
JAISCR, 2018, Vol. 8, No. 2, pp. 121

AN ARMA TYPE PI-SIGMA ARTIFICIAL NEURAL
NETWORK FOR NONLINEAR TIME SERIES

FORECASTING

Esra Akdeniz1, Erol Egrioglu2, Eren Bas2, Ufuk Yolcu3

1Department of Biostatistics, Medical Faculty, Marmara University, Istanbul, Turkey

2Department of Statistics, Faculty of Arts and Science, Forecast Research Laboratory, Giresun University, Giresun,
28100, Turkey

3Department of Econometrics, Faculty of Economic and Administrative Sciences, Forecast Research Laboratory,
Giresun University, Giresun, 28100, Turkey

Submitted: 3rd March 2017; accepted: 22th March 2017

Abstract

Real-life time series have complex and non-linear structures. Artificial Neural Networks
have been frequently used in the literature to analyze non-linear time series. High order
artificial neural networks, in view of other artificial neural network types, are more adapt-
able to the data because of their expandable model order. In this paper, a new recurrent
architecture for Pi-Sigma artificial neural networks is proposed. A learning algorithm
based on particle swarm optimization is also used as a tool for the training of the pro-
posed neural network. The proposed new high order artificial neural network is applied to
three real life time series data and also a simulation study is performed for Istanbul Stock
Exchange data set.
Keywords: High order artificial neural networks, pi-sigma neural network, forecasting,
recurrent neural network, Particle Swarm Optimization.

1 Introduction

A great number of methods that have different
structure and features are utilized for time series
forecasting problem. The used methods can be clas-
sified into two types as model based and data based.
Artificial neural networks (ANNs) are data based
methods with their complicated structure caused by
the hidden layers and also they are commonly used
in time series forecasting. In ANN approaches, the
models undergo change according to data structure
by means of altering the number of hidden layer(s)
or unit(s) and so they can ensure very high compli-
ance with the data. The most common used ANN
type, in time series forecasting literature, is multi-

layer perceptron artificial neural network (MLP-
ANN) that it uses additive aggregation function in
its neurons.

Another widely used ANN type is multiplica-
tive neuron model artificial neural network (MNM-
ANN) introduced by Yadav et al. [1]. MNM-ANN
is composed of one neuron only and it produces
more successful results than MLP-ANN with fewer
parameters under favor of multiplicative aggrega-
tion function. There are different kinds of MNM-
ANN in the literature. While Egrioglu et al. [2]
proposed recurrent multiplicative neuron model ar-
tificial neural network (RMNM-ANN), Gundogdu
et al. [3] presented a new MNM-ANN based on
gaussian activation function. Another ANN type

 10.1515/jaiscr-2018-0009
 – 132

122 Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

is higher order neural networks based on additive
and multiplicative aggregation function. Higher or-
der neural networks such as pi sigma artificial neu-
ral network (PS-ANN) (Rumelhart DE and Mcclel-
land, [4]), higher order processing unit neural net-
work (Giles and Maxwell, [5]), product unit neural
network (PUNN) (Durbin and Rumelhart, [6]), have
been proposed in the literature. Higher order neural
networks have much better ability of learning with
less weights and biases than MLP’s.

PS-ANN proposed by Shin and Ghosh [7] is
also a kind of higher order neural network. Ghosh
and Shin [7] argued that PS-ANN requires less
memory (weights and nodes), and at least two or-
ders of magnitude less number of computations
when compared to MLP-ANN for similar perfor-
mance level, and over a broad class of problems
[8]. [9, 10, 11] used PS-ANN for time series fore-
casting problem. For financial time series predic-
tion an application of ridge polynomial network
formed by adding different degrees of Pi–Sigma
neural networks has been suggested by Ghazali et
al. [9] which is able to find an appropriate input
output mapping of various chaotic financial time se-
ries data with a good performance in learning speed
and generalization capability. [12] realized that hy-
brid genetic algorithm can search out the global op-
timum which is faster than genetic algorithm and
their proposed hybrid genetic algorithm trained Pi-
Sigma network was used to resolve the function op-
timization problem. On the training of PS-ANN,
while Nayak et al. [13] put forward an algorithm in
which particle swarm optimization (PSO) and ge-
netic algorithm (GA) are utilized together, Nayak
et al. [14] proposed a hybrid learning algorithm
based on PSO and gradient descent. [15] suggested
a memory based SPNN. Moreover, there are some
recurrent Pi-Sigma neural networks (R-PS-ANN) in
the literature. Ghazali et al. [8] introduced an R-
PS-ANN that the output of NN is connected to in-
put layer as one-step-lagged and forms a new input.
[16] and Nayak et al. [17] presented Jordan type
R-PS-ANN.

In this study, PS-ANN proposed by Shin
and Ghosh [7] is transformed into a recurrent
structure by making some modifications in neu-
ral network architecture. The proposed new
ANN is called as autoregressive moving average
type PS-ANN (ARMATPS-ANN). The proposed

ARMATPS-ANN has an architecture structure in
which the error terms of the NN are fed-back to in-
put layer as lagged variables. Training of the pro-
posed ANN is carried out by PSO. The second and
third Sections of the study give a summary info
about PS-ANN and PSO, respectively. In the Sec-
tion 4, the proposed ARMATPS-ANN is introduced
and training principle of ANN realized by PSO is
given in the form of an algorithm. The obtained im-
plementation results based on analysis of real-life
and simulated time series data sets are summarized
in the Section 5. In the last Section, obtained find-
ings are emphasized and discussed.

2 Pi-Sigma Artificial Neural Net-
work

PS-ANN was firstly proposed by Shin and Ghosh
[7]. In a PS-ANN structure, the multiplications of
different linear combinations are the output of the
network. The numbers of linear combinations are
the degree of the PS-ANN. The increasing of the de-
gree of PS-ANN causes that the function describes
the relation between the input and output depends
more parameters and more complex network struc-
ture. Although this situation makes certain of more
forecasting results, more parameters in the network
structure causes overfitting problem and as a result
of this, it is needed to more computation time for
the learning algorithm. For this reason, it has to be
careful of learning of the network without memo-
rization by using cross validation methods. The ar-
chitecture of PS-ANN with kth order and nthinput is
given in Figure 1.

The linear combinations of inputs are obtained
via, wi j(i = 1,2, . . . ,N , j = 1,2, . . . ,K) weights,
and biases θ j (j = 1,2, . . . ,K). wi j shows the weight
from ith input to jthhidden layer. θ jshows the biases
value for jth hidden layer. Linear combinations as
much as the number of hidden layers are formed the
outputs of the hidden layers through the linear acti-
vation function. h j shows the output of the hidden
layer and formulate as follows

h j = f1

(
N

∑
i=1

wi jxi +θ j

)
, j = 1,2, . . . ,K. (1)

123AN ARMA TYPE PI-SIGMA ARTIFICIAL NEURAL NETWORK FOR . . .

In this Equation (1), f1 (x) = x shows the linear ac-
tivation function. The output of the network is cal-
culated in Equation 2.

ŷ = f2(
K

∏
j=1

h j) =
1

1+ exp(−∏K
j=1 h j)

. (2)

In this Equation, f2 (x) = 1
1+exp(−x) is logistic

activation function.

Figure 1. The architecture of PS-ANN

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was firstly pro-
posed by Kennedy and Eberhart [18]. PSO is a
stochastic optimization algorithm based on popula-
tion. It is adapted solving of many problems be-
cause it does not need differentiation of the objec-
tive function. There are many modifications of PSO
in the literature. Aladag et al. [19] proposed modi-
fied PSO (MPSO) for the training of multiplicative
seasonal artificial seasonal artificial neural network.
How the MPSO algorithm is implemented is given
below.

Algorithm 1. MPSO algorithm

Step 1. Each kth (k = 1,2, . . . , pn) particles’ posi-
tions are randomly determined and kept in a vector

Xk given as follows

Xk = {xk,1,xk,2, . . . ,xk,d} , k = 1,2, . . . ,pn, (3)

where xk,i (i=1,2,. . . ,d) represents i th position of k
th particle. pn and d represents the number of parti-
cles and positions, respectively.

Step 2. Velocities are randomly determined and
kept in a vector Vk given below.

Vk = {vk,1, . . . ,vk,d} , k = 1,2, . . . ,pn. (4)

Step 3. According to the evaluation function, Pbest
and Gbest particles given in (5) and (6), respec-
tively, are determined.

Pbestk = {pk,1, . . . , pk,d} , k = 1,2, . . . ,pn, (5)

Gbest = {Pg,1, . . . ,Pg,d} , (6)

where Pbestk is a vector stores the positions cor-
responding to the kth particle’s best individual per-
formance, and Gbest represents the best particle,
which has the best evaluation function value, found
so far.

