learned models’ output
and structural errors as well as convergence analy-
sis. All these results are averaged over 20 indepen-
dent runs, with the best solution selected based on
the minimum fitness value obtained from each run
over all generations.

Hassan Abdelbari, Kamran Shafi

(a) Directed graph (b) Disconnected

(c) Strongly connected (d) Weakly connected

Figure 5. Types of connectivity for directed graph.

Several approaches for handling infeasible so-
lutions generated during an evolutionary search are
proposed [39]. We adopt the method of adding a
varying penalty term to the fitness function. As this
method does not discard every infeasible solution in
earlier generations of the evolution, it allows poten-
tially useful genetic material into better solutions.
However, the penalty term increases as the search
progresses (as the number of generations increase)
to prevent infeasible solutions taking over the space
for feasible solutions in the population [40].

The varying penalty term for each solution is
calculated as

Pv = [(
g
G

A).d +
g
G

B].v, (8)

where Pv refers to the varying penalty function, g
the current generation, G the maximum number of
generations, A the severity factor, B the penalty
threshold factor, d the level or severity of a violation
and v a binary value that indicates if the solution is
infeasible or not and is calculated for a solution with
structure S and output error ε(S) as

v =

{
1 if S is disconnected or ε(S)> 1,
0 otherwise.

(9)

The number of violations (d) for each solution
with structure S and output error ε(S) is calculated
as

d =





2 if S is disconnected and ε(S)> 1,
1 if S is disconnected or ε(S)> 1,
0 otherwise.

(10)

By combining terms in both equations 5 and 8,
the fitness function is calculated as

F = O+Pv. (11)

3.3 Measuring Model Similarity

A model similarity metric is used to measure
the structure resemblance between the learned and
target models. It is not used in the learning pro-
cess since the target system’s conceptual model is
considered unknown and the goal is to learn it us-
ing only the system’s observable output. There
are several approaches proposed in the literature
for comparing conceptual conceptual models based
on some features, such as number of variables,
causal links and feedback loops. In this paper, we
adopt a measure called the distance ratio (DR) [41]
which measures the distance between two concep-
tual models. It uses the information of the number
of nodes and causal links, and their directions rep-
resented in an associated adjacency matrix. Since
both target and learned models share the same in-
formation, we can apply it to measure model simi-
larity. The structure error (ψ), measured using DR,
is calculated as

ψ =
∑p

i=1 ∑p
j=1 |ai j −bi j|

2(p2 − p)
, (12)

where ai j and bi j are the cell indices in the adja-
cency matrices representing the target and learned
models, respectively. Both ai j and bi j can have a
value of one or zero which indicates if there is a
link, or not, between nodes i and j, respectively,
in their corresponding adjacency matrices. The to-
tal number of system variables, (p), is the same for
both models. Simply, ψ ∈ [0,1] provides the aver-
age number of differences between the two struc-
tures normalised over all possible links and indi-
cates their closeness, with lower values indicating
greater similarity.

142 Hassan Abdelbari, Kamran Shafi

4.1 Complex Systems Examples

4.1.1 Workforce Inventory (WI) System

This model shows the interactions between the
inventory management sector and employment and
labour sectors in a supply chain management sys-
tem [1]. The conceptual model consists of 13 vari-
ables, 17 links and 3 feedback loops, as shown in
Figure 6(a). Each node (Ci) in the model repre-
sents one of the system variables as: C1 (produc-
tion); C2 (inventory); C3 (productivity); C4 (sales);
C5 (inventory coverage); C6 (target production); C7
(target inventory); C8 (inventory correction); C9
(workforce); C10 (net hire rate); C11 (time to adjust
workforce); C12 (target workforce); and C13 (time
to correct inventory). In Figure 6(e), the simulated
behaviour at the two system output variables C2 and
C9 show their growths reaching a steady state.

4.1.2 Lotka-Volterra (LV) System

This is an ecological model that shows natural
interactions between two populations (e.g., preys
and predators) which mutually affect each each
other [45]. The conceptual model shown in Fig-
ure 6(b) has 10 variables, 17 links and 8 feedback
loops. Each node (Ci) representing one system vari-
ables as: C1 (prey births); C2 (prey population);
C3 (prey deaths); C4 (predator births); C5 (preda-
tor population); C6 (predator deaths); C7 (capac-
ity); C8 (prey crowds); C9 (predator consumption);
and C10 (food availability for predators). The simu-
lated output from this model at variables C2 and C5
shown in Figure 6(f) indicate oscillatory behaviour.

4.1.3 Van der Pol Oscillator (VdPO) System

This model describes the non-linear dynamics
in a physical system consisting of vacuum tube cir-
cuits designed as part of the development process
for electronics technologies [46]. The conceptual
model shown in Figure 6(c) has 8 variables, 10 links
and 3 feedback loops. Each node (Ci) representing
one of the system variables as: C1 (X); C2 (dX

dt); C3
(Y); C4 (dY

dt); C5 (effect of X on Y); C6 (w2); C7 (u);
and C8 (k). Its behaviours generated at the output
variables C1 and C3 are chaotic and oscillatory, as
shown in Figure 6(g).

4.1.4 Lorenz Equations (LE) System

This model is developed for atmospheric con-
vections as part of a weather forecasting simula-
tion [47]. Its structure, as shown in Figure 6(d) has
9 variables, 14 links and 5 feedback loops. Each
node (Ci) representing one of the system variables
as: C1 (X); C2 (dX

dt ;, C3 (σ); C4 (r); C5 (Y); C6
(dY

dt); C7 (Z); C8 (dZ
dt); and C9 (b). Its behaviours

generated at the output variables C1, C5 and C7 are
chaotic and oscillatory, as shown in Figure 6(h).

5 Results and Analysis

5.1 Learning Performance

To analyse the effectiveness of the proposed
evolutionary ESN for learning target model struc-
tures, we observe the best learned ones based on
both their output errors (ε) and structural errors (ψ).

5.1.1 Best Models Learned Based on Output
Error (ε)

The outputs from the best learned models for
each of the four examples are provided in Figures
8(a) to 8(d), respectively. These models are selected
based on their minimum output errors (ε) across all
27 setups (9 weight combinations × 3 EAs) as fol-
lows. Firstly, for every independent run in each ex-
periment carried out with a specific weight com-
bination (WCx) and specific EA, the best learned
model is selected based on its minimum ε over all
100 generations, a process repeated for all 20 inde-
pendent runs. Next, the Friedman test [48] of sig-
nificance is applied to rank solutions from all 27
setups, with the setup with the highest-ranked solu-
tion selected as the best. Finally, the best model is
selected based on its minimum ε obtained from 20
runs of the best setup. Figures 7(b),7(e), 7(h) and
7(k) show the model structures that generated these
outputs. Also, outputs generated by ESNbase (Fig-
ures 8(a) – 8(d)) and the corresponding model struc-
tures (7(c), 7(f), 7(i) and 7(l)) used to generate them
are shown for comparing against the models learned
by the optimised ESN models. Table 5.1.1 shows
the correctly predicted, missing and additional links
present in the learned structures obtained by both
the optimised ESN and ESNbase in order to demon-
strate how close these structures are to the target
ones. Calculation of these links are based on com-

143LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(a) WI conceptual model

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(b) LV conceptual model

C1

C2

C3

C4

C5

C6

C7 C8

(c) VdPO conceptual model

C1

C2

C3

C4

C5

C6

C7

C8

C9

(d) LE conceptual model

Time
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-4

-3

-2

-1

0

1

2

3

Inventory
Workforce

(e) WI simulated outputs
Time

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Predators
Preys

(f) LV simulated outputs
Time

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X
Y

(g) VdPO simulated outputs
Time

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-4

-3

-2

-1

0

1

2

3

4
X
Y
Z

(h) LE simulated outputs

Figure 6. Target conceptual models and simulated outputs of complex systems examples

paring those in the learned structure with those in
the target one for each example. For a directed link
from variable xi to variable x j in the target struc-
ture, if it is also in the learned structure, it is called
a correct link, otherwise a missing link and, if it is
not in the target structure but in the learned one, it
is called an additional link.

