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Abstract

This paper proposes a modified particle swarm optimization (PSO) algorithm that can be
used to solve a variety of fuzzy nonlinear equations, i.e. fuzzy polynomials and expo-
nential equations. Fuzzy nonlinear equations are reduced to a number of interval nonlin-
ear equations using alpha cuts. These equations are then sequentially solved using the
proposed methodology. Finally, the membership functions of the fuzzy solutions are con-
structed using the interval results at each alpha cut. Unlike existing methods, the proposed
algorithm does not impose any restriction on the fuzzy variables in the problem. It is de-
signed to work for equations containing both positive and negative fuzzy sets and even
for the cases when the support of the fuzzy sets extends across 0, which is a particularly
problematic case.

Keywords: type-1 and type-2 fuzzy sets; polynomial and exponential equations; particle

swarm optimization.

1 Introduction

The mathematical space of crisp nonlinear
equations is a very well-studied field. However,
in many engineering applications it is common to
encounter variables that cannot be described with
crisp quantities. Various methods of quantifying
these uncertainties have been developed over the
years, e.g. intervals and fuzzy sets. However,
solving equations, especially non-linear equations,
containing these uncertain variables is not trivial.
In this paper we propose a Particle Swarm Opti-
mization (PSO) algorithm for solving a family of
type-1 and interval type-2 fuzzy nonlinear equa-
tions. These equations include fuzzy polynomials
like Eq.(1) and exponential equations like Eq. (2).

ag'+b - évrd=3, (1)

aexp(Xi+b) =z, (2)

where @, b, ¢, d, and 7 are known convex fuzzy
quantities and ¥ is the unknown fuzzy variable. To
our knowledge there are very few results on solving
these types of equations, even though applications
for these fuzzy nonlinear equations can be found in
various fields of pure and applied mathematics and
engineering.

Previously, Asady et al. [1, 2] proposed an it-
erative technique for solving fuzzy polynomials us-
ing Newton’s method by reducing them down to a
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set of parametric equations, however this method
only works if the initial guess is close to the ex-
act solution. Moreover, if convergence does not oc-
cur quickly, iterative techniques are problematic as
they unnecessarily expand the support of the fuzzy
set resulting in vague approximations. At a later
time, Abbasbandy et al. explored a steepest descent
method using parametric equations [3], which pro-
duces similar problems as previously mentioned.
Abbasbandy et al. also proposed using neural net-
works to solve fuzzy polynomials [4] and system
of fuzzy polynomial equations [5], but they con-
sider the unknown variable x to be a crisp quantity.
Boukezzoula and Marteau [6] proposed a theoreti-
cal method of solving fuzzy quadratic equations in
the form @x?+b% = & However, their method can
only be applied when @ and ¢ have the same sign
and under the assumption that the unknown vari-
able ¥ is either positive or negative and does not ac-
count for the case when the membership function of
X, or any fuzzy quantity in the problem, crosses 0.
Moreover, their method is limited to second order
fuzzy nonlinear equations and cannot be extended
to higher orders, which greatly limits the applicabil-
ity of the algorithm. Few years later, Zhou and Gan
[7] proposed a Hybrid Conjugate Gradient Method
for solving fuzzy non-linear equations of any order.
Similar to [6], the fuzzy equations are reduced to a
set of crisp nonlinear equations under the assump-
tion that the unknown variable, X, is either positive
or negative. Although this algorithm can be ex-
tended to higher orders, it only works when all co-
efficients are positive. This algorithm also does not
consider the case when ¥ contains 0 in its support.

Unlike the aforementioned methodologies, the
algorithm we propose can be used to solve a variety
of type-1 and interval type-2 fuzzy nonlinear equa-
tions of any order, without any type of restriction on
the coefficients or the solution. Moreover, the pro-
posed method also works when the support of any
fuzzy set in the problem extends across 0.