Step 4. Let c1 and c2 represents cognitive and so-
cial coefficients, respectively, and w is the inertia
parameter. Let (c1i, c1 f), (c2i, c2 f), and (w1, w2) be
the intervals which includes possible values for c1,
c2 and w, respectively. At each iteration, these pa-
rameters are calculated by using the formulas given
in (7), (8) and (9).

c1(t) = (c1 f − c1i)
t

maxt
+ c1i, (7)

c2(t) = (c2 f − c2i)
t

maxt
+ c2i, (8)

w(t) = (w2 −w1)
maxt − t

maxt
+w1, (9)

where maxt and t represent maximum iteration
number and current iteration number, respectively.

Step 5. Values of velocities and positions are up-
dated by using the formulas given in (10) and (11),
respectively.

vt+1
i,d =[w× vt

i,d+

+ c1 × rand1 × (pi,d − xi,d)+

+ c2 × rand2 × (pg,d − xi,d)],

(10)

ℎ𝑖𝑖 = 𝑓𝑓1�∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑁𝑁
𝑖𝑖=1 � , 𝑗𝑗 = 1,2, … ,𝐾𝐾 . (1)

Figure 1: The architecture of PS-ANN

In this Equation (1), 𝑓𝑓1(𝑥𝑥) = 𝑥𝑥 shows the linear
activation function. The output of the network is
calculated in Equation 2.

𝑦𝑦� = 𝑓𝑓2(∏ ℎ𝑖𝑖)𝐾𝐾
𝑖𝑖=1 = 1

1+exp (−∏ ℎ𝑗𝑗)𝐾𝐾
𝑗𝑗=1

. (2)

In this Equation, 𝑓𝑓2(𝑥𝑥) = 1
1+exp (−𝑥𝑥)

is logistic

activation function.

3. Particle Swarm Optimization
Particle Swarm Optimization (PSO) was firstly
proposed by Kennedy and Eberhart [18]. PSO is a
stochastic optimization algorithm based on population.

It is adapted solving of many problems because it does
not need differentiation of the objective function.
There are many modifications of PSO in the literature.
Aladag et al. [19] proposed modified PSO (MPSO) for
the training of multiplicative seasonal artificial
seasonal artificial neural network. How the MPSO
algorithm is implemented is given below.

Algorithm 1. MPSO algorithm

Step 1. Each k th (𝑘𝑘 = 1,2, … ,𝑝𝑝𝑝𝑝) particles’
positions are randomly determined and kept in a
vector 𝑋𝑋𝑘𝑘 given as follows

𝑋𝑋𝑘𝑘 = �𝑥𝑥𝑘𝑘,1,𝑥𝑥𝑘𝑘,2, … , 𝑥𝑥𝑘𝑘,𝑑𝑑�, k = 1,2, …, pn , (3)

where 𝑥𝑥𝑘𝑘,𝑖𝑖 (i=1,2,…,d) represents i th position of k th
particle. pn and d represents the number of particles
and positions, respectively.

Step 2. Velocities are randomly determined and kept
in a vector Vk given below.

𝑉𝑉𝑘𝑘 = �𝑣𝑣𝑘𝑘,1,… ,𝑣𝑣𝑘𝑘,𝑑𝑑�, k = 1,2, …, pn . (4)

Step 3. According to the evaluation function, Pbest
and Gbest particles given in (5) and (6), respectively,
are determined.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 = �𝑝𝑝𝑘𝑘,1, … , 𝑝𝑝𝑘𝑘,𝑑𝑑�, k = 1,2, …, pn , (5)

𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑃𝑃𝑔𝑔,1, … , 𝑃𝑃𝑔𝑔,𝑑𝑑� , (6)

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 is a vector stores the positions
corresponding to the k th particle’s best individual
performance, and Gbest represents the best particle,
which has the best evaluation function value, found so
far.

Step 4. Let c1 and c2 represents cognitive and social
coefficients, respectively, and w is the inertia
parameter. Let (c1i, c1f), (c2i, c2f), and (w1, w2) be the
intervals which includes possible values for c1, c2 and

𝒚𝒚�

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑁𝑁

Σ,𝑓𝑓1

Σ,𝑓𝑓1

Σ,𝑓𝑓1 Π, 𝑓𝑓2

1

1

1

W

𝜽𝜽𝟏𝟏

𝜽𝜽𝑲𝑲

Input
Layer

Hidden
Layer

Output
Layer

Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

is higher order neural networks based on additive
and multiplicative aggregation function. Higher or-
der neural networks such as pi sigma artificial neu-
ral network (PS-ANN) (Rumelhart DE and Mcclel-
land, [4]), higher order processing unit neural net-
work (Giles and Maxwell, [5]), product unit neural
network (PUNN) (Durbin and Rumelhart, [6]), have
been proposed in the literature. Higher order neural
networks have much better ability of learning with
less weights and biases than MLP’s.

PS-ANN proposed by Shin and Ghosh [7] is
also a kind of higher order neural network. Ghosh
and Shin [7] argued that PS-ANN requires less
memory (weights and nodes), and at least two or-
ders of magnitude less number of computations
when compared to MLP-ANN for similar perfor-
mance level, and over a broad class of problems
[8]. [9, 10, 11] used PS-ANN for time series fore-
casting problem. For financial time series predic-
tion an application of ridge polynomial network
formed by adding different degrees of Pi–Sigma
neural networks has been suggested by Ghazali et
al. [9] which is able to find an appropriate input
output mapping of various chaotic financial time se-
ries data with a good performance in learning speed
and generalization capability. [12] realized that hy-
brid genetic algorithm can search out the global op-
timum which is faster than genetic algorithm and
their proposed hybrid genetic algorithm trained Pi-
Sigma network was used to resolve the function op-
timization problem. On the training of PS-ANN,
while Nayak et al. [13] put forward an algorithm in
which particle swarm optimization (PSO) and ge-
netic algorithm (GA) are utilized together, Nayak
et al. [14] proposed a hybrid learning algorithm
based on PSO and gradient descent. [15] suggested
a memory based SPNN. Moreover, there are some
recurrent Pi-Sigma neural networks (R-PS-ANN) in
the literature. Ghazali et al. [8] introduced an R-
PS-ANN that the output of NN is connected to in-
put layer as one-step-lagged and forms a new input.
[16] and Nayak et al. [17] presented Jordan type
R-PS-ANN.

In this study, PS-ANN proposed by Shin
and Ghosh [7] is transformed into a recurrent
structure by making some modifications in neu-
ral network architecture. The proposed new
ANN is called as autoregressive moving average
type PS-ANN (ARMATPS-ANN). The proposed

ARMATPS-ANN has an architecture structure in
which the error terms of the NN are fed-back to in-
put layer as lagged variables. Training of the pro-
posed ANN is carried out by PSO. The second and
third Sections of the study give a summary info
about PS-ANN and PSO, respectively. In the Sec-
tion 4, the proposed ARMATPS-ANN is introduced
and training principle of ANN realized by PSO is
given in the form of an algorithm. The obtained im-
plementation results based on analysis of real-life
and simulated time series data sets are summarized
in the Section 5. In the last Section, obtained find-
ings are emphasized and discussed.

2 Pi-Sigma Artificial Neural Net-
work

PS-ANN was firstly proposed by Shin and Ghosh
[7]. In a PS-ANN structure, the multiplications of
different linear combinations are the output of the
network. The numbers of linear combinations are
the degree of the PS-ANN. The increasing of the de-
gree of PS-ANN causes that the function describes
the relation between the input and output depends
more parameters and more complex network struc-
ture. Although this situation makes certain of more
forecasting results, more parameters in the network
structure causes overfitting problem and as a result
of this, it is needed to more computation time for
the learning algorithm. For this reason, it has to be
careful of learning of the network without memo-
rization by using cross validation methods. The ar-
chitecture of PS-ANN with kth order and nthinput is
given in Figure 1.

The linear combinations of inputs are obtained
via, wi j(i = 1,2, . . . ,N , j = 1,2, . . . ,K) weights,
and biases θ j (j = 1,2, . . . ,K). wi j shows the weight
from ith input to jthhidden layer. θ jshows the biases
value for jth hidden layer. Linear combinations as
much as the number of hidden layers are formed the
outputs of the hidden layers through the linear acti-
vation function. h j shows the output of the hidden
layer and formulate as follows

h j = f1

(
N

∑
i=1

wi jxi +θ j

)
, j = 1,2, . . . ,K. (1)

124 Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

xt+1
i,d = xi,d + vt+1

i,d , (11)

where rand1 and rand2 are random values from the
interval [0, 1].

Step 6. Steps 3 to 5 are repeated until a pre-
determined maximum iteration number (maxt) is
reached.