For the WI, LV and VdPO examples, the out-
puts generated from the best learned structures
overlap with the target outputs (Figures 8(a), 8(b)
and 8(c)). However, in LE example, the generated
outputs do not exactly match but the error is not
large (Figure 8(d)). The learned structures (Figures
7(b), 7(e) and 7(h)) that generate those outputs are
quite similar to the target structures in the WI, LV
and VdPO examples (Figures 7(a), 7(d) and 7(g)).
In WI, the learned structure has 2 correct links out
of 17 links, 15 missing and 14 additional (Table
5.1.1) while, in both LV and VdPO, they have more
correct links, 4 out of 17 and 4 out of 10, respec-
tively (Table 5.1.1). In the LV example, the num-
bers of missing and additional links are 13 and 9,
respectively. In the VdPO example, there are fewer
missing and additional links than in both the WI and
LV examples, 6 and 5, respectively. The LE exam-
ple has 7 correct links out of 14, the highest of all
the examples. However, its learned structure (Fig-
ure 7(k)) is much more dense than the target (Figure
7(j)) and other ones, as supported by its large num-

ber of additional links 33 (Table 5.1.1).

The outputs from the best structures learned by
the ESNbase overlap with the target outputs for the
first three cases (Figures 8(a), 8(b) and 8(c)). How-
ever, in the LE example, the optimised ESN per-
forms better in terms of matching the target out-
put’s behaviour (Figure 8(d)). In the WI example,
the structure learned by the ESNbase (Figure 7(c))
is more similar to the target structure (Figure 7(a))
than the learned by the optimised ESN (Figure 7(b))
in terms of more correct links (4 links) and fewer
missing and additional ones (13 and 11, respec-
tively). In the other examples, LV, VdPO and LE,
the structures learned by the ESNbase are very dense
(Figures 7(f), 7(i) and 7(l)) in terms of their large
number of additional links (57 for LV, 42 for VdPO
and 21 for LE) (Table 5.1.1). However, in the LE
example, the number of additional links (21) is less
than those in the structure learned by the optimised
ESN (33) (Table 5.1.1).

In addition to showing the errors and structures
of the best (or to be accurate, the best of the best)
learned models over all 27 setups, Table 3 shows
the mean and standard deviation values of their av-
eraged output errors (ε). The best models for dif-
ferent weight combinations for each EA and differ-
ent EAs for each weight combination are identified
using two types of statistical tests. The one-way

Hassan Abdelbari, Kamran Shafi

4.1 Complex Systems Examples

4.1.1 Workforce Inventory (WI) System

This model shows the interactions between the
inventory management sector and employment and
labour sectors in a supply chain management sys-
tem [1]. The conceptual model consists of 13 vari-
ables, 17 links and 3 feedback loops, as shown in
Figure 6(a). Each node (Ci) in the model repre-
sents one of the system variables as: C1 (produc-
tion); C2 (inventory); C3 (productivity); C4 (sales);
C5 (inventory coverage); C6 (target production); C7
(target inventory); C8 (inventory correction); C9
(workforce); C10 (net hire rate); C11 (time to adjust
workforce); C12 (target workforce); and C13 (time
to correct inventory). In Figure 6(e), the simulated
behaviour at the two system output variables C2 and
C9 show their growths reaching a steady state.

4.1.2 Lotka-Volterra (LV) System

This is an ecological model that shows natural
interactions between two populations (e.g., preys
and predators) which mutually affect each each
other [45]. The conceptual model shown in Fig-
ure 6(b) has 10 variables, 17 links and 8 feedback
loops. Each node (Ci) representing one system vari-
ables as: C1 (prey births); C2 (prey population);
C3 (prey deaths); C4 (predator births); C5 (preda-
tor population); C6 (predator deaths); C7 (capac-
ity); C8 (prey crowds); C9 (predator consumption);
and C10 (food availability for predators). The simu-
lated output from this model at variables C2 and C5
shown in Figure 6(f) indicate oscillatory behaviour.

4.1.3 Van der Pol Oscillator (VdPO) System

This model describes the non-linear dynamics
in a physical system consisting of vacuum tube cir-
cuits designed as part of the development process
for electronics technologies [46]. The conceptual
model shown in Figure 6(c) has 8 variables, 10 links
and 3 feedback loops. Each node (Ci) representing
one of the system variables as: C1 (X); C2 (dX

dt); C3
(Y); C4 (dY

dt); C5 (effect of X on Y); C6 (w2); C7 (u);
and C8 (k). Its behaviours generated at the output
variables C1 and C3 are chaotic and oscillatory, as
shown in Figure 6(g).

4.1.4 Lorenz Equations (LE) System

This model is developed for atmospheric con-
vections as part of a weather forecasting simula-
tion [47]. Its structure, as shown in Figure 6(d) has
9 variables, 14 links and 5 feedback loops. Each
node (Ci) representing one of the system variables
as: C1 (X); C2 (dX

dt ;, C3 (σ); C4 (r); C5 (Y); C6
(dY

dt); C7 (Z); C8 (dZ
dt); and C9 (b). Its behaviours

generated at the output variables C1, C5 and C7 are
chaotic and oscillatory, as shown in Figure 6(h).

5 Results and Analysis

5.1 Learning Performance

To analyse the effectiveness of the proposed
evolutionary ESN for learning target model struc-
tures, we observe the best learned ones based on
both their output errors (ε) and structural errors (ψ).

5.1.1 Best Models Learned Based on Output
Error (ε)

The outputs from the best learned models for
each of the four examples are provided in Figures
8(a) to 8(d), respectively. These models are selected
based on their minimum output errors (ε) across all
27 setups (9 weight combinations × 3 EAs) as fol-
lows. Firstly, for every independent run in each ex-
periment carried out with a specific weight com-
bination (WCx) and specific EA, the best learned
model is selected based on its minimum ε over all
100 generations, a process repeated for all 20 inde-
pendent runs. Next, the Friedman test [48] of sig-
nificance is applied to rank solutions from all 27
setups, with the setup with the highest-ranked solu-
tion selected as the best. Finally, the best model is
selected based on its minimum ε obtained from 20
runs of the best setup. Figures 7(b),7(e), 7(h) and
7(k) show the model structures that generated these
outputs. Also, outputs generated by ESNbase (Fig-
ures 8(a) – 8(d)) and the corresponding model struc-
tures (7(c), 7(f), 7(i) and 7(l)) used to generate them
are shown for comparing against the models learned
by the optimised ESN models. Table 5.1.1 shows
the correctly predicted, missing and additional links
present in the learned structures obtained by both
the optimised ESN and ESNbase in order to demon-
strate how close these structures are to the target
ones. Calculation of these links are based on com-

144 Hassan Abdelbari, Kamran Shafi

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(a) WI target structure

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(b) WI best model learned
using optimised ESN

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(c) WI best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(d) LV target structure

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(e) LV best model learned
using optimised ESN

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(f) LV best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7 C8

(g) VdPO target structure

C1

C2

C3

C4

C5

C6

C7 C8

(h) VdPO best model
learned using optimised
ESN

C1

C2

C3

C4

C5

C6

C7 C8

(i) VdPO best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7

C8

C9

(j) LE target structure

C1

C2

C3

C4

C5

C6

C7

C8

C9

(k) LE best model learned
using optimised ESN

C1

C2

C3

C4

C5

C6

C7

C8

C9

(l) LE best model learned
using ESNbase

Figure 7. Best structures learned by optimised ESN and ESNbase compared with target structures based on
output error ε of all examples

145LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

ANOVA [49] is used as a significance test and the
Friedman test [48] for ranking. Different symbols
(†, ∗ and •) are used to differentiate the significantly
better models across different setups, as explained
in the caption for Table 3.