The paper is organized as follows. In Sec. 2 we
briefly discuss some preliminaries in order to clarify
the terminology and notations used in the latter sec-
tions. Sec. 3 will include discussions on PSO and
specifics on how its applied in the given context.
Two relevant applications are presented in Sec. 4,
and conclusions are drawn in Sec. 5.

2 Preliminaries

A fuzzy set a defined in the universe of dis-
course X is an ordered pair @ = {(x,uz (x) | x € X)}.
Each value in the set x € X, has a corresponding
membership value uz (x) — [0,1]. The elements
with a membership value of 0 are considered to be
not included in the set, while the elements with a
membership value of 1 are considered to be fully in-
cluded. Similarly, the elements with a membership
value between 0 and 1 are considered to be fuzzy
members.

In this paper, the tilde symbol placed above a
lowercase letter is used to denote a fuzzy set, e.g. £.
Type-1 fuzzy quantities with a triangular member-
ship function are denoted by " placed in-front-of
a set of three values enclosed in parenthesis, e.g.
t'(8,10,11). The three values represent the lower-
bound, center, and upper-bound values of the fuzzy
set respectively, where the superscript value, m, on
the letter # represents the membership value of the
center element. It is implied that the lower and
upper bounds always have a membership value of
0. Similarly, interval type-2 fuzzy quantities are
denoted by the type-1 representation of the upper
and lower membership functions enclosed in curly

b k t t1(1’273)u
rackets €.2. .
81 108(1.1,2,2.9)"

In this paper, the alpha cut method is used to
reduce the fuzzy problem into a number of interval
problems which are then sequentially solved using
the proposed method. As stated by Zimmerman in
[8], “The crisp set of elements that belong to the
fuzzy set a at least to the degree o is called the o-
level set (or simply the o-cut) ag, = {x € X : pz(x) >
o} where a € [0,1]”. The a-cut operation carried
out on a convex fuzzy set results in an interval.

For example, for each o € [0, 1], the fuzzy non-
linear equations given in (1) and (2) will reduce to
an interval nonlinear equation in the form of (3) and

4).
Aot b‘xx“”*I v CocXee +doe —Zocs 3)

AocXP (X + Dec) =Zce. 4

Where a.., b., ¢, d.., and z.. are known interval
quantities derived from the respective fuzzy quanti-
ties and X.. is the unknown interval variable. Our
methodology is to solve several sets of interval



PARTICLE SWARM OPTIMIZATION FOR ...

105

equations resulting from o-cuts and then to con-
struct the membership function of the fuzzy solu-
tion using the interval results.

3 Particle Swarm Optimization
(PSO)

3.1 Background

Originally introduced in 1995 by Kennedy and
Eberhard, PSO is a search algorithm designed to
simulate the social behavior of flocks of birds and
schools of fish [9]. In some ways, PSO is similar to
evolutionary computation techniques like Genetic
Algorithms, but does not incorporate any evolution
operators. Here, the particles, initiated randomly in
the multidimensional search space, are allowed to
fly around while being influenced by the best known
optimums.

Generally, at every iteration, ¢, each parti-
cle, x;) = [x,-l(’),xiz(t),--- ,x,-d(’)], is assigned a
velocity, vi®) = [v;; @ v;; @ ... v;;)], according
to its current position and the best known po-
sitions in the d-dimensional space. The ve-
locity of the given particle for the succeeding
iteration, v;(+1) = [y, (1) v (F1) Loy, 0FD] s
a function of its current velocity, v;("), current
position, x,-(t), its best known position, pbest; =
[pbest;,, pbest;y,- -, pbest;;|, and the position of
the best particle amongst all particles in the group,
gbest = [gbest |, gbest,,--- ,gbest .

vglﬂ) =w-vig+
cLer (pbestid —xid(’>) + (5)
ca-r2- (gbesty —xia"),
2y = i 4 Y (6)
i=1.2, 0 d=12,m,

where 7 is the total number of particles, m is the to-
tal number of dimensions, ¢ is the pointer of the cur-
rent iteration, w is the inertia weight factor, cl and
¢2 are acceleration constants commonly set equal to
2.0, r; and rp are randomly generated values with
uniform distribution in [0,1], v;(*) is the velocity of
particle i during iteration f, x¥) is the position of
particle i during iteration ¢.