4 Autoregressive Moving Average
Type Pi Sigma Neural Network

Recurrent artificial neural networks produces more
successful forecasting results compared with feed
forward artificial neural networks under favor of
their recurrent mechanism. The error calculated as
the difference between target and output or the out-
put produced by the network in recurrent artificial
neural networks returns as an input to the hidden
or input layer of the network. There are different
types of recurrent ANNs in the literature. In Elman
type recurrent ANN, the output of the network is
given as input to the context layer which employs as
a hidden layer. In Jordan type recurrent ANN, the
output of the network feedbacks to the input layer
as an input. The output produced by network and
the error value are different from each other and as
a superiority of error value, it considers the target
value. In Egrioglu et al. [2], the lagged variables
obtained from the error of the network feed backed
to the input layer and from this aspect it is a recur-
rent artificial network like in linear ARMA models.
Therefore recurrent type proposed by Egrioglu et al.
[2] has similar structure with ARMA model. In the
literature, there are several recurrent architectures
for PS-ANN. [8, 16, 17] proposed Jordan Type re-
current PS-ANN. In these methods, the output of re-
current PS-ANN is linked to the input layer as one
step lagged and shown as a new input. In this paper,
an architecture that is a feedback of the error of the
network used in Egrioglu et al. [2] is applied to PS-
ANN and a new ARMATPS-ANN is proposed. The
proposed architecture is given in Figure 2. When
Table 2 is examined, it is seen that the lagged vari-
ables of et = yt − ŷt series is used as the inputs of
artificial neural networks. The lagged variables are
obtained via “B” back shift operator. The lagged
error variables are linked to the hidden layers with
We weights. Thus, the artificial neural network has

a model as non-linear ARMA model. The output of
ARMATPS-ANN, g shows a non-linear function, is
a function of the weights, lagged variables of error
series and time series.

ŷt =g(yt−1, . . . ,yt−p,et−1, ..,et−q;

Wy,We,θ1, ..,θK)
(12)

et−1, ..,et−q lagged variables are taken as zero for
the first q observations when they cannot calculated.
Some of them can be calculated numerically after
second observation. Wy,We,θ1, ..,θK weights are
totally (p+q)K and optimal weight values are ob-
tained with learning algorithm.

How the output is calculated for a learning sample
in ARMATPS-ANN network is given in steps in Al-
gorithm 2.

Algorithm 2. Calculation of An output of
ARMATPS-ANN for a learning sample

Step 1. Let wyij(i = 1,2, . . . ,p , j = 1,2, . . . ,K)
gives the weights in the linear combinations
for the lagged variables of the time series,
weij(i = 1,2, . . . ,q , j = 1,2, . . . ,K) gives the
weights in linear combinations for the lagged vari-
ables of the error series and θj (j = 1,2, . . . ,K) be
the values of the biases. wyij and weij shows the
weights between the input ith and jth hidden layer
unit, θj shows the biases for jth hidden layer unit.
The linear combination as the number of hidden
layer units passes through the linear activation func-
tion to form the outputs of the hidden layers. hj
shows the output of the hidden layer unit and it is
calculated by the following formula.

h j = f1

(
p

∑
i=1

wyi jyt−i +
q

∑
m=1

wem jet−m +θ j

)
,

j = 1,2, . . . ,K.

(13)

In this Equation, f1 (x) = x shows linear activation
function. In formula (13), the values of the error se-
ries are calculated after the corresponding estima-
tion is obtained, and in the case of not being calcu-
lated, the error value is taken as zero.

Step 2. The output of the network is f2 (x) =
1

1+exp(−x) logistic activation function and it is cal-
culated as follows.

125AN ARMA TYPE PI-SIGMA ARTIFICIAL NEURAL NETWORK FOR . . .

Figure 2. The architecture of ARMATPS-ANN

Figure 2: The architecture of ARMATPS-ANN

𝒚𝒚𝒕𝒕�

𝑦𝑦𝑡𝑡−1

𝑦𝑦𝑡𝑡−2

𝑦𝑦𝑡𝑡−𝑝𝑝

Σ,𝑓𝑓1

Σ,𝑓𝑓1

Σ,𝑓𝑓1 Π, 𝑓𝑓2

1

1

1

Wy

𝜽𝜽𝟏𝟏

𝜽𝜽𝑲𝑲

Input Hidden Output

𝑃𝑃𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡�

𝑃𝑃𝑡𝑡−1

𝑃𝑃𝑡𝑡−2

𝑃𝑃𝑡𝑡−𝑞𝑞

𝐵𝐵

𝐵𝐵2

𝐵𝐵𝑞𝑞

Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

xt+1
i,d = xi,d + vt+1

i,d , (11)

where rand1 and rand2 are random values from the
interval [0, 1].

Step 6. Steps 3 to 5 are repeated until a pre-
determined maximum iteration number (maxt) is
reached.

4 Autoregressive Moving Average
Type Pi Sigma Neural Network

Recurrent artificial neural networks produces more
successful forecasting results compared with feed
forward artificial neural networks under favor of
their recurrent mechanism. The error calculated as
the difference between target and output or the out-
put produced by the network in recurrent artificial
neural networks returns as an input to the hidden
or input layer of the network. There are different
types of recurrent ANNs in the literature. In Elman
type recurrent ANN, the output of the network is
given as input to the context layer which employs as
a hidden layer. In Jordan type recurrent ANN, the
output of the network feedbacks to the input layer
as an input. The output produced by network and
the error value are different from each other and as
a superiority of error value, it considers the target
value. In Egrioglu et al. [2], the lagged variables
obtained from the error of the network feed backed
to the input layer and from this aspect it is a recur-
rent artificial network like in linear ARMA models.
Therefore recurrent type proposed by Egrioglu et al.
[2] has similar structure with ARMA model. In the
literature, there are several recurrent architectures
for PS-ANN. [8, 16, 17] proposed Jordan Type re-
current PS-ANN. In these methods, the output of re-
current PS-ANN is linked to the input layer as one
step lagged and shown as a new input. In this paper,
an architecture that is a feedback of the error of the
network used in Egrioglu et al. [2] is applied to PS-
ANN and a new ARMATPS-ANN is proposed. The
proposed architecture is given in Figure 2. When
Table 2 is examined, it is seen that the lagged vari-
ables of et = yt − ŷt series is used as the inputs of
artificial neural networks. The lagged variables are
obtained via “B” back shift operator. The lagged
error variables are linked to the hidden layers with
We weights. Thus, the artificial neural network has

a model as non-linear ARMA model. The output of
ARMATPS-ANN, g shows a non-linear function, is
a function of the weights, lagged variables of error
series and time series.

ŷt =g(yt−1, . . . ,yt−p,et−1, ..,et−q;

Wy,We,θ1, ..,θK)
(12)

et−1, ..,et−q lagged variables are taken as zero for
the first q observations when they cannot calculated.
Some of them can be calculated numerically after
second observation. Wy,We,θ1, ..,θK weights are
totally (p+q)K and optimal weight values are ob-
tained with learning algorithm.

How the output is calculated for a learning sample
in ARMATPS-ANN network is given in steps in Al-
gorithm 2.

Algorithm 2. Calculation of An output of
ARMATPS-ANN for a learning sample

Step 1. Let wyij(i = 1,2, . . . ,p , j = 1,2, . . . ,K)
gives the weights in the linear combinations
for the lagged variables of the time series,
weij(i = 1,2, . . . ,q , j = 1,2, . . . ,K) gives the
weights in linear combinations for the lagged vari-
ables of the error series and θj (j = 1,2, . . . ,K) be
the values of the biases. wyij and weij shows the
weights between the input ith and jth hidden layer
unit, θj shows the biases for jth hidden layer unit.
The linear combination as the number of hidden
layer units passes through the linear activation func-
tion to form the outputs of the hidden layers. hj
shows the output of the hidden layer unit and it is
calculated by the following formula.

h j = f1

(
p

∑
i=1

wyi jyt−i +
q

∑
m=1

wem jet−m +θ j

)
,

j = 1,2, . . . ,K.

(13)

In this Equation, f1 (x) = x shows linear activation
function. In formula (13), the values of the error se-
ries are calculated after the corresponding estima-
tion is obtained, and in the case of not being calcu-
lated, the error value is taken as zero.

Step 2. The output of the network is f2 (x) =
1

1+exp(−x) logistic activation function and it is cal-
culated as follows.

126 Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

ŷt = f2(
K

∏
j=1

h j) =
1

1+ exp(−∏K
j=1 h j)

. (14)

The output of the network can be calculated for
learning or testing samples by using Algorithm 2.
In order to calculation, there is need to weight and
biases values. The optimal values of weights and bi-
ases are obtained with Algorithm 3 given by MPSO
algorithm.

Algorithm 3. The training of ARMATPS-ANN
with MPSO

Step 1. The parameters of MPSO are determined.
These parameters are pn, c1i, c1 f , c2i, c2 f , w1, w2
and vm, given below.