Time
0 500 1000 1500 2000 2500 3000 3500

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C2
C9
C2'
C9'
C2^
C9^

(a) WI target outputs (C2, C9), outputs generated by best
learned model (C2’, C9’) and ESNbase (Ĉ2, Ĉ9)

Time
0 500 1000 1500 2000 2500

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
C2
C5
C2'
C5'
C2^
C5^

(b) LV target outputs (C2, C5), outputs generated by best
learned model (C2’, C5’) and ESNbase (Ĉ2, Ĉ5)

Time
0 500 1000 1500 2000 2500

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
C1
C3
C1'
C3'
C1^
C3^

(c) VdPO target outputs (C1, C3), outputs generated by
best learned model (C1’, C3’) and ESNbase (Ĉ1, Ĉ3)

(d) LE target outputs (C1, C5, C7), outputs generated by
best learned model and ESNbase

Figure 8. Outputs generated from best structures
learned by optimised ESN and ESNbase compared
with target outputs based on output error (ε) and

structure error (ψ). Due to the exact matching with
the generated outputs from best structures learned
based on ψ, the outputs based on ε are only shown

to avoid repetition

Table 2. Correct (C), missing (M) and additional
(A) links for each best structure learned by

optimised ESN and ESNbase based on output error
ε (Total number of links for target structure for

each example presented next to example name as
T : N, where N number of total links)

WI - T:17
C M A

Optimised ESN 2 15 14
ESNbase 4 13 11

LV - T:17
Optimised ESN 4 13 9
ESNbase 13 4 57

VdPO - T:10
Optimised ESN 4 6 5
ESNbase 9 1 42

LE - T:14
Optimised ESN 7 7 33
ESNbase 10 4 21

There are significant differences among the re-
sults obtained from the EAs for different weight set-
tings in all examples except LV. In the WI one, the
best results using the GA and DE are obtained with
WC4, and using PSO, with WC6. In the VdPO ex-
ample, the best results obtained using the GA are
with WC2 and, using PSO and DE, with WC1. Fi-
nally, in the LE example, the best results obtained
using the GA are with WC2 and, using DE and PSO,
with WC1. There are significant differences among
the results obtained from the EAs for almost all
weight settings, with the best for all examples, from
GA. Also, there are significant differences among
the results obtained for all setups in all examples.
For the WI example, the best results are obtained
using the GA with WC4, for both LV and VdPO
ones, using the GA with WC2 and, for the LE one,
using PSO with WC1.

In summary, in all examples except WI, the fit-
ness function weight settings make a difference in
terms of generating similar behaviours, with WI ex-
hibiting the simplest. The GA outperforms the other
EAs for the weight settings and overall setups, ex-
cept that, for the LE example, PSO learns the best
model. Most of the best models learned in all ex-
amples are found at earlier weight settings (WC1 to
WC4) which is reasonable as we rely on the mini-
mum output error to find the best models learned.

Hassan Abdelbari, Kamran Shafi

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(a) WI target structure

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(b) WI best model learned
using optimised ESN

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(c) WI best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(d) LV target structure

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(e) LV best model learned
using optimised ESN

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(f) LV best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7 C8

(g) VdPO target structure

C1

C2

C3

C4

C5

C6

C7 C8

(h) VdPO best model
learned using optimised
ESN

C1

C2

C3

C4

C5

C6

C7 C8

(i) VdPO best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7

C8

C9

(j) LE target structure

C1

C2

C3

C4

C5

C6

C7

C8

C9

(k) LE best model learned
using optimised ESN

C1

C2

C3

C4

C5

C6

C7

C8

C9

(l) LE best model learned
using ESNbase

Figure 7. Best structures learned by optimised ESN and ESNbase compared with target structures based on
output error ε of all examples

146 Hassan Abdelbari, Kamran Shafi

Table 3. ε means and standard deviations of best models learned for all 27 setups († indicates best for each
EA, ∗ best for each weight setting and bold • overall best)

WI
GA DE PSO

mean(±std) mean(±std) mean(±std)
WC1 ∗ 4.8e-4(±2.75e-4) 5.38e-4(±3.31e-4) 5.74e-4(±3.29e-4)
WC2 4.64e-4(±2.54e-4) 4.06e-4(±2.4e-4) ∗ 4.2e-4(±2.6e-4)
WC3 ∗ 3.48e-4(±2.4e-4) 6.28e-4(±4.04e-4) 4.24e-4(±2.8e-4)
WC4 † ∗ • 2.61e-4(±1.33e-4) † 4.83e-4(±3.2e-4) 4.48e-4(±3.28e-4)
WC5 ∗ 4.13e-4(±3.03e-4) 4.77e-4(±2.14e-4) 4.85e-4(±3.07e-4)
WC6 ∗ 2.69e-4(±1.87e-4) 4.27e-4(±2.31e-4) † 4.5e-4(±3.28e-4)
WC7 ∗ 3.28e-4(±1.68e-4) 4.16e-4(±2.57e-4) 4.2e-4(±3.1e-4)
WC8 ∗ 2.82e-4(±1.75e-4) 4.78e-4(±2.61e-4) 5.52e-4(±3.22e-4)
WC9 ∗ 3.75e-4(±2.81e-4) 3.05e-4(±1.91e-4) 4.29e-4(±2.98e-4)

LV
WC1 ∗ 1.38e-4(±6.82e-5) 1.09e-3(±5.27e-4) † 3.72e-4(±3.19e-4)
WC2 † ∗ • 1.28e-4(±9.74e-5) 9.74e-4(±1.14e-3) 3.54e-4(±2.34e-4)
WC3 ∗ 1.81e-4(±1.14e-4) 1.28e-3(±9.77e-4) 5.28e-4(±6.92e-4)
WC4 ∗ 1.7e-4(±1.05e-4) 1.41e-3(±2.01e-3) 3.97e-4(±2.77e-4)
WC5 ∗ 1.28e-4(±6.63e-5) 1.22e-3(±1.45e-3) 4.38e-4(±2.4e-4)
WC6 ∗ 1.51e-4(±1.1e-4) 1.32e-3(±1.03e-3) 3.73e-4(±2.45e-4)
WC7 ∗ 2.18e-4(±1.9e-4) 9.95e-4(±5.01e-4) 4.59e-4(±4.62e-4)
WC8 ∗ 1.82e-4(±1.25e-4) 1.13e-3(±1.04e-3) 3.41e-4(±3.37e-4)
WC9 ∗ 1.67e-4(±1.64e-4) † 8.32e-4(±6.59e-4) 6.88e-4(±6.36e-4)

VdPO
WC1 ∗ 1.44e-3(±7.62e-4) † 4.4e-3(±1.99e-3) † 2.27e-3(±1.13e-3)
WC2 † ∗ • 1.29e-3(±8.62e-4) 5.85e-3(±2.05e-3) 2.31e-3(±1.21e-3)
WC3 ∗ 1.9e-3(±1.43e-3) 6.06e-3(±4.02e-3) 3.78e-3(±2.85e-3)
WC4 ∗ 1.36e-3(±7e-4) 1.12e-2(±6.08e-3) 3.51e-3(±2.85e-3)
WC5 ∗ 1.95e-3(±1.59e-3) 1.19e-2(±5.16e-3) 3.66e-3(±3.22e-3)
WC6 ∗ 1.85e-3(±1.12e-3) 8.96e-3(±6.22e-3) 3.25e-3(±3.47e-3)
WC7 ∗ 1.49e-3(±1.11e-3) 1.3e-2(±1.06e-2) 5.35e-3(±4.29e-3)
WC8 ∗ 1.77e-3(±1.1e-3) 1.12e-2(±9.38e-3) 3.41e-4(±3.37e-4)
WC9 ∗ 2.34e-3(±1.86e-3) 1.57e-2(±1.63e-2) 1e-2(±1.63e-2)

LE
WC1 ∗ 0.7477(±1.19e-1) † 0.8163(±4.93e-2) † • 0.7614(±6.82e-2)
WC2 † 0.7277(±1.39e-1) 0.8276(±5.54e-2) ∗ 0.7835(±4.1e-2)
WC3 ∗ 0.7509(±9.19e-2) 0.8383(±5.82e-2) 0.8019(±3.86e-2)
WC4 ∗ 0.7706(±8.44e-2) 0.8533(±6.02e-2) 0.8137(±3.25e-2)
WC5 ∗ 0.798(±9.26e-2) 0.8477(±6.1e-2) 0.8216(±3.72e-2)
WC6 ∗ 0.7538(±9.65e-2) 0.8546(±6.94e-2) 0.806(±6.32e-2)
WC7 0.8674(±6.85e-2) 0.8635(±7.32e-2) ∗ 0.8275(±8.15e-2)
WC8 0.8217(±0.1564) 0.9025(±5.5e-2) ∗ 0.8604(±4.59e-2)
WC9 ∗ 0.9214(±4.31e-2) 0.9222(±5.02e-2) 0.9287(±4.9e-2)

147LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

5.1.2 Best Models Learned Based on the Struc-
tural Error (ψ)

In this Section, we show the best models
learned based on the structural error ψ by applying
the process discussed in Section 5.1.1. The main
aim is to demonstrate how these structures are sim-
ilar to target ones and how the outputs generated
from these models are similar to the target ones.
The structures of the best models learned for each
of the four examples are provided in Figures 9(b),
9(e), 9(h) and 9(k). The outputs generated from
these models are almost match the outputs gen-
erated from the models based on output error (ε)
as shown in Figure 8. Also, the ESNbase models
(Figures 9(c), 9(f), 9(i) and 9(l)) and their gener-
ated outputs (Figure 8) are compared with the mod-
els learned by the optimised ESN. Table 4 shows
the correctly predicted, missing and additional links
present in the models learned by both optimised
ESN and ESNbase in order to demonstrate how close
these models are to the target ones.