In general, the inertia weight factor, w, is ini-
tially set to 0.9 and decreased linearly to 0.4 accord-
ing to (7).

09-04
9— ——x

itermax

w=0. t (7)

At each iteration, the current positions of the
particles are evaluated using the evaluation func-
tion, f(x), if the evaluation value of the given parti-
cle’s current position, f(x;")), is less than or equal
to its previously known best position, f(pbest;),
then pbest; is set equal to x;'. If the best f(pbest;) is
less than or equal to the previously known f(gbest),
then gbest is set equal to the best pbest;. This
process is repeated until f (x;*)) =0 or until t =
itermay. The optimum point is said to be found if
convergence occurs or if a point where f (x;)) =0
is located.

3.2 PSO for Fuzzy Polynomial Equations

In our case, once the fuzzy nonlinear equation
is reduced to an interval nonlinear equation at each
o<-cut, the unknown fuzzy variable X is also conse-
quently reduced to an interval X.. = [x, X|.

Since we are dealing with a nonlinear equation,
existence of multiple solutions should be acknowl-
edged. In the case of intervals, it is necessary to
consider three cases.

Case 1: x<0andx <0
Case2: x<0andx>0
Case3:x>0andx >0

Therefore, in order to explore all possible so-
lutions, it is necessary to have three independent
groups of particles, each constrained to the search
area of one of the aforementioned cases respec-
tively. Particles belonging to any given group are al-
lowed to explore within their respective search area
while only being influenced by other members of
the same group. However, it is also important to
consider the application while solving these prob-
lems. For instance, if the application only requires
a positive solution then only one group, exploring
the case 3 region, will be needed.

At each iteration, the position of each particle,
x;(1) = [x,-l(’),x,Q(’)], where x = min(x,-l(’),xl-z(’)) and
X = max(xil(t),x,-z(t)), is evaluated using (8).
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F() =-zl+E-Z,  ®

where interval z.=[z,z] is given, and the interval
Z; = [Z;,Z;] is obtained by substituting the current
position of the given particle, x;() = [x,'l(’),xl-g(’)},

into the problem equation, i.e. (9) or (10).

Zi =a(x\")" + b.. (xi(t))n_l ©
+Co< <x1(t)> n+d« 5
Z; = awexp(x!) 4 boo). (10)

Itis worth noting that standard algebraic proper-
ties do not always extend well to intervals, therefore
we strictly adhere to Moore’s native form [10] and
the theoretical results from our previous work [11]
while evaluating these interval functions.

As mentioned in Sec.3.1 f (Xi(’)) at each itera-
tion is compared to the previously known f(pbest;)
and f(gbest). Then the velocity and position of the
given particle for the succeeding iteration is com-
puted using (5) and (6). This process is repeated
until £ (x;")) = 0 is achieved for all three groups,
or if t = itery,,. When f (X,'(t)) = 0 is achieved,
then the solution is said to be found. If convergence
occurs at a point where f (xi(’)) = 0 then the given
point can be taken as an approximation, but the ex-
istence of the exact solution in the given region can-
not be proved or disproved. If convergence does not
occur, then two possibilities must be considered.

First, iter,;,, may not be sufficient and should be
increased and search parameters may have to be
tuned; or it is very likely that multiple approxima-
tions resulting in the same evaluation value exists in
the given search area but not an exact solution that
satisfies the problem. For better understanding, a
sequential illustration of the proposed methodology
can be seen on Figure 1.

