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Abstract

The present article reviews the application of Particle Swarm Optimization (PSO) algo-
rithms to optimize a phrasing model, which splits any text into linguistically-motivated
phrases. In terms of its functionality, this phrasing model is equivalent to a shallow parser.
The phrasing model combines attractive and repulsive forces between neighbouring words
in a sentence to determine which segmentation points are required. The extrapolation of
phrases in the specific application is aimed towards the automatic translation of uncon-
strained text from a source language to a target language via a phrase-based system, and
thus the phrasing needs to be accurate and consistent to the training data.

Experimental results indicate that PSO is effective in optimising the weights of the pro-
posed parser system, using two different variants, namely sPSO and AdPSO. These vari-
ants result in statistically significant improvements over earlier phrasing results. An anal-
ysis of the experimental results leads to a proposed modification in the PSO algorithm,
to prevent the swarm from stagnation, by improving the handling of the velocity com-
ponent of particles. This modification results in more effective training sequences where
the search for new solutions is extended in comparison to the basic PSO algorithm. As a
consequence, further improvements are achieved in the accuracy of the phrasing module.

Keywords: parsing of natural language, machine translation, syntactically-derived phras-
ing, particle swarm optimization (PSO), parameter optimization, Adaptive PSO (AdPSO)

1 Introduction

The present work has been motivated by the need to
implement Machine Translation systems. Machine
Translation (MT) is a key task that provides humans
with direct access via their own native language to
textual data. MT is aimed to translate textual data
written in a given language (termed the source lan-
guage - SL) to a desired language (the target lan-
guage - TL).

The MT task has been studied for over 50 years,
but only with the advent of MT systems based on
Machine Learning, it has become feasible to trans-

late original textual content to unconstrained target
languages, without having to handcraft a large set
of translation rules. Statistical MT [1, 2] works by
extracting statistical information from parallel sen-
tences in the source and target languages, in order
to create a translation model. The key SMT advan-
tage is that it is directly amenable to new language
pairs using a standard algorithmic suite. More re-
cently, Neural MT (NMT) has been proposed [3],
which uses multi-layer neural networks coupled
with deep-learning techniques to establish transla-
tion systems. The drawback of both SMT and NMT
is that they require voluminous parallel corpora (of
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the order of millions of words in both SL and TL)
from which to extract the required translation mod-
els. Such parallel corpora may not be available but
for a few SL/TL language pairs, limiting the appli-
cability of these systems.

PRESEMT [4] was designed to make feasible
the creation of MT systems with very small paral-
lel corpora (of only a few hundred sentences) and
with limited availability of linguistic tools for SL
and/or TL. This allows the coverage of substantially
more language pairs than SMT or NMT (mainly the
lesser-resourced pairs), by virtue of the reduced re-
quirement for parallel training data. The parallel
corpus is supplemented by large amounts of mono-
lingual corpora, to achieve a competitive transla-
tion quality without explicit provision of linguistic
knowledge. The potential lack of tools for either SL
or TL is addressed by developing algorithmic solu-
tions that transfer information from SL to TL and
vice versa.

When designing PRESEMT, it was decided to
base the translation process on the handling of syn-
tactically motivated phrases. During translation,
each sentence is split into a sequence of phrases,
which are then re-ordered and translated (for de-
tails cf. [4]). The correct identification of syn-
tactic phrases within the pre-processing step is of
importance to the generation of accurate transla-
tions. This process is generally fulfilled by a shal-
low parser, which establishes the syntactic phrase
boundaries but not the deeper syntactic relations be-
tween phrases. In PRESEMT, to reduce the require-
ments for linguistic tools, a dedicated module (the
Phrase Model Generator (PMG) module) is invoked
— prior to the translation process — to identify the
constituent phrases within the text being translated.
The training data for PMG originates from the TL-
side text that has been segmented into phrases by
an existing linguistic tool. This phrasing is ported
via the small parallel corpus to the SL-side, produc-
ing a segmentation into phrases. This segmentation
is then used to train PMG, so that it becomes able
to segment arbitrary SL-side text in agreement with
the TL-side phrasing scheme. An example of this
process is depicted in Figure 1.

In the present article, emphasis is placed on the
optimization of a phrasing model, which is based on
the principle of attraction and repulsion forces. The
main aim is to determine the optimal parameters of

this phrasing model via a particle swarm optimiza-
tion (PSO) algorithm [5]. Modifications of the PSO
algorithm are examined and the ensuing improve-
ments to the segmentation quality are evaluated.

2  Creating a Phrasing Model with
Limited Training Data

The phrasing model aims to extrapolate a matching
phrasing model between two languages (the source
and target languages) on the basis of a phrasing
scheme on one side (TL). In the specific task studied
here, a very limited amount of parallel training data
is available. Thus a key constraint regards the data,
on which to train the model, which covers typically
only a two hundred sentences.

2.1 Existing Phrasing Models

Probably the most widely-used phrasing model
implementation is via the stochastic model of Con-
ditional Random Fields (CRF) [6]. CRF has a
very powerful representation capability, when tak-
ing into account context (here context is expressed
as the effect of neighbouring words and phrases on
the type and boundaries of a phrase). CRF has
been applied to language modelling by numerous
researchers, including Sha et al. [7], Finkel et al.
[8], Tsuruoka et al. [9], and Durrett et al. [10].
However, the high representation capability of the
CRF mathematical modelling implies a large vol-
ume of training patterns to extract a model with suf-
ficient performance. This violates the requirement
of covering languages with limited resources, since
in the setting studied here the training dataset com-
prises only a few hundred sentences.

A second phrasing model developed for PRE-
SEMT is based on Template