Table 4. Correct (C), missing (M) and additional
(A) links for each best structure learned by

optimised ESN and ESNbase based on structural
error ψ (Total number of links for target structure
for each example presented next to example name

as T : N, where N number of total links)

WI - T:17
C M A

Optimised ESN 4 13 15
ESNbase 4 13 11

LV - T:17
Optimised ESN 3 14 9
ESNbase 13 4 57

VdPO - T:10
Optimised ESN 2 8 8
ESNbase 9 1 42

LE - T:14
Optimised ESN 2 12 10
ESNbase 10 4 21

In the WI example, the learned structure (Fig-
ure 9(b)) has 4 correct links out of 17, 13 missing
and 15 additional (Table 4) while, in the remain-
ing examples, there are fewer correct links in the
learned structures (Figures 9(e), 9(h) and 9(k)) (3 in
the LV and 2 in both the VdPO and LE examples)
and also fewer missing and additional ones (Table

4). The outputs generated from the best structures
learned for the WI, LV and VdPO examples over-
lap with those of the target (Figures 8(a), 8(b) and
8(c)). However, for the LE example, while the gen-
erated outputs do not exactly match, the error is not
large until time step 500, after which the outputs are
fixed at constant values for the rest of the time hori-
zon (Figure 8(d)). For all examples, the structures
learned by the ESNbase (Figures 9(c), 9(f), 9(i) and
9(l)) are much denser than those learned by the op-
timised ESN, as supported by the large number of
additional links exist in these structures (Table 4).

Table 5 shows the mean and standard deviation
values of the structural errors (ψ) averaged over all
27 setups. The best models obtained for different
weight combinations using each EA and different
EAs for each weight combination are identified us-
ing the two types of statistical tests discussed in
Section 5.1.1. Different symbols (†, ∗ and •) are
used to identify the significantly better models in
the different setups, as explained in the captions of
Table 5.

Of the EAs, in the WI example, the best results
are obtained by the GA with WC4, DE with WC7
and PSO with WC6. In the LV example, the GA ob-
tains the best results with WC8, DE with WC5 and
PSO with WC6. In the VdPO example, the GA ob-
tains the best results with WC3, DE with WC5, and
PSO with WC2. Finally, in the LE example, both
the GA and DE obtain the best results with WC9 and
PSO with WC8. However, the results obtained from
both EAs and different fitness weight settings for all
examples are not statistically significant based on
the ANOVA statistical test, except for LE example.
Over all setups, for the WI example, the best results
are obtained using PSO with WC6, for the LV exam-
ple, using PSO with WC2, for the VdPO example,
using DE with WC5 and, for the LE example, using
PSO at WC9. However, there is no statistical signif-
icant among the results obtained across all setups
for all examples except for LE.

In summary, changing weight settings does not
significantly affect the performance of the ESN for
any EA, except for LE example which is due to
its complexity in terms of structure and behaviour.
Most of the best models obtained by each EA are
with weight settings of WC8 and WC9. Overall,
the best learned structures are found by PSO in all
examples, except for VdPO one where it is found

Hassan Abdelbari, Kamran Shafi

Table 3. ε means and standard deviations of best models learned for all 27 setups († indicates best for each
EA, ∗ best for each weight setting and bold • overall best)

WI
GA DE PSO

mean(±std) mean(±std) mean(±std)
WC1 ∗ 4.8e-4(±2.75e-4) 5.38e-4(±3.31e-4) 5.74e-4(±3.29e-4)
WC2 4.64e-4(±2.54e-4) 4.06e-4(±2.4e-4) ∗ 4.2e-4(±2.6e-4)
WC3 ∗ 3.48e-4(±2.4e-4) 6.28e-4(±4.04e-4) 4.24e-4(±2.8e-4)
WC4 † ∗ • 2.61e-4(±1.33e-4) † 4.83e-4(±3.2e-4) 4.48e-4(±3.28e-4)
WC5 ∗ 4.13e-4(±3.03e-4) 4.77e-4(±2.14e-4) 4.85e-4(±3.07e-4)
WC6 ∗ 2.69e-4(±1.87e-4) 4.27e-4(±2.31e-4) † 4.5e-4(±3.28e-4)
WC7 ∗ 3.28e-4(±1.68e-4) 4.16e-4(±2.57e-4) 4.2e-4(±3.1e-4)
WC8 ∗ 2.82e-4(±1.75e-4) 4.78e-4(±2.61e-4) 5.52e-4(±3.22e-4)
WC9 ∗ 3.75e-4(±2.81e-4) 3.05e-4(±1.91e-4) 4.29e-4(±2.98e-4)

LV
WC1 ∗ 1.38e-4(±6.82e-5) 1.09e-3(±5.27e-4) † 3.72e-4(±3.19e-4)
WC2 † ∗ • 1.28e-4(±9.74e-5) 9.74e-4(±1.14e-3) 3.54e-4(±2.34e-4)
WC3 ∗ 1.81e-4(±1.14e-4) 1.28e-3(±9.77e-4) 5.28e-4(±6.92e-4)
WC4 ∗ 1.7e-4(±1.05e-4) 1.41e-3(±2.01e-3) 3.97e-4(±2.77e-4)
WC5 ∗ 1.28e-4(±6.63e-5) 1.22e-3(±1.45e-3) 4.38e-4(±2.4e-4)
WC6 ∗ 1.51e-4(±1.1e-4) 1.32e-3(±1.03e-3) 3.73e-4(±2.45e-4)
WC7 ∗ 2.18e-4(±1.9e-4) 9.95e-4(±5.01e-4) 4.59e-4(±4.62e-4)
WC8 ∗ 1.82e-4(±1.25e-4) 1.13e-3(±1.04e-3) 3.41e-4(±3.37e-4)
WC9 ∗ 1.67e-4(±1.64e-4) † 8.32e-4(±6.59e-4) 6.88e-4(±6.36e-4)

VdPO
WC1 ∗ 1.44e-3(±7.62e-4) † 4.4e-3(±1.99e-3) † 2.27e-3(±1.13e-3)
WC2 † ∗ • 1.29e-3(±8.62e-4) 5.85e-3(±2.05e-3) 2.31e-3(±1.21e-3)
WC3 ∗ 1.9e-3(±1.43e-3) 6.06e-3(±4.02e-3) 3.78e-3(±2.85e-3)
WC4 ∗ 1.36e-3(±7e-4) 1.12e-2(±6.08e-3) 3.51e-3(±2.85e-3)
WC5 ∗ 1.95e-3(±1.59e-3) 1.19e-2(±5.16e-3) 3.66e-3(±3.22e-3)
WC6 ∗ 1.85e-3(±1.12e-3) 8.96e-3(±6.22e-3) 3.25e-3(±3.47e-3)
WC7 ∗ 1.49e-3(±1.11e-3) 1.3e-2(±1.06e-2) 5.35e-3(±4.29e-3)
WC8 ∗ 1.77e-3(±1.1e-3) 1.12e-2(±9.38e-3) 3.41e-4(±3.37e-4)
WC9 ∗ 2.34e-3(±1.86e-3) 1.57e-2(±1.63e-2) 1e-2(±1.63e-2)

LE
WC1 ∗ 0.7477(±1.19e-1) † 0.8163(±4.93e-2) † • 0.7614(±6.82e-2)
WC2 † 0.7277(±1.39e-1) 0.8276(±5.54e-2) ∗ 0.7835(±4.1e-2)
WC3 ∗ 0.7509(±9.19e-2) 0.8383(±5.82e-2) 0.8019(±3.86e-2)
WC4 ∗ 0.7706(±8.44e-2) 0.8533(±6.02e-2) 0.8137(±3.25e-2)
WC5 ∗ 0.798(±9.26e-2) 0.8477(±6.1e-2) 0.8216(±3.72e-2)
WC6 ∗ 0.7538(±9.65e-2) 0.8546(±6.94e-2) 0.806(±6.32e-2)
WC7 0.8674(±6.85e-2) 0.8635(±7.32e-2) ∗ 0.8275(±8.15e-2)
WC8 0.8217(±0.1564) 0.9025(±5.5e-2) ∗ 0.8604(±4.59e-2)
WC9 ∗ 0.9214(±4.31e-2) 0.9222(±5.02e-2) 0.9287(±4.9e-2)