In order to better demonstrate our methodol-
ogy, here we solve the following second order fuzzy
polynomial equation with type-1 triangular coeffi-
cients.

11(10,15,18)5> —1(5,5.4,6)i=
1'(66,185.5,305)

After alpha cuts, the given equation is reduced
to a number of interval equations in the following
form.

2

Ao X5, — DocXoe =Coc

Where the coefficients of a.., b.., and ¢.. are in-
tervals resulting from each o<-cut as shown in Table
1 and X.. is the interval solution at each o<-cut which
will later be used to construct the membership func-
tion of the fuzzy solution.

L Fuzzy Polynomial ]

oc-cut
Initiate at o= 0, Aoc= 0.1
[

Interval Polynomial

Gl'tlvlip 1 GrJull 2 Gl'l;lll 3
x<0X<0| |x50Xx20| |x20%20

[ | |

Initiate position and
velocity inside constraints
1l

| >
Ek Evaluate position f(x;(®))

gbest = pbest;

v

]
Calculate v+ and x 0 ’

x4 = [min(gbest), max(gbest)]
o= + Ax

L
No A

o> 1
Yes

C Construct % )

Figure 1. Sequential representation of the
proposed methodology
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Table 1. Interval Coefficients at Each o<-Cut

o< Ao bo< Coc
0 [10,18] [5,6] [66,305]
0.1] [10.5,17.7]| [5.04,5.94]| [77.95,293.05]
0.2| [11,17.4] | [5.08,5.88]| [89.9,281.1]
0.3 [11.5,17.1]] [5.12,5.82]| [101.85,269.15]
04| [12,16.8] | [5.16,5.76]| [113.8,257.2]
0.5] [12.5,16.5]| [5.2,5.7] [125.75,245.25]
0.6 [13,16.2] | [5.24,5.64]| [137.7,233.3]
0.7 | [13.5,15.9]| [5.28,5.58]| [149.65,221.35]
0.8| [14,15.6] | [5.32,5.52]| [161.6,209.4]
0.9 [14.5,15.3]| [5.36,5.46]| [173.55,197.45]
1 [15,15] [5.4,5.4] [185.5,185.5]
e (x)
1 ; = :
/\ —X
st [ :
08t I."J l"\l
0T I,'III \
\
sk § A
06 | \
05 |,f \
04t / \".
o3f | \
i ‘\
02t |
0.1 -'II L \ f e S R S E—
Y% BE B 2% 3 35 4 45

Figure 2. Fuzzy membership function of ¥

Solving the given problem using the pro-
posed methodology produces two fuzzy solutions
as shown in Figure 2.

4 Case Studies

Example 1: In the field of business economics, it
is common to evaluate the production cost function
and demand equation for any given product in order
to determine its profit margin. Here, let us assume
that the demand equation and cost function for an
arbitrary product are § and ¢ respectively.

_J 1'(30.98,40.14,40.27)"
T 1°8(40.06.40.14,40.2)"

11(0.000563,0.000566,0.000567)" | _
198(0.000564,0.000566,0.0005665)’

~ 11(15.23,15.25,15.27)" | _
¢ =19 ,08 !
198(15.235,15.25,15.26)

198(103500, 125000, 147200)"

Where § is the unit price, X is the number of
units, and ¢ is the total production cost. The total
profit p can therefore be computed using the fol-
lowing equation.

{ t1(103000, 125000, 148000)" }

p=5§t—¢ (11)

Let us assume that the targeted profit for the
given product is

t1(96000, 100000, 103500)" $
£9-8(96800, 100000, 103000)1 '

Substituting the given quantities into (11) pro-
duces the following objective function.