Let c1 and c2 represents cognitive and social coef-
ficients, respectively, and w is the inertia parameter.
Let (c1i, c1 f), (c2i, c2 f), and (w1, w2) be the inter-
vals which includes possible values for c1, c2 and
w, respectively.

Step 2. Initial values of positions and velocities are
determined. The initial positions and velocities of
each particle in a swarm are randomly generated
from uniform distribution (0,1) and (-vm,vm), re-
spectively.

The positions of a particle are composed of the
values of weights and biases of ARMATPS-ANN
and it is shown in Table 1. A particle has totally
(p+q)K +K positions.

Table 1. Presentation of a particle

Positions Weights
1 wy11
· · · · · ·
pK wypK

pK+1 we11

· · · · · ·
(p+q)K weqK

(p+q)K +1 θ1

· · · · · ·
(p+q)K +K θK

Step 3. Evaluation function values are computed.

Evaluation function values for each particle are cal-
culated by using Algorithm 2 for these particles.
Root mean square error (RMSE) given in (15) is
used as evaluation function.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (15)

where yi, ŷi, n represent real values, forecasts, and
length of the test set, respectively.

Step 4. Pbestk (k = 1,2, . . . , pn) and Gbest are de-
termined due to evaluation function values calcu-
lated. According to the evaluation function, Pbest
and Gbest particles given in (5) and (6), respec-
tively, are determined.

Step 5. The parameters are updated.

The updated values of cognitive coefficient c1, so-
cial coefficient c2, and inertia parameter w are cal-
culated using the formulas given in (7), (8), and (9).

Step 6. New values of positions and velocities are
calculated.

New values of positions and velocities for each par-
ticle are computed by using the formulas given in
(10) and (11). If maximum iteration number is
reached, the algorithm goes to Step 3; otherwise,
it goes to Step 7.

Step 7. The optimal solution is determined.

Algorithm 3 is used in the learning of ARMATPS-
ANN. The data set was firstly separated two parts
as learning and testing set for the using of learning
algorithm. That deal with time series data, the test-
ing test was selected at the end of the time series
as block and so it is provided that the trained net-
work is tested on the most recent data. Although
the choice of the number of particles and the other
parameters in the training of the network may vary
from case to case according to data, there is gener-
ally a priori knowledge of the values of the param-
eters.

The choice of the number of inputs of the net-
work, i.e. the determination of p and q, is deter-
mined by the user through trial and error. However,
it can be used as prior knowledge in the results ob-
tained from classical time series analysis. For in-
stance, if the fit linear model is ARMA(3,2) for the
data; the p and q values in ARMATPS-ANN can be
taken as 3 and 2 respectively. And also, it is pos-
sible to use an optimization algorithm to determine
these values, but the choice of the parameters by
optimization method is not discussed in this study.

127AN ARMA TYPE PI-SIGMA ARTIFICIAL NEURAL NETWORK FOR . . .

5 Applications

To evaluate the performance of the proposed
ARMATPS-ANN, three real-life time series and
a simulation study based on Istanbul Stock Ex-
change (BIST100) time series data were carried out.
The first real-world time series is Australian beer
consumption [20] between 1956 Q1 and 1994 Q1
is used to examine the performance of proposed
method. The last 16 observations of the time se-
ries were used for test set. The graph of time series
is given in Figure 3.

Figure 3. The time series graph of Australian beer
consumption data

The input numbers were changed from 1 to 8,
model order was changed from 2 to 5 when PS-
ANN was applied to data. The input numbers were
changed from 1 to 8 for time series and error se-
ries, model order were changed from 2 to 5 when
ARMATPS-ANN was applied to data. The forecast
results obtained from architecture which produces
the best result for the test data for PS-ANN and
ARMATPS-ANN are given in Table 2. The results
of the methods in Table 2; multiplicative seasonal
neural network proposed by [19], linear and non-
linear neural network proposed by [21], radial ba-
sis multiplicative neuron model neural network pro-
posed by [3], recurrent multiplicative neuron model
neural network proposed by [2] are taken related pa-
pers. Table 2 gives the values of RMSE and mean of
absolute percentage error (MAPE) criteria for fore-
casts. RMSE and MAPE are calculated from the
Equations 15 and 16.

MAPE =
1
n

n

∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣. (16)

Table 2. Forecasting results for Australian beer
consumption

Method RMSE MAPE
[19] 22.1700 0.0394
[21] 18.7888 0.0357
[3] 15.8378 0.0300
[2] 17.8573 0.0329

PS-ANN 20.0886 0.0352
ARMATPS-ANN 15.7100 0.0282

Table 3. Forecasting results for Australian beer
consumption

Wy 1.488314 2.47328 0.62898
-0.89127 0.071054 0.693617
1.088966 -0.08612 -0.84267
-0.36162 -0.00751 0.784274
0.948041 0.143927 0.190732
1.479005 0.622298 -0.11653
-0.37843 0.210134 -0.77739
0.300648 -0.35385 0.583702

We 0.397623 0.416693 1.112363
0.897966 1.007118 -0.94232
0.479383 0.19388 1.889696
0.812074 0.703009 0.517137
0.422582 1.765491 1.691538
0.809445 2.050321 0.053912
1.858237 0.267968 3.080951
0.809625 -0.26929 0.959872

θ -1.60533 -0.94613 -0.31296

The best test result of PS-ANN was produced
with 8 inputs and 2nd order network. The best
test result of ARMATPS-ANN was produced with 8
lagged variables of the time series (p = 8), 8 lagged
variables of the error series (q = 8) and 3th order ar-
chitecture (K = 3).

Optimal weights of ARMATPS-ANN and forecast
values for the test set are given in Tables 3 and 4.
The second real-world time series is the amount of
carbon dioxide measured monthly in Ankara capitol
of Turkey (ANSO) between March 1995 and April
2006. The graph of ANSO time series is presented
in Figure 4.

This time series has both trend and seasonal com-
ponents and its period is 12. The first 124 obser-
vations were used for training and the last 10 ob-
servations are used for test set. Elman type recur-

RMSE = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 , (15)

where yi, 𝑦𝑦�𝑖𝑖, n represent real values, forecasts, and
length of the test set, respectively.

Step 4. Pbestk (k = 1,2, …, pn) and Gbest are
determined due to evaluation function values
calculated. According to the evaluation function, Pbest
and Gbest particles given in (5) and (6), respectively,
are determined.

Step 5. The parameters are updated.
The updated values of cognitive coefficient c1, social
coefficient c2, and inertia parameter w are calculated
using the formulas given in (7), (8), and (9).

Step 6. New values of positions and velocities are
calculated.
New values of positions and velocities for each
particle are computed by using the formulas given in
(10) and (11). If maximum iteration number is
reached, the algorithm goes to Step 3; otherwise, it
goes to Step 7.

Step 7. The optimal solution is determined.

Algorithm 3 is used in the learning of ARMATPS-
ANN. The data set was firstly separated two parts as
learning and testing set for the using of learning
algorithm. That deal with time series data, the testing
test was selected at the end of the time series as block
and so it is provided that the trained network is tested
on the most recent data. Although the choice of the
number of particles and the other parameters in the
training of the network may vary from case to case
according to data, there is generally a priori
knowledge of the values of the parameters.
The choice of the number of inputs of the network, i.e.
the determination of p and q, is determined by the user
through trial and error. However, it can be used as
prior knowledge in the results obtained from classical
time series analysis. For instance, if the fit linear
model is ARMA(3,2) for the data; the p and q values in

ARMATPS-ANN can be taken as 3 and 2 respectively.
And also, it is possible to use an optimization
algorithm to determine these values, but the choice of
the parameters by optimization method is not
discussed in this study.

5. Applications
To evaluate the performance of the proposed
ARMATPS-ANN, three real-life time series and a
simulation study based on Istanbul Stock Exchange
(BIST100) time series data were carried out. The first
real-world time series is Australian beer consumption
([20]) between 1956 Q1 and 1994 Q1 is used to
examine the performance of proposed method. The
last 16 observations of the time series were used for
test set. The graph of time series is given in Fig. 3.

Figure 3: The time series graph of Australian beer
consumption data

The input numbers were changed from 1 to 8, model
order was changed from 2 to 5 when PS-ANN was
applied to data. The input numbers were changed from
1 to 8 for time series and error series, model order
were changed from 2 to 5 when ARMATPS-ANN was
applied to data. The forecast results obtained from
architecture which produces the best result for the test
data for PS-ANN and ARMATPS-ANN are given in
Table 2. The results of the methods in Table 2;
multiplicative seasonal neural network proposed by
[19], linear and nonlinear neural network proposed by
[21], radial basis multiplicative neuron model neural
network proposed by [3], recurrent multiplicative
neuron model neural network proposed by [2] are

200

300

400

500

600 Australian Beer Consumption

Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

ŷt = f2(
K

∏
j=1

h j) =
1

1+ exp(−∏K
j=1 h j)

. (14)

The output of the network can be calculated for
learning or testing samples by using Algorithm 2.
In order to calculation, there is need to weight and
biases values. The optimal values of weights and bi-
ases are obtained with Algorithm 3 given by MPSO
algorithm.