148 Hassan Abdelbari, Kamran Shafi

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(a) WI target structure

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(b) WI best model learned
using optimised ESN

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(c) WI best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(d) LV target structure

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(e) LV best model learned
using optimised ESN

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(f) LV best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7 C8

(g) VdPO target structure

C1

C2

C3

C4

C5

C6

C7 C8

(h) VdPO best model
learned using optimised
ESN

C1

C2

C3

C4

C5

C6

C7 C8

(i) VdPO best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7

C8

C9

(j) LE target structure

C1

C2

C3

C4

C5

C6

C7

C8

C9

(k) LE best model learned
using optimised ESN

C1

C2

C3

C4

C5

C6

C7

C8

C9

(l) LE best model learned
using ESNbase

Figure 9. Best structures learned by optimised ESN and ESNbase compared with target structures based on
output error ψ of all examples

149LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

Table 5. ψ means and standard deviations of best models learned for all 27 setups († indicates best for each
EA, ∗ best for each weight setting and bold • overall best)

WI
GA DE PSO

mean(±std) mean(±std) mean(±std)
WC1 0.0997(±0.0143) 0.0946(±0.0119) ∗ 0.0949(±0.0092)
WC2 ∗ 0.0954(±0.011) 0.0968(±0.0091) 0.0963(±0.0128)
WC3 0.1(±0.0121) ∗ 0.0938(±0.0094) 0.0954(±0.0092)
WC4 † 0.0933(±0.0093) ∗ 0.0931(±0.0079) 0.0957(±0.0077)
WC5 ∗ 0.0936(±0.0101) 0.0968(±0.0085) 0.0963(±0.0107)
WC6 0.0933(±0.0081) 0.0973(±0.0107) † ∗ • 0.091(±0.0102)
WC7 ∗ 0.0931(±0.0093) † 0.0921(±0.0104) 0.0946(±0.0123)
WC8 ∗ 0.0966(±0.0061) 0.0984(±0.0131) 0.0995(±0.0116)
WC9 0.0987(±0.0069) 0.0941(±0.012) ∗ 0.0921(±0.0103)

LV
WC1 ∗ 0.1375(±0.0196) 0.1427(±0.0111) 0.1416(±0.0157)
WC2 0.1475(±0.0253) 0.1361(±0.0156) ∗ • 0.1325(±0.0132)
WC3 ∗ 0.1375(±0.0218) 0.1383(±0.0149) 0.1427(±0.0152)
WC4 0.138(±0.0138) 0.1397(±0.0148) ∗ 0.1358(±0.019)
WC5 0.1433(±0.0253) † ∗ 0.1375(±0.0147) 0.1375(±0.0173)
WC6 0.1372(±0.0182) 0.1438(±0.0155) † ∗ 0.1325(±0.0133)
WC7 0.1411(±0.0203) ∗ 0.1375(±0.019) 0.138(±0.0196)
WC8 † ∗ 0.13417(±0.0212) 0.1386(±0.0172) 0.14(±0.0162)
WC9 0.138(±0.0172) ∗ 0.1372(±0.0134) 0.1372(±0.0114)

VdPO
WC1 0.1468(±0.0202) ∗ 0.1468(±0.0248) 0.1468(±0.0212)
WC2 0.1437(±0.0185) 0.1562(±0.0253) † ∗ 0.1383(±0.0094)
WC3 † ∗ 0.1419(±0.0147) 0.1468(±0.0175) 0.1468(±0.0218)
WC4 0.1526(±0.0275) 0.1406(±0.0174) ∗ 0.1428(±0.0148)
WC5 0.15(±0.0227) † ∗ • 0.1348(±0.0183) 0.1442(±0.0217)
WC6 0.1486(±0.0151) 0.1517(±0.0261) ∗ 0.1375(±0.0231)
WC7 0.15(±0.0175) ∗ 0.1442(±0.0245) 0.1455(±0.0243)
WC8 0.15(±0.0227) 0.1491(±0.0249) ∗ 0.145(±0.0239)
WC9 ∗ 0.1419(±0.0254) 0.1477(±0.0321) 0.1477(±0.0321)

LE
WC1 0.3055(±0.0658) ∗ 0.2201(±0.0711) 0.2847(±0.0433)
WC2 0.2298(±0.0719) ∗ 0.1947(±0.058) 0.2677(±0.0538)
WC3 0.2142(±0.0616) ∗ 0.1784(±0.0344) 0.2149(±0.0481)
WC4 0.1881(±0.0345) ∗ 0.1694(±0.0259) 0.1913(±0.0342)
WC5 0.1697(±0.0323) ∗ 0.1618(±0.0249) 0.1836(±0.0303)
WC6 0.1822(±0.0339) ∗ 0.1628(±0.0241) 0.1833(±0.0342)
WC7 ∗ 0.1513(±0.0212) 0.1593(±0.0245) 0.1718(±0.0259)
WC8 0.1611(±0.0248) 0.1562(±0.018) † ∗ 0.1496(±0.0227)
WC9 † 0.1489(±0.0237) † 0.1527(±0.017) ∗ • 0.1472(±0.0166)

Hassan Abdelbari, Kamran Shafi

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(a) WI target structure

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(b) WI best model learned
using optimised ESN

C1

C2

C3

C4
C5

C6
C7

C8

C9

C10

C11

C12

C13

(c) WI best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(d) LV target structure

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(e) LV best model learned
using optimised ESN

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(f) LV best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7 C8

(g) VdPO target structure

C1

C2

C3

C4

C5

C6

C7 C8

(h) VdPO best model
learned using optimised
ESN

C1

C2

C3

C4

C5

C6

C7 C8

(i) VdPO best model learned
using ESNbase

C1

C2

C3

C4

C5

C6

C7

C8

C9

(j) LE target structure

C1

C2

C3

C4

C5

C6

C7

C8

C9

(k) LE best model learned
using optimised ESN

C1

C2

C3

C4

C5

C6

C7

C8

C9

(l) LE best model learned
using ESNbase

Figure 9. Best structures learned by optimised ESN and ESNbase compared with target structures based on
output error ψ of all examples

150 Hassan Abdelbari, Kamran Shafi

using DE. In LE example, both the best learned
structures selected based on the output error (ε) and
structural error (ψ) are found by PSO at the two ex-
tremes of weight settings, WC1 for that based on (ε)
and WC9 for that based on (ψ). This shows that,
for more complex examples, PSO is the best and
the weight settings depend on the measure used to
select the best model.

5.1.3 ε and ψ Trade-off Analysis

In this Section, we analyse the trade-off be-
tween the output error and structural error mea-
sures, ε and ψ, respectively, for the best models
learned over all 27 setups and the ESNbase one. The
aim of this type of analysis is to allow us to investi-
gate the non-dominated experiemtnal setup for the
two objectives, ε and ψ. To perform it, we first sort
all the 28 best models using non-dominated sort-
ing algorithm [50] according to these two objec-
tives. The Pareto fronts resulting from this sort-
ing for each example are shown in Figures 10(a) to
10(d), respectively, by highlighting the first Pareto
with bold. The best model learned is selected based
on the minimum fitness value over the 100 gener-
ations, a process repeated for runs as explained in
Section 5.1.1.

In the WI example, the Pareto (Figure 10(a))
contains four models learned by both the GA and
DE algorithm with weight settings of WC1, WC3,
WC8 and WC9 that dominate all other learned mod-
els. In the LV example, the Pareto (Figure 10(b))
contains only one model learned by the GA with
WC5 that dominates all the other models in all se-
tups. In the VdPO example, the Pareto (Figure
10(c)) contains two models, one learned by the GA
with WC2 and the other by PSO with WC8. These
two models dominate the others over all the se-
tups. In the LE example, the Pareto (Figure 10(d))
contains five models, four learned by the GA with
weight settings of WC1, WC2, WC5, and WC7, and
one by the ESNbase. In summary, the GA is able
to learn models that have both minimum output and
structural errors for both the LV and LE examples
while the best models learned for the WI examples
are found by the DE and PSO, respectively.