11(96000, 100000, 103500)"
19-8(96800, 100000, 103000)1

1 (0.000563,0.000566,0.000567)" | _,
- X
108 (0.000564,0.000566,0.0005665)’

1'(24.71,24.89,25.04)" | _
0.8 roeX
198 (24.8,24.89,24.965)

11(103000, 125000, 148000)"
198(103500, 125000, 147200)"

s Fx)

08
08
0.7
06
05 -
04r
03
027

01+

gL s : ; ,
122 124 1.26 128 1.3 1.32 1.34

<10
Figure 3. The optimum number of units produced,

X, in order to meet the targeted profit
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Since we are only interested in the positive solu-
tion to this problem, we only need one group of par-
ticles, constrained in the search area of case 3. Solv-
ing the given equation using the proposed method-
ology results in the following membership function
for X, which, in the given context, represents the op-
timum number of units that needs to be produced in
order to meet the targeted profit.

Example 2: Let us now consider a more complex
application from agricultural engineering. Evapo-
transpiration (ET) is the process of water lost to
the atmosphere through a combination of evapora-
tion and transpiration through plants and soil. To-
day, because of water-saving initiatives, ET is an
important phenomenon that is extensively studied
for agricultural applications [12]. The most popular
equation used to estimate reference evapotranspira-
tion (ET,) is called the Penman-Monteith equation
[14] given in (12). ET, measures the rate at which
water would be removed from soil and plants from
a reference crop (e.g. grass or alfalfa).

0.408A (R, — G ) + 172103 (65 — &)

A +y(140.34i13)

ﬁ:) =
(12)

Where A is the slope of saturation vapor pres-
sure curve in "O‘Z“ (13), E; is the mean solar radia-
tion in %, G =0.082 % is the solar constatnt, 'y is
the psychometric constant in lf%,, T is the average
air temperature in °C, u; is the average daily wind
speed in ', RH 4, is the average relative humidity,
and e; and e, are mean saturation vapor pressure
(14) and actual vapor pressure (15) in kPa respec-

tively.

4098 (0.6208exp ( 17.27 1 ))

i T+2373 (13)
(T +237.3)° ’
17.27T
;= 0.6208exp | = ), (14)
T+237.3
__ (RHgy
=%\ 100 /- (15)

For a greenhouse, it is common to evaluate Eq.
(12) to determine the optimum temperature that

needs to be maintained in order to stay within the
desired ET levels.

Let us assume that

ET,=1(5.33,9.4, 15.13)%,
— MJ
R,=1"(253,26.1,27.5)—,

m

kPa

_ ~ 1 m
Y=0.07=5 i =1 (0.4,1,2.1);2,

and RH ,, = 45.58%.

Substituting the given values into (12) produces.

~ T+273
A+11(0.08,0.09,0.12)

/1 (10.29,11.19) Z_i_tl(13.71,34.28,7199)@
ET, = ' .

It should be noted that both A and e, are exponential
functions of 7', therefore the aforementioned ET,,
equation effectively has exponentials both on the
numerator and denominator. However, no changes
to the algorithm are needed to solve these types of
problems. Solving the given equation for 7 using
the proposed methodology shown in O produces the
solution shown in Figure 4.

It can be seen that the nonlinearity of the equa-
tions resulted in a unique membership function for
the temperature. This is a good example to show
the inability of simplified fuzzy solutions in captur-
ing the actual solution.

psz (%)

09t
08t
o7t
06+
05
04F
03r
0z

01

ol ) ; A )
25 26 27 28 29 30 ki 32 33 34

Figure 4. The optimum temperature, 7, in °C that
needs to be maintainted to meet the desired ET,
levels
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5 Conclusion

In this paper, we proposed a modified Particle
Swarm Optimization method which can be used to
solve a variety of type-1 and interval type-2 fuzzy
nonlinear equations. We better demonstrated the
methodology by solving a numerical example and
presented two relevant case studies to show how
the proposed methods can be applied in a variety
of fields. Our future work will include develop-
ing a theoretical approach for solving these types
of nonlinear equations and applying the proposed
methodology for multivariable cases such as sys-
tems of fuzzy nonlinear equations.
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