Algorithm 3. The training of ARMATPS-ANN
with MPSO

Step 1. The parameters of MPSO are determined.
These parameters are pn, c1i, c1 f , c2i, c2 f , w1, w2
and vm, given below.

Let c1 and c2 represents cognitive and social coef-
ficients, respectively, and w is the inertia parameter.
Let (c1i, c1 f), (c2i, c2 f), and (w1, w2) be the inter-
vals which includes possible values for c1, c2 and
w, respectively.

Step 2. Initial values of positions and velocities are
determined. The initial positions and velocities of
each particle in a swarm are randomly generated
from uniform distribution (0,1) and (-vm,vm), re-
spectively.

The positions of a particle are composed of the
values of weights and biases of ARMATPS-ANN
and it is shown in Table 1. A particle has totally
(p+q)K +K positions.

Table 1. Presentation of a particle

Positions Weights
1 wy11
· · · · · ·
pK wypK

pK+1 we11

· · · · · ·
(p+q)K weqK

(p+q)K +1 θ1

· · · · · ·
(p+q)K +K θK

Step 3. Evaluation function values are computed.

Evaluation function values for each particle are cal-
culated by using Algorithm 2 for these particles.
Root mean square error (RMSE) given in (15) is
used as evaluation function.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (15)

where yi, ŷi, n represent real values, forecasts, and
length of the test set, respectively.

Step 4. Pbestk (k = 1,2, . . . , pn) and Gbest are de-
termined due to evaluation function values calcu-
lated. According to the evaluation function, Pbest
and Gbest particles given in (5) and (6), respec-
tively, are determined.

Step 5. The parameters are updated.

The updated values of cognitive coefficient c1, so-
cial coefficient c2, and inertia parameter w are cal-
culated using the formulas given in (7), (8), and (9).

Step 6. New values of positions and velocities are
calculated.

New values of positions and velocities for each par-
ticle are computed by using the formulas given in
(10) and (11). If maximum iteration number is
reached, the algorithm goes to Step 3; otherwise,
it goes to Step 7.

Step 7. The optimal solution is determined.

Algorithm 3 is used in the learning of ARMATPS-
ANN. The data set was firstly separated two parts
as learning and testing set for the using of learning
algorithm. That deal with time series data, the test-
ing test was selected at the end of the time series
as block and so it is provided that the trained net-
work is tested on the most recent data. Although
the choice of the number of particles and the other
parameters in the training of the network may vary
from case to case according to data, there is gener-
ally a priori knowledge of the values of the param-
eters.

The choice of the number of inputs of the net-
work, i.e. the determination of p and q, is deter-
mined by the user through trial and error. However,
it can be used as prior knowledge in the results ob-
tained from classical time series analysis. For in-
stance, if the fit linear model is ARMA(3,2) for the
data; the p and q values in ARMATPS-ANN can be
taken as 3 and 2 respectively. And also, it is pos-
sible to use an optimization algorithm to determine
these values, but the choice of the parameters by
optimization method is not discussed in this study.

128 Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

rent ANN ([22]), MNM-ANN, the methods [19, 2,
21], PS-ANN and ARMATPS-ANN methods were
applied to the time series. The results of Elman
type recurrent ANN ([22]), MNM-ANN, [19, 2, 21]
were taken from Egrioglu et al. [2]. The num-
ber of lagged variables of time series and error se-
ries were changed from 1 to 12 when PS-ANN and
ARMATPS-ANN methods were applied to data.
The best architecture of the PS-ANN is architec-
ture with 8 inputs and third order. The best archi-
tecture of ARMATPS-ANN is an architecture with
two lagged variables of time series (p=2), 12 lagged
variables of error series (q=12) and third order. The
MSE (the square of RMSE) and MAPE values for
all methods are given in Table 5.

Table 4. Forecasts of ARMATPS-ANN and test
data

Test Data ARMATPS-ANN
430.50 436.24
600.00 588.94
464.50 467.09
423.60 407.44
437.00 461.93
574.00 563.25
443.00 451.96
410.00 409.08
420.00 422.74
532.00 560.97
432.00 427.05
420.00 406.23
411.00 423.26
512.00 506.39
449.00 422.50
382.00 409.69

Figure 4. Time series graph of ANSO

Table 5. The forecast results for ANSO time series

Method RMSE MAPE
[22] 13.4821 0.099

MNM-ANN 40.2006 0.1822
[19] 91.0100 0.0887
[21] 12.7263 0.0944
[2] 8.6289 0.0761

PS-ANN 14.8600 0.1119
ARMATPS-ANN 5.6233 0.067

The third real world time series data is Turkey Elec-
tricity consumption data which is obtained from
Turkish Energy Ministry. It was monthly obtained
from January 2002 to December 2013. The graph
of time series is given in Figure 5. The last twelve
observations were taken as test set and others are
training set.

Figure 5. Turkey Electricity Consumption data

MLP-ANN, SARIMA, MNM-ANN and [21] meth-
ods were applied to the time series as benchmarks.
The obtained forecast results are given in Table 6.

Table 6. The forecast results for Turkey Electricity
Consumption time series

Method RMSE MAPE
MLP-ANN 1065870606 0.0398

SARIMA (0,1,1)(0,1,1)12 917321409 0.0388
MNM-ANN 813259007 0.0301

[21] 820978567 0.0254
PS-ANN 697763267 0.0281

ARMATPS-ANN 651383248 0.0227

Finally, a simulation study was carried out to in-
vestigate the performance of the proposed method.
In the simulation study, the BIST100 index time se-
ries was used according to the closing prices cal-
culated between 2.1.2009 and 12.8.2015. The time
series is a 5-day series and the total numbers of ob-
servations are 1661 and the graph of time series is

taken related papers. Table 2 gives the values of
RMSE and mean of absolute percentage error (MAPE)
criteria for forecasts. RMSE and MAPE are calculated
from the Equations 15 and 16.

𝑀𝑀𝑀𝑀𝑃𝑃𝐸𝐸 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤�

𝑦𝑦𝑖𝑖
�𝑛𝑛

𝑖𝑖=1 . (16)

Table 2. Forecasting results for Australian beer
consumption.

Method RMSE MAPE
[19] 22.1700 0.0394
[21] 18.7888 0.0357
[3] 15.8378 0.0300
[2] 17.8573 0.0329

PS-ANN 20.0886 0.0352
ARMATPS-ANN 15.7100 0.0282

The best test result of PS-ANN was produced
with 8 inputs and 2nd order network. The best test
result of ARMATPS-ANN was produced with 8
lagged variables of the time series (p=8), 8 lagged
variables of the error series (q=8) and 3th order
architecture (K=3)

Table 3. Forecasting results for Australian beer
consumption.

Wy

1.488314 2.47328 0.62898
-0.89127 0.071054 0.693617
1.088966 -0.08612 -0.84267
-0.36162 -0.00751 0.784274
0.948041 0.143927 0.190732
1.479005 0.622298 -0.11653
-0.37843 0.210134 -0.77739
0.300648 -0.35385 0.583702

We

0.397623 0.416693 1.112363
0.897966 1.007118 -0.94232
0.479383 0.19388 1.889696
0.812074 0.703009 0.517137
0.422582 1.765491 1.691538
0.809445 2.050321 0.053912
1.858237 0.267968 3.080951
0.809625 -0.26929 0.959872

𝜃𝜃 -1.60533 -0.94613 -0.31296

Table 4. Forecasts of ARMATPS-ANN and test data.
.

Test Data ARMATPS-ANN

430.50 436.24
600.00 588.94
464.50 467.09
423.60 407.44
437.00 461.93
574.00 563.25
443.00 451.96
410.00 409.08
420.00 422.74
532.00 560.97
432.00 427.05
420.00 406.23
411.00 423.26
512.00 506.39
449.00 422.50
382.00 409.69

Optimal weights of ARMATPS-ANN and forecast
values for the test set are given in Tables 3 and 4. The
second real-world time series is the amount of carbon
dioxide measured monthly in Ankara capitol of Turkey
(ANSO) between March 1995 and April 2006. The
graph of ANSO time series is presented in Figure 4.