ǫ ×10-4
0.5 1 1.5 2 2.5 3

ψ

0.07

0.08

0.09

0.1

0.11

WC8

WC1

WC6

WC9

WC3

WC6

WC1

WC4

WC4

WC5

WC7
WC9

WC8

WC7

WC7 WC5

WC8

WC2

WC6

WC9

WC2

WC3

WC5

WC3

WC4

WC1 WC2

GA
DE
PSO
ESNbase

(a) WI

ǫ ×10-4
0 1 2 3 4 5

ψ

0.1

0.15

0.2

0.25

0.3

0.35

WC1WC7

WC3

WC4WC5

WC8

WC5

WC6

WC4

WC2
WC9

WC3

WC8

WC1

WC2WC7

WC9

WC2

WC6WC4

WC3

WC8

WC9

WC6

WC7

WC1

WC5

GA
DE
PSO
ESNbase

(b) LV

ǫ ×10-3
0 1 2 3 4 5

ψ

0

0.1

0.2

0.3

0.4

WC2
WC8

WC6 WC2
WC7

WC3

WC3 WC1

WC2

WC5 WC5

WC4 WC1WC9 WC3

WC7

WC8

WC7 WC5

WC4

WC6

WC9

WC1
WC6 WC4

WC9
WC8

GA
DE
PSO
ESNbase

(c) VdPO

ǫ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ψ

0.1

0.2

0.3

0.4

0.5

WC1

WC2

WC5 WC7 WC9

WC6

WC7

WC8

WC9

WC3

WC4

WC6
WC9

WC8

WC6

WC8WC4

WC5
WC7

WC1WC2

WC3

WC4

WC5

WC1

WC2
WC3

GA
DE
PSO
ESNbase

(d) LE

Figure 10. Pareto fronts resulting from
non-dominated sorting of the 28 best models

learned (27 setups from optimised ESN + ESNbase,
with first Pareto highlighted with bold)

151LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

5.2 Evolutionary Algorithms Convergence
Analysis

In this Section, the convergence speeds of the
EAs for each example are compared. As most
weight settings have no statistical significance, as
discussed in Section 5.1, WC5 is chosen for each
EA. The aim of this analysis is to investigate the
differences among the EAs for each examples and
whether an example’s complexity affects the con-
vergence speed. For each example (Figures 11(a) to
11(d)), we illustrate the convergence plots that show
how the fitness values of the best solutions change
over generations which are averaged over the 20 in-
dependent runs.

In the WI example, there is no difference among
the EAs as most converge at the same rate (Fig-
ure 11(a)). In the LV (Figure 11(b)) and VdPO
(Figure 11(c)), PSO converges faster than the other
EAs followed by the GA and DE. In the LE (Figure
11(d)), the GA converges faster than the other EAs
followed by PSO and then DE. Based on these ob-
servations, we can say that these examples affect in
the algorithms’ convergence speeds. Also, in most
cases, PSO converges faster than the other EAs.

6 Conclusions

Conceptual models play a crucial role in mod-
elling a complex dynamical system by providing a
modeller with high-level abstract view of the sys-
tem and how its components influence each other.
They consist of a system’s variables and the di-
rectional connections that describe how these vari-
ables interact. Developing such models requires
a great deal of effort from modellers to obtain an
acceptable representation for a particular system.

Generations
0 20 40 60 80 100 120

Fi
tn

es
s

0.025

0.03

0.035

0.04

0.045
GA
DE
PSO

(a) WI

Generations
0 20 40 60 80 100 120

Fi
tn

es
s

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065
GA
DE
PSO

(b) LV

Generations
0 20 40 60 80 100 120

Fi
tn

es
s

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
GA
DE
PSO

(c) VdPO

Generations
0 20 40 60 80 100 120

Fi
tn

es
s

0

1

2

3

4

5
GA
DE
PSO

(d) LE

Figure 11. Convergence plots for EAs with weight
setting WC5 for each example

In this paper, a computational intelligence-
based methodology for learning these conceptual
models from observations of a system’s output is
proposed. Echo state networks, which are types
of recurrent neural networks, are adopted to repre-
sent and simulate conceptual models. Three evo-
lutionary algorithms, a genetic algorithm, differen-
tial evolution and particle swarm optimization are
applied to optimize these ESNs. Several modifica-
tions to standard ESNs based on a few similarities
between the structures of the conceptual models and
an ESN’s dynamic reservoir are proposed. The de-
sign of the fitness function combines two objectives
to be minimised, the output error and connectivity
probability of the ESN’s dynamic reservoir. Also,

Hassan Abdelbari, Kamran Shafi

using DE. In LE example, both the best learned
structures selected based on the output error (ε) and
structural error (ψ) are found by PSO at the two ex-
tremes of weight settings, WC1 for that based on (ε)
and WC9 for that based on (ψ). This shows that,
for more complex examples, PSO is the best and
the weight settings depend on the measure used to
select the best model.

5.1.3 ε and ψ Trade-off Analysis

In this Section, we analyse the trade-off be-
tween the output error and structural error mea-
sures, ε and ψ, respectively, for the best models
learned over all 27 setups and the ESNbase one. The
aim of this type of analysis is to allow us to investi-
gate the non-dominated experiemtnal setup for the
two objectives, ε and ψ. To perform it, we first sort
all the 28 best models using non-dominated sort-
ing algorithm [50] according to these two objec-
tives. The Pareto fronts resulting from this sort-
ing for each example are shown in Figures 10(a) to
10(d), respectively, by highlighting the first Pareto
with bold. The best model learned is selected based
on the minimum fitness value over the 100 gener-
ations, a process repeated for runs as explained in
Section 5.1.1.

In the WI example, the Pareto (Figure 10(a))
contains four models learned by both the GA and
DE algorithm with weight settings of WC1, WC3,
WC8 and WC9 that dominate all other learned mod-
els. In the LV example, the Pareto (Figure 10(b))
contains only one model learned by the GA with
WC5 that dominates all the other models in all se-
tups. In the VdPO example, the Pareto (Figure
10(c)) contains two models, one learned by the GA
with WC2 and the other by PSO with WC8. These
two models dominate the others over all the se-
tups. In the LE example, the Pareto (Figure 10(d))
contains five models, four learned by the GA with
weight settings of WC1, WC2, WC5, and WC7, and
one by the ESNbase. In summary, the GA is able
to learn models that have both minimum output and
structural errors for both the LV and LE examples
while the best models learned for the WI examples
are found by the DE and PSO, respectively.

ǫ ×10-4
0.5 1 1.5 2 2.5 3

ψ

0.07

0.08

0.09

0.1

0.11

WC8

WC1

WC6

WC9

WC3

WC6

WC1

WC4

WC4

WC5

WC7
WC9

WC8

WC7

WC7 WC5

WC8

WC2

WC6

WC9

WC2

WC3

WC5

WC3

WC4

WC1 WC2

GA
DE
PSO
ESNbase

(a) WI

ǫ ×10-4
0 1 2 3 4 5

ψ

0.1

0.15

0.2

0.25

0.3

0.35

WC1WC7

WC3

WC4WC5

WC8

WC5

WC6

WC4

WC2
WC9

WC3

WC8

WC1

WC2WC7

WC9

WC2

WC6WC4

WC3

WC8

WC9

WC6

WC7

WC1

WC5

GA
DE
PSO
ESNbase

(b) LV

ǫ ×10-3
0 1 2 3 4 5

ψ

0

0.1

0.2

0.3

0.4

WC2
WC8

WC6 WC2
WC7

WC3

WC3 WC1

WC2

WC5 WC5

WC4 WC1WC9 WC3

WC7

WC8

WC7 WC5

WC4

WC6

WC9

WC1
WC6 WC4

WC9
WC8

GA
DE
PSO
ESNbase

(c) VdPO

ǫ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ψ

0.1

0.2

0.3

0.4

0.5

WC1

WC2

WC5 WC7 WC9

WC6

WC7

WC8

WC9

WC3

WC4

WC6
WC9

WC8

WC6

WC8WC4

WC5
WC7

WC1WC2

WC3

WC4

WC5

WC1

WC2
WC3

GA
DE
PSO
ESNbase

(d) LE

Figure 10. Pareto fronts resulting from
non-dominated sorting of the 28 best models

learned (27 setups from optimised ESN + ESNbase,
with first Pareto highlighted with bold)

152 Hassan Abdelbari, Kamran Shafi

a varying penalty term is added to the fitness func-
tion in order to handle the appearance of any infea-
sible solution. Four examples of complex dynami-
cal systems from different domains are selected to
provide diversity in the complexity of both the mod-
els’ structures and different behavioural patterns to
validate the performance of the proposed method-
ology.

Different types of analysis are applied using sta-
tistical tests for significance and selecting the best
models. The experimental results show the capa-
bility of the proposed methodology to learn sparse
models similar to target structures and generate
similar behaviours. with the optimised ESNs out-
performing the base one. The GA and PSO demon-
strate the best results for all the different setups for
finding the best learned structures based on their
output and structural errors, respectively. Consid-
ering both these types of errors, the GA produces
the best results over all setups for all examples. The
proposed methodology is considered a promising
approach that could be applied to modelling differ-
ent complex systems when relying on building con-
ceptual models as the first step in building a whole
model.

Using other types of EAs and different penalty
mechanisms to handle more challenging complex
dynamical systems examples to learn structures that
exactly match the target structures could be an ex-
tension of this work.

References
[1] J. D. Sterman, Business Dynamics: Systems Think-

ing and Modeling for a Complex World, vol. 19.
Irwin/McGraw-Hill Boston, 2000.

[2] F. C. Billari, Agent-based computational modelling:
applications in demography, social, economic and
environmental sciences. Taylor & Francis, 2006.

[3] R. A. Howard and J. E. Matheson, Influence dia-
grams, Decis. Anal., vol. 2, no. 3, pp. 127–143,
2005.

[4] F.-R. Lin, M.-C. Yang, and Y.-H. Pai, A generic
structure for business process modeling, Bus. Pro-
cess Manag. J., vol. 8, no. 1, pp. 19–41, 2002.

[5] L. Schruben, Simulation modeling with event
graphs, Commun. ACM, vol. 26, no. 11, pp. 957–
963, 1983.

[6] S. Robinson, Simulation: the practice of model de-
velopment and use. Palgrave Macmillan, 2014.

[7] J. Ryan and C. Heavey, Requirements gathering for
simulation, in Proceedings of the 3rd Operational
Research Society Simulation Workshop. The Opera-
tional Research Society, Birmingham, UK, 175-184,
2006.

[8] A. Medina-Borja and K. S. Pasupathy, Uncovering
complex relationships in system dynamics model-
ing: Exploring the use of CART, CHAID and SEM,
in Proceedings of the 25th International Conference
of the System Dynamics Society, (Boston, USA),
pp. 1–24, 2007.

[9] V. Quiñones-Avila and A. Medina-Borja, Univer-
sal healthcare: key behavioural factors affecting
providers and recipients value propositions: a struc-
tural causal model of the puerto rico experience, Int.
J. of Behav. and Hlthc. Res., vol. 3, no. 1, pp. 25–45,
2012.

[10] M. Drobek, W. Gilani, T. Molka, and D. Soban,
Automated equation formulation for causal loop di-
agrams, Lecture Notes in Business Information Pro-
cessing, vol. 208, pp. 38–49, 2015.

[11] E. Pruyt, S. Cunningham, J. Kwakkel, and
J. De Bruijn, From data-poor to data-rich: system
dynamics in the era of big data, in Proceedings of the
32nd International Conference of the System Dy-
namics Society, Delft, The Netherlands, 20-24 July
2014.

[12] H. Jaeger, The ’echo state’ approach to analysing
and training recurrent neural networks-with an er-
ratum note, Bonn, Germany: German National Re-
search Center for Information Technology GMD
Technical Report, vol. 148, p. 34, 2001.

[13] H. Abdelbari and K. Shafi, Learning causal loop
diagram-like structures for system dynamics model-
ing using echo state networks, Syst. Dynam. Rev. -
In Press, 2017.

[14] D. E. Goldberg, Genetic algorithms. Pearson Edu-
cation India, 2006.

[15] R. Storn and K. Price, Differential evolution–a sim-
ple and efficient heuristic for global optimization
over continuous spaces, J. Global. Optim., vol. 11,
no. 4, pp. 341–359, 1997.

[16] J. Kennedy, Particle swarm optimization, in En-
cyclopedia of machine learning, pp. 760–766,
Springer, 2011.

[17] Z. Wang, J. Zhang, J. Ren, and M. N. Aslam, A
geometric singular perturbation approach for planar
stationary shock waves, Physica D, vol. 310, pp. 19–
36, 2015.

153LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM . . .

[18] C. K. Jones, R. Marangell, P. D. Miller, and R. G.
Plaza, On the stability analysis of periodic sine–
gordon traveling waves, Physica D, vol. 251, pp. 63–
74, 2013.

[19] V. V. Gursky, J. Reinitz, and A. M. Samsonov,
How gap genes make their domains: An analytical
study based on data driven approximations, Chaos,
vol. 11, no. 1, pp. 132–141, 2001.

[20] P. Young, Data-based mechanistic modelling of en-
vironmental, ecological, economic and engineering
systems, Environ. Modell. Softw., vol. 13, no. 2,
pp. 105–122, 1998.

[21] Y. Zhao, T. Weng, and M. Small, Response of the
parameters of a neural network to pseudoperiodic
time series, Physica D, vol. 268, pp. 79–90, 2014.

[22] Y. Feng, Y. Liu, X. Tong, M. Liu, and S. Deng,
Modeling dynamic urban growth using cellular au-
tomata and particle swarm optimization rules, Land-
scape Urban Plan., vol. 102, no. 3, pp. 188–196,
2011.

[23] N. Petrov and A. Gegov, Model optimization for
complex systems using fuzzy networks theory, in
Proceedings of the 8th WSEAS international confer-
ence on Artificial intelligence, knowledge engineer-
ing and data bases, pp. 116–121, World Scientific
and Engineering Academy and Society (WSEAS),
2009.

[24] I. M. Greca and M. A. Moreira, Mental models,
conceptual models, and modelling, Int. J. Sci. Educ,
vol. 22, no. 1, pp. 1–11, 2000.

[25] J. D. Sterman, Systems dynamics modeling: tools
for learning in a complex world, IEEE Eng. Manag.
Rev., vol. 30, no. 1, pp. 42–42, 2002.

[26] G. Desthieux, F. Joerin, and M. Lebreton, Ulysse:
a qualitative tool for eliciting mental models of com-
plex systems, Syst. Dynam. Rev., vol. 26, no. 2,
pp. 163–192, 2010.

[27] K.-i. Funahashi and Y. Nakamura, Approximation
of dynamical systems by continuous time recurrent
neural networks, Neural networks, vol. 6, no. 6,
pp. 801–806, 1993.

[28] H. Jaeger, Tutorial on training recurrent neural net-
works, covering BPPT, RTRL, EKF and the” echo
state network” approach, Tech. Rep. 159, Fraun-
hofer Institute for Autonomous Intelligent Systems
(AIS), 2002b.

[29] D. Koryakin, J. Lohmann, and M. V. Butz,
Balanced echo state networks, Neural Networks,
vol. 36, pp. 35–45, 2012.

[30] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, Re-visiting
the echo state property, Neural networks, vol. 35,
pp. 1–9, 2012.

[31] M. Lukoševičius, A practical guide to applying
echo state networks, in Neural Networks: Tricks of
the Trade, pp. 659–686, Springer, 2012.

[32] C. E. Martin and J. A. Reggia, Fusing swarm intel-
ligence and self-assembly for optimizing echo state
networks, Comput. Intell. Neurosci., vol. 2015, p. 9,
2015.

[33] A. A. Ferreira and T. B. Ludermir, Comparing
evolutionary methods for reservoir computing pre-
training, in Proceedings of the 2011 International
Joint Conference on Neural Networks, San Jose,
California, USA, pp. 283–290, July 31 - August 5
2011.

[34] A. Deihimi and A. Solat, optimised echo state net-
works using a big bang–big crunch algorithm for
distance protection of series-compensated transmis-
sion lines, Int. J. Elec. Power., vol. 54, pp. 408–424,
2014.

[35] A. A. Ferreira, T. B. Ludermir, and R. R.
De Aquino, An approach to reservoir computing
design and training, Expert. Syst. Appl., vol. 40,
no. 10, pp. 4172–4182, 2013.

[36] D. Liu, J. Wang, and H. Wang, Short-term wind
speed forecasting based on spectral clustering and
optimised echo state networks, Renew. Energ.,
vol. 78, pp. 599–608, 2015.

[37] J. L. Gross and J. Yellen, Handbook of graph the-
ory. CRC press, 2004.

[38] R. Tarjan, Depth-first search and linear graph algo-
rithms, SIAM J. Comput., vol. 1, no. 2, pp. 146–160,
1972.