Figure 4: Time series graph of ANSO

This time series has both trend and seasonal
components and its period is 12. The first 124
observations were used for training and the last 10
observations are used for test set. Elman type recurrent
ANN ([22]), MNM-ANN, the methods [19, 2, 21], PS-

0

50

100

150
ANSO…

ANN and ARMATPS-ANN methods were applied to
the time series. The results of Elman type recurrent
ANN ([22]), MNM-ANN, [19, 2, 21] were taken from
Egrioglu et al. [2]. The number of lagged variables of
time series and error series were changed from 1 to 12
when PS-ANN and ARMATPS-ANN methods were
applied to data. The best architecture of the PS-ANN
is architecture with 8 inputs and third order. The best
architecture of ARMATPS-ANN is an architecture
with two lagged variables of time series (p=2), 12
lagged variables of error series (q=12) and third order.
The MSE (the square of RMSE) and MAPE values for
all methods are given in Table 5.
Table 5. The forecast results for ANSO time series.

Method RMSE MAPE
[22] 13.4821 0.099

MNM-ANN 40.2006 0.1822
[19] 91.0100 0.0887
[21] 12.7263 0.0944
[2] 8.6289 0.0761

PS-ANN 14.8600 0.1119
ARMATPS-ANN 5.6233 0.067

The third real world time series data is Turkey
Electricity consumption data which is obtained from
Turkish Energy Ministry. It was monthly obtained
from January 2002 to December 2013. The graph of
time series is given in Fig. 5. The last twelve
observations were taken as test set and others are
training set.

Figure 5: Turkey Electricity Consumption data

MLP-ANN, SARIMA, MNM-ANN and [21] methods
were applied to the time series as benchmarks. The
obtained forecast results are given in Table 6.

Table 6. The forecast results for Turkey Electricity
Consumption time series.

Method RMSE MAPE
MLP-ANN 1065870606 0.0398
SARIMA

(0,1,1)(0,1,1)12
917321409 0.0388

MNM-ANN 813259007 0.0301
[21] 820978567 0.0254

PS-ANN 697763267 0.0281
ARMATPS-ANN 651383248 0.0227

Finally, a simulation study was carried out to
investigate the performance of the proposed method.
In the simulation study, the BIST100 index time series
was used according to the closing prices calculated
between 2.1.2009 and 12.8.2015. The time series is a
5-day series and the total numbers of observations are
1661 and the graph of time series is given in Fig. 6. In
the simulation study, 200 different time series were
randomly drawn from the whole series with a size
between 10% and 12% of the total number of
observations. 10% of the number of observations is
166 and 12% is 200.
In order to extract the time series from the data by the
simulation method, the length of the data is firstly
obtained by generating a random number (ns) from
166 to 200. Second, the number of the first
observation of the time series was determined by
drawing a random number from the range of 1 to
1661-ns. These processes were repeated 200 times and
200 different time series were obtained from the BIST
100 time series.

Figure 6: BIST100 closing price between 2.1.2009
and 12.8.2015

9E+09

1,4E+10

1,9E+10

2,4E+10

JA
N

 2
00

2
O

CT
 2

00
2

JU
L 2

00
3

AP
R

20
04

JA
N

 2
00

5
O

CT
 2

00
5

JU
L 2

00
6

AP
R

20
07

JA
N

 2
00

8
O

CT
 2

00
8

JU
L 2

00
9

AP
R

20
10

JA
N

 2
01

1
O

CT
 2

01
1

JU
L 2

01
2

AP
R

20
13

0

50000

100000
BIST100

129AN ARMA TYPE PI-SIGMA ARTIFICIAL NEURAL NETWORK FOR . . .

given in Figure 6. In the simulation study, 200 dif-
ferent time series were randomly drawn from the
whole series with a size between 10% and 12% of
the total number of observations. 10% of the num-
ber of observations is 166 and 12% is 200.

Figure 6. BIST100 closing price between 2.1.2009
and 12.8.2015

Table 7. The statistics for RMSE values which are
obtained from simulated series

[2] PSNN ARMATPSNN
Mean 2986.90 1272.37 1189.03
Median 2437.31 1106.78 1016.59
Standard
Dev.

1989.05 714.87 640.87

Inter
Quantile
Range

2530.59 719.63 644.90

Minimum 377.41 306.97 319.88
Maximum 9902.74 3831.18 3559.26

In order to extract the time series from the data
by the simulation method, the length of the data is
firstly obtained by generating a random number (ns)
from 166 to 200. Second, the number of the first
observation of the time series was determined by
drawing a random number from the range of 1 to
1661-ns. These processes were repeated 200 times
and 200 different time series were obtained from the
BIST 100 time series.

200 different time series were analyzed by taking
the last 7 observations as test set with [2], PS-ANN
and ARMATPS-ANN methods. Descriptive statis-
tics for the RMSE values obtained as a result of the
analysis are given in Table 7.

Three methods were compared by using
Kruskal Wallis H-test. T-test result shows that
p<0.001. It means there is an important difference
between three methods. If Table 7 is examined,
the smallest median and interquartile range were

obtained from the proposed ARMATPS-ANN. The
similar results were obtained from the other statis-
tics.

6 Conclusion and Discussion

ANN has been commonly used to obtain forecasts
for non-linear time series. Researchers have pro-
posed several ANN types for forecasting problem
in recent years. It is proved that PS-ANN which is
a high order ANN type gives successful forecast-
ing results for time series forecasting problem. PS-
ANN is a feed-forward ANN type. The contribu-
tion of this paper is to propose a recurrent PS-ANN
type. The inputs of the proposed ARMATPS-ANN
are time series like linear ARMA model and the
lagged variables of error series. In the proposed
method, recurrent is performed with error values
which are the difference between the output and the
target value, not with the output values. Thus, the
lagged variables of the error series given as inputs
to the network allow adapting itself for the previous
observations of ANN.

The proposed new ANN is compared with sev-
eral ANN types such as PS-ANN, MLP-ANN,
MNM-ANN, MS, RMNM and Elman. When real-
life time series applications and simulation study re-
sults are examined it is seen that ARMATPS-ANN
gives better prediction results than other ANNs ac-
cording to both RMSE and MAPE criteria. In par-
ticular, ARMATPS-ANN gives better predictive re-
sults than PS-ANN; this case is a proof that adding
a feedback mechanism like this paper is useful. Fu-
ture work will focus on a training algorithm that
will not be affected by outliers for ARMATPS-
ANN and hybridization of ARMATPS-ANN with
classical linear time series models.

References
[1] R.N. Yadav, P.K. Kalra, J. John, Time series predic-

tion with single multiplicative neuron model, Ap-
plied Soft Computing, 7, 2007, 1157-1163.

[2] E. Egrioglu, C.H. Aladag, U. Yolcu, and E. Bas, Re-
current multiplicative neuron model artificial neural
network for non-linear time series forecasting, Neu-
ral Processing Letters 41(2), 2015, 249-258.

[3] O. Gundogdu, E. Egrioglu, C.H. Aladag, and U.
Yolcu, Multiplicative neuron model artificial neural

ANN and ARMATPS-ANN methods were applied to
the time series. The results of Elman type recurrent
ANN ([22]), MNM-ANN, [19, 2, 21] were taken from
Egrioglu et al. [2]. The number of lagged variables of
time series and error series were changed from 1 to 12
when PS-ANN and ARMATPS-ANN methods were
applied to data. The best architecture of the PS-ANN
is architecture with 8 inputs and third order. The best
architecture of ARMATPS-ANN is an architecture
with two lagged variables of time series (p=2), 12
lagged variables of error series (q=12) and third order.
The MSE (the square of RMSE) and MAPE values for
all methods are given in Table 5.
Table 5. The forecast results for ANSO time series.

Method RMSE MAPE
[22] 13.4821 0.099

MNM-ANN 40.2006 0.1822
[19] 91.0100 0.0887
[21] 12.7263 0.0944
[2] 8.6289 0.0761

PS-ANN 14.8600 0.1119
ARMATPS-ANN 5.6233 0.067

The third real world time series data is Turkey
Electricity consumption data which is obtained from
Turkish Energy Ministry. It was monthly obtained
from January 2002 to December 2013. The graph of
time series is given in Fig. 5. The last twelve
observations were taken as test set and others are
training set.

Figure 5: Turkey Electricity Consumption data

MLP-ANN, SARIMA, MNM-ANN and [21] methods
were applied to the time series as benchmarks. The
obtained forecast results are given in Table 6.

Table 6. The forecast results for Turkey Electricity
Consumption time series.

Method RMSE MAPE
MLP-ANN 1065870606 0.0398
SARIMA

(0,1,1)(0,1,1)12
917321409 0.0388

MNM-ANN 813259007 0.0301
[21] 820978567 0.0254

PS-ANN 697763267 0.0281
ARMATPS-ANN 651383248 0.0227

Finally, a simulation study was carried out to
investigate the performance of the proposed method.
In the simulation study, the BIST100 index time series
was used according to the closing prices calculated
between 2.1.2009 and 12.8.2015. The time series is a
5-day series and the total numbers of observations are
1661 and the graph of time series is given in Fig. 6. In
the simulation study, 200 different time series were
randomly drawn from the whole series with a size
between 10% and 12% of the total number of
observations. 10% of the number of observations is
166 and 12% is 200.
In order to extract the time series from the data by the
simulation method, the length of the data is firstly
obtained by generating a random number (ns) from
166 to 200. Second, the number of the first
observation of the time series was determined by
drawing a random number from the range of 1 to
1661-ns. These processes were repeated 200 times and
200 different time series were obtained from the BIST
100 time series.