[39] V. Petridis, S. Kazarlis, and A. Bakirtzis, Varying
fitness functions in genetic algorithm constrained
optimization: the cutting stock and unit commitment
problems, IEEE Trans. Syst., Man, Cybern., Part B:
Cybern., vol. 28, no. 5, pp. 629–640, 1998.

[40] A. E. Smith and D. M. Tate, Genetic optimiza-
tion using a penalty function, in Proceedings of the
5th international conference on genetic algorithms,
pp. 499–505, Morgan Kaufmann Publishers Inc.,
1993.

[41] K. Langfield-Smith and A. Wirth, Measuring dif-
ferences between cognitive maps, J. Oper. Res. Soc.,
pp. 1135–1150, 1992.

[42] Y.-C. Chuang, C.-T. Chen, and C. Hwang, A
simple and efficient real-coded genetic algorithm
for constrained optimization, Appl. Soft. Comput.,
vol. 38, pp. 87–105, 2016.

[43] J. Lane, A. Engelbrecht, and J. Gain, Parti-
cle swarm optimization with spatially meaning-
ful neighbours, in Swarm Intelligence Symposium,
2008. SIS 2008. IEEE, pp. 1–8, IEEE, 2008.

Hassan Abdelbari, Kamran Shafi

a varying penalty term is added to the fitness func-
tion in order to handle the appearance of any infea-
sible solution. Four examples of complex dynami-
cal systems from different domains are selected to
provide diversity in the complexity of both the mod-
els’ structures and different behavioural patterns to
validate the performance of the proposed method-
ology.

Different types of analysis are applied using sta-
tistical tests for significance and selecting the best
models. The experimental results show the capa-
bility of the proposed methodology to learn sparse
models similar to target structures and generate
similar behaviours. with the optimised ESNs out-
performing the base one. The GA and PSO demon-
strate the best results for all the different setups for
finding the best learned structures based on their
output and structural errors, respectively. Consid-
ering both these types of errors, the GA produces
the best results over all setups for all examples. The
proposed methodology is considered a promising
approach that could be applied to modelling differ-
ent complex systems when relying on building con-
ceptual models as the first step in building a whole
model.

Using other types of EAs and different penalty
mechanisms to handle more challenging complex
dynamical systems examples to learn structures that
exactly match the target structures could be an ex-
tension of this work.

References
[1] J. D. Sterman, Business Dynamics: Systems Think-

ing and Modeling for a Complex World, vol. 19.
Irwin/McGraw-Hill Boston, 2000.

[2] F. C. Billari, Agent-based computational modelling:
applications in demography, social, economic and
environmental sciences. Taylor & Francis, 2006.

[3] R. A. Howard and J. E. Matheson, Influence dia-
grams, Decis. Anal., vol. 2, no. 3, pp. 127–143,
2005.

[4] F.-R. Lin, M.-C. Yang, and Y.-H. Pai, A generic
structure for business process modeling, Bus. Pro-
cess Manag. J., vol. 8, no. 1, pp. 19–41, 2002.

[5] L. Schruben, Simulation modeling with event
graphs, Commun. ACM, vol. 26, no. 11, pp. 957–
963, 1983.

[6] S. Robinson, Simulation: the practice of model de-
velopment and use. Palgrave Macmillan, 2014.

[7] J. Ryan and C. Heavey, Requirements gathering for
simulation, in Proceedings of the 3rd Operational
Research Society Simulation Workshop. The Opera-
tional Research Society, Birmingham, UK, 175-184,
2006.

[8] A. Medina-Borja and K. S. Pasupathy, Uncovering
complex relationships in system dynamics model-
ing: Exploring the use of CART, CHAID and SEM,
in Proceedings of the 25th International Conference
of the System Dynamics Society, (Boston, USA),
pp. 1–24, 2007.

[9] V. Quiñones-Avila and A. Medina-Borja, Univer-
sal healthcare: key behavioural factors affecting
providers and recipients value propositions: a struc-
tural causal model of the puerto rico experience, Int.
J. of Behav. and Hlthc. Res., vol. 3, no. 1, pp. 25–45,
2012.

[10] M. Drobek, W. Gilani, T. Molka, and D. Soban,
Automated equation formulation for causal loop di-
agrams, Lecture Notes in Business Information Pro-
cessing, vol. 208, pp. 38–49, 2015.

[11] E. Pruyt, S. Cunningham, J. Kwakkel, and
J. De Bruijn, From data-poor to data-rich: system
dynamics in the era of big data, in Proceedings of the
32nd International Conference of the System Dy-
namics Society, Delft, The Netherlands, 20-24 July
2014.

[12] H. Jaeger, The ’echo state’ approach to analysing
and training recurrent neural networks-with an er-
ratum note, Bonn, Germany: German National Re-
search Center for Information Technology GMD
Technical Report, vol. 148, p. 34, 2001.

[13] H. Abdelbari and K. Shafi, Learning causal loop
diagram-like structures for system dynamics model-
ing using echo state networks, Syst. Dynam. Rev. -
In Press, 2017.

[14] D. E. Goldberg, Genetic algorithms. Pearson Edu-
cation India, 2006.

[15] R. Storn and K. Price, Differential evolution–a sim-
ple and efficient heuristic for global optimization
over continuous spaces, J. Global. Optim., vol. 11,
no. 4, pp. 341–359, 1997.

[16] J. Kennedy, Particle swarm optimization, in En-
cyclopedia of machine learning, pp. 760–766,
Springer, 2011.

[17] Z. Wang, J. Zhang, J. Ren, and M. N. Aslam, A
geometric singular perturbation approach for planar
stationary shock waves, Physica D, vol. 310, pp. 19–
36, 2015.

154 Hassan Abdelbari, Kamran Shafi

[44] R. C. Eberhart and Y. Shi, Comparing inertia
weights and constriction factors in particle swarm
optimization, in Proceedings of the 2000 Congress
on Evolutionary Computation, vol. 1, pp. 84–88,
IEEE, 2000.

[45] S. N. Grösser and M. Schaffernicht, Mental mod-
els of dynamic systems: taking stock and looking
ahead, Syst. Dynam. Rev., vol. 28, no. 1, pp. 46–68,
2012.

[46] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine,
Stability and robustness analysis of nonlinear sys-
tems via contraction metrics and sos programming,
Automatica, vol. 44, no. 8, pp. 2163–2170, 2008.

[47] M. Rafferty, Butterflies and buffers, in Proceed-
ings of the 27th International Conference of the Sys-

tem Dynamics Society, Albuquerque, Mexico, USA,
July 26-30 2009.

[48] E. Theodorsson-Norheim, Friedman and quade
tests: Basic computer program to perform nonpara-
metric two-way analysis of variance and multiple
comparisons on ranks of several related samples,
Comput. Biol. Med., vol. 17, no. 2, pp. 85–99, 1987.

[49] M. R. Stoline, The status of multiple comparisons:
simultaneous estimation of all pairwise comparisons
in one-way anova designs, Am. Stat., vol. 35, no. 3,
pp. 134–141, 1981.

[50] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan,
A fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Trans. Evol. Comput., vol. 6, no. 2,
pp. 182–197, 2002.

Hassan Abdelbari received a B.Sc. in
2006 and a M.Sc. in 2010, both in com-
puter science from Faculty of Comput-
ers and Informatics, Zagazig Univer-
sity, Egypt. He is currently working in
his PhD at School of Engineering and
Information Technology at University
of New South Wales, Canberra, Aus-
tralia. His PhD research focuses on

supporting and automating the complex systems modelling
process, system dynamics modelling process in specifi c, by
using methods from computational intelligence fi eld. His
research interests focus on complex systems modelling and
simulation, system dynamics, agent based modelling, neural
networks, evolutionary computation, and computational in-
telligence.

Dr. Shafi holds a PhD in computer sci-
ence, a M.Sc. in telecoms engineering
and a B.Sc. in electrical engineering.
His research focuses on the develop-
ment of computational intelligence
techniques that can be applied at vari-
ous stages of data-centric predictive
modelling in order to provide eff ective
solutions to real world decision prob-

lems in diverse domains including national defence, logistics
and computer security. In this context, he has contributed in
several disciplines including genetic-based machine learn-
ing, game theory and optimisation. He is currently a Lecturer
in the School of Engineering and Information Technology at
UNSW, Canberra. He also provides consultancy to diff erent
Australian Government Departments in the area of data sci-
ence and modelling and simulation in order to support busi-
ness planning.