Figure 6: BIST100 closing price between 2.1.2009
and 12.8.2015

9E+09

1,4E+10

1,9E+10

2,4E+10

JA
N

 2
00

2
O

CT
 2

00
2

JU
L 2

00
3

AP
R

20
04

JA
N

 2
00

5
O

CT
 2

00
5

JU
L 2

00
6

AP
R

20
07

JA
N

 2
00

8
O

CT
 2

00
8

JU
L 2

00
9

AP
R

20
10

JA
N

 2
01

1
O

CT
 2

01
1

JU
L 2

01
2

AP
R

20
13

0

50000

100000
BIST100

Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

rent ANN ([22]), MNM-ANN, the methods [19, 2,
21], PS-ANN and ARMATPS-ANN methods were
applied to the time series. The results of Elman
type recurrent ANN ([22]), MNM-ANN, [19, 2, 21]
were taken from Egrioglu et al. [2]. The num-
ber of lagged variables of time series and error se-
ries were changed from 1 to 12 when PS-ANN and
ARMATPS-ANN methods were applied to data.
The best architecture of the PS-ANN is architec-
ture with 8 inputs and third order. The best archi-
tecture of ARMATPS-ANN is an architecture with
two lagged variables of time series (p=2), 12 lagged
variables of error series (q=12) and third order. The
MSE (the square of RMSE) and MAPE values for
all methods are given in Table 5.

Table 4. Forecasts of ARMATPS-ANN and test
data

Test Data ARMATPS-ANN
430.50 436.24
600.00 588.94
464.50 467.09
423.60 407.44
437.00 461.93
574.00 563.25
443.00 451.96
410.00 409.08
420.00 422.74
532.00 560.97
432.00 427.05
420.00 406.23
411.00 423.26
512.00 506.39
449.00 422.50
382.00 409.69

Figure 4. Time series graph of ANSO

Table 5. The forecast results for ANSO time series

Method RMSE MAPE
[22] 13.4821 0.099

MNM-ANN 40.2006 0.1822
[19] 91.0100 0.0887
[21] 12.7263 0.0944
[2] 8.6289 0.0761

PS-ANN 14.8600 0.1119
ARMATPS-ANN 5.6233 0.067

The third real world time series data is Turkey Elec-
tricity consumption data which is obtained from
Turkish Energy Ministry. It was monthly obtained
from January 2002 to December 2013. The graph
of time series is given in Figure 5. The last twelve
observations were taken as test set and others are
training set.

Figure 5. Turkey Electricity Consumption data

MLP-ANN, SARIMA, MNM-ANN and [21] meth-
ods were applied to the time series as benchmarks.
The obtained forecast results are given in Table 6.

Table 6. The forecast results for Turkey Electricity
Consumption time series

Method RMSE MAPE
MLP-ANN 1065870606 0.0398

SARIMA (0,1,1)(0,1,1)12 917321409 0.0388
MNM-ANN 813259007 0.0301

[21] 820978567 0.0254
PS-ANN 697763267 0.0281

ARMATPS-ANN 651383248 0.0227

Finally, a simulation study was carried out to in-
vestigate the performance of the proposed method.
In the simulation study, the BIST100 index time se-
ries was used according to the closing prices cal-
culated between 2.1.2009 and 12.8.2015. The time
series is a 5-day series and the total numbers of ob-
servations are 1661 and the graph of time series is

130 Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

network based on gauss activation function, Neural
Computing and Applications 27(4), 2015, 927-935

[4] D.E. Rumelhart, and J.L. Mcclelland, Parallel dis-
tributed processing: explorations in the microstruc-
ture of cognition, Cambridge (Britian): MIT Press,
1986.

[5] C.L. Giles, and T. Maxwell, Learning, invariance,
and generalization in a high-order neural network,
Appl Opt, 26(23), 1978, 4972–8.

[6] R. Durbin, and D.E. Rumelhart, Product units: a
computationally powerful and biologically plausi-
ble extension to back propagation networks, Neural
Computation, 1, 1989:133–42.

[7] Y. Shin, and J. Gosh, The Pi-sigma Network: An ef-
ficient higher-order neural network for pattern clas-
sification and function approximation. In Proceed-
ings of the International Joint Conference on Neural
Networks, 1991.

[8] R. Ghazali. A. Husaini, L.H. Ismail, T. Herawan,
and Y.M. Hassim, The performance of a recurrent
HONN for temperature time series prediction, 2014
International Joint Conference on Neural Networks
(IJCNN), July 6-11, Proceeding Book, page 518-
524, Beijing, China, 2014.

[9] R. Ghazali. A. Husaini, and W. El-Deredy, Applica-
tion of ridge polynomial neural networks to financial
time series prediction. In: 2006 International joint
conference on neural networks; July, 16–21, 2006,
913–20.

[10] R. Ghazali, A.J. Hussain, P. Liatsis, and H. Taw-
fik, The application of ridge polynomial neural net-
work to multi-step ahead financial time series pre-
diction, Neural Computing & Applications, 17(3),
2008, 311–323.

[11] H. Tawfik, and P. Liatsis, Prediction of non-linear
time-series using higher-order neural networks, Pro-
ceeding IWSSIP’97 Conference, Poznan, Poland,
1977.

[12] N. Yong, and D. Wei, A hybrid genetic learning al-
gorithm for Pi– sigma neural network and the analy-
sis of its convergence, In: IEEE fourth international
conference on natural computation, 19–23, 2008

[13] J. Nayak, B. Naik, and H.S. Behera, A hybrid
PSO-GA based Pi sigma neural network (PSNN)
with standard back propagation gradient descent
learning for classification. International Conference
on Control, Instrumentation, Communication and
Computational Technologies, ICCICCT 2014, art.
no. 6993082, 878-885, 2014b.

[14] J. Nayak, B. Naik, and H.S. Behera, and A. Abra-
ham, Particle swarm optimization based higher or-
der neural network for classification, Smart Innova-
tion, Systems and Technologies, 31, 2015, 401-414.

[15] L. Chien-Kuo, Memory-based Sigma–Pi–Sigma
neural network, IEEE SMC, TP1F5; 2002, 112–8.

[16] A.J. Hussain, and P. Liatsis, Recurrent Pi–Sigma
networks for DPCM image coding, Neurocomput-
ing, 55, 2002, 363–82.

[17] J. Nayak, D.P. Kanungo, B. Naik, and H.S. Behera,
A higher order evolutionary Jordan Pi-sigma neural
network with gradient descent learning for classifi-
cation , 2014 International Conference on High Per-
formance Computing and Applications, ICHPCA
2014, Article number 7045328.

[18] J. Kennedy, R. Eberhart, Particle swarm optimiza-
tion, In Proceedings of IEEE International Confer-
ence on Neural Networks, Piscataway, NJ, USA,
IEEE Press., 1995, 1942–1948.

[19] C.H. Aladag, U. Yolcu, and E. Egrioglu, A new
multiplicative seasonal neural network model based
on particle swarm optimization, Neural Processing
Letters 37(3), 2013, 251-262.

[20] G. Janacek, Practical time series. Oxford Univer-
sity Press Inc., New York, 156, 2001.

[21] U. Yolcu, E. Egrioglu, C.H. Aladag, A new linear
& nonlinear artificial neural network model for time
series forecasting, Decision Support Systems, 2013,
1340–1347.

[22] J.L. Elman, Finding structure in time, Cognitive
Science, 14 (2), 1990, 179–211.

Esra Akdeniz is an associate profes-
sor at Marmara University, Turkey.
She received the PhD degree in statis-
tics from Gazi University, Turkey, Her
research interests include statistical
analysis, regression analysis, and time
series.

Erol Egrioglu is a professor at Giresun
University, Turkey. He received the
BSc degree in statistics from the Uni-
versity of Ondokuz Mayis Turkey,
in 1998. He received the MSc degree
(MSc thesis title: Bayesian analysis
of ARMA model and an application)
in statistics at the Faculty of Science
and Arts of the University of Ondokuz

131

Mayis, Turkey, in 2002 and the PhD degree in statistics at the
Faculty of Science, of the University of Hacettepe, Turkey,
in 2006. His research interests include time series analysis,
bayesian approaches, fuzzy time series and artifi cial neu-
ral networks, heuristic and evolutionary algorithms, robust
methods and bootstrap methods.

Eren Bas is an assistant professor at
Giresun University, Turkey. He re-
ceived the BSc, the MSc (MSc thesis
title: A new approach based on the ge-
netic algorithm for fuzzy time series
analysis) and the PhD (A new robust
learning algorithm with multiplica-
tive neuron model in artifi cial neural
networks) degrees in statistics from

the University of Ondokuz Mayis, Turkey, in 2009, 2011 and

2014, respectively. His research interests include fuzzy time
series, artifi cial neural networks, heuristic and evolutionary
algorithms and robust methods.

Ufuk Yolcu is an associate professor
at Giresun University, Turkey. He re-
ceived the BSc, the MSc (MSc thesis
title: High order fuzzy time series
forecasting model based on artifi cial
neural networks) and the PhD (PhD
thesis title: Multivariate analysis in
fuzzy time series) degrees in statistics
from the University of Ondokuz May-

is, Turkey, in 2003, 2008 and 2011, respectively. His research
interests include fuzzy systems, fuzzy time series, artifi cial
neural networks, heuristic and evolutionary algorithms, ro-
bust methods and bootstrap methods.

AN ARMA TYPE PI-SIGMA ARTIFICIAL NEURAL NETWORK FOR . . .

given in Figure 6. In the simulation study, 200 dif-
ferent time series were randomly drawn from the
whole series with a size between 10% and 12% of
the total number of observations. 10% of the num-
ber of observations is 166 and 12% is 200.

Figure 6. BIST100 closing price between 2.1.2009
and 12.8.2015

Table 7. The statistics for RMSE values which are
obtained from simulated series

[2] PSNN ARMATPSNN
Mean 2986.90 1272.37 1189.03
Median 2437.31 1106.78 1016.59
Standard
Dev.

1989.05 714.87 640.87

Inter
Quantile
Range

2530.59 719.63 644.90

Minimum 377.41 306.97 319.88
Maximum 9902.74 3831.18 3559.26

In order to extract the time series from the data
by the simulation method, the length of the data is
firstly obtained by generating a random number (ns)
from 166 to 200. Second, the number of the first
observation of the time series was determined by
drawing a random number from the range of 1 to
1661-ns. These processes were repeated 200 times
and 200 different time series were obtained from the
BIST 100 time series.

200 different time series were analyzed by taking
the last 7 observations as test set with [2], PS-ANN
and ARMATPS-ANN methods. Descriptive statis-
tics for the RMSE values obtained as a result of the
analysis are given in Table 7.

Three methods were compared by using
Kruskal Wallis H-test. T-test result shows that
p<0.001. It means there is an important difference
between three methods. If Table 7 is examined,
the smallest median and interquartile range were

obtained from the proposed ARMATPS-ANN. The
similar results were obtained from the other statis-
tics.

6 Conclusion and Discussion

ANN has been commonly used to obtain forecasts
for non-linear time series. Researchers have pro-
posed several ANN types for forecasting problem
in recent years. It is proved that PS-ANN which is
a high order ANN type gives successful forecast-
ing results for time series forecasting problem. PS-
ANN is a feed-forward ANN type. The contribu-
tion of this paper is to propose a recurrent PS-ANN
type. The inputs of the proposed ARMATPS-ANN
are time series like linear ARMA model and the
lagged variables of error series. In the proposed
method, recurrent is performed with error values
which are the difference between the output and the
target value, not with the output values. Thus, the
lagged variables of the error series given as inputs
to the network allow adapting itself for the previous
observations of ANN.

The proposed new ANN is compared with sev-
eral ANN types such as PS-ANN, MLP-ANN,
MNM-ANN, MS, RMNM and Elman. When real-
life time series applications and simulation study re-
sults are examined it is seen that ARMATPS-ANN
gives better prediction results than other ANNs ac-
cording to both RMSE and MAPE criteria. In par-
ticular, ARMATPS-ANN gives better predictive re-
sults than PS-ANN; this case is a proof that adding
a feedback mechanism like this paper is useful. Fu-
ture work will focus on a training algorithm that
will not be affected by outliers for ARMATPS-
ANN and hybridization of ARMATPS-ANN with
classical linear time series models.

References
[1] R.N. Yadav, P.K. Kalra, J. John, Time series predic-

tion with single multiplicative neuron model, Ap-
plied Soft Computing, 7, 2007, 1157-1163.

[2] E. Egrioglu, C.H. Aladag, U. Yolcu, and E. Bas, Re-
current multiplicative neuron model artificial neural
network for non-linear time series forecasting, Neu-
ral Processing Letters 41(2), 2015, 249-258.

[3] O. Gundogdu, E. Egrioglu, C.H. Aladag, and U.
Yolcu, Multiplicative neuron model artificial neural

Esra Akdeniz, Erol Egrioglu, Eren Bas, Ufuk Yolcu

network based on gauss activation function, Neural
Computing and Applications 27(4), 2015, 927-935

[4] D.E. Rumelhart, and J.L. Mcclelland, Parallel dis-
tributed processing: explorations in the microstruc-
ture of cognition, Cambridge (Britian): MIT Press,
1986.

[5] C.L. Giles, and T. Maxwell, Learning, invariance,
and generalization in a high-order neural network,
Appl Opt, 26(23), 1978, 4972–8.

[6] R. Durbin, and D.E. Rumelhart, Product units: a
computationally powerful and biologically plausi-
ble extension to back propagation networks, Neural
Computation, 1, 1989:133–42.

[7] Y. Shin, and J. Gosh, The Pi-sigma Network: An ef-
ficient higher-order neural network for pattern clas-
sification and function approximation. In Proceed-
ings of the International Joint Conference on Neural
Networks, 1991.

[8] R. Ghazali. A. Husaini, L.H. Ismail, T. Herawan,
and Y.M. Hassim, The performance of a recurrent
HONN for temperature time series prediction, 2014
International Joint Conference on Neural Networks
(IJCNN), July 6-11, Proceeding Book, page 518-
524, Beijing, China, 2014.

[9] R. Ghazali. A. Husaini, and W. El-Deredy, Applica-
tion of ridge polynomial neural networks to financial
time series prediction. In: 2006 International joint
conference on neural networks; July, 16–21, 2006,
913–20.

[10] R. Ghazali, A.J. Hussain, P. Liatsis, and H. Taw-
fik, The application of ridge polynomial neural net-
work to multi-step ahead financial time series pre-
diction, Neural Computing & Applications, 17(3),
2008, 311–323.

[11] H. Tawfik, and P. Liatsis, Prediction of non-linear
time-series using higher-order neural networks, Pro-
ceeding IWSSIP’97 Conference, Poznan, Poland,
1977.

[12] N. Yong, and D. Wei, A hybrid genetic learning al-
gorithm for Pi– sigma neural network and the analy-
sis of its convergence, In: IEEE fourth international
conference on natural computation, 19–23, 2008

[13] J. Nayak, B. Naik, and H.S. Behera, A hybrid
PSO-GA based Pi sigma neural network (PSNN)
with standard back propagation gradient descent
learning for classification. International Conference
on Control, Instrumentation, Communication and
Computational Technologies, ICCICCT 2014, art.
no. 6993082, 878-885, 2014b.

[14] J. Nayak, B. Naik, and H.S. Behera, and A. Abra-
ham, Particle swarm optimization based higher or-
der neural network for classification, Smart Innova-
tion, Systems and Technologies, 31, 2015, 401-414.

[15] L. Chien-Kuo, Memory-based Sigma–Pi–Sigma
neural network, IEEE SMC, TP1F5; 2002, 112–8.

[16] A.J. Hussain, and P. Liatsis, Recurrent Pi–Sigma
networks for DPCM image coding, Neurocomput-
ing, 55, 2002, 363–82.

[17] J. Nayak, D.P. Kanungo, B. Naik, and H.S. Behera,
A higher order evolutionary Jordan Pi-sigma neural
network with gradient descent learning for classifi-
cation , 2014 International Conference on High Per-
formance Computing and Applications, ICHPCA
2014, Article number 7045328.

[18] J. Kennedy, R. Eberhart, Particle swarm optimiza-
tion, In Proceedings of IEEE International Confer-
ence on Neural Networks, Piscataway, NJ, USA,
IEEE Press., 1995, 1942–1948.

[19] C.H. Aladag, U. Yolcu, and E. Egrioglu, A new
multiplicative seasonal neural network model based
on particle swarm optimization, Neural Processing
Letters 37(3), 2013, 251-262.

[20] G. Janacek, Practical time series. Oxford Univer-
sity Press Inc., New York, 156, 2001.

[21] U. Yolcu, E. Egrioglu, C.H. Aladag, A new linear
& nonlinear artificial neural network model for time
series forecasting, Decision Support Systems, 2013,
1340–1347.

[22] J.L. Elman, Finding structure in time, Cognitive
Science, 14 (2), 1990, 179–211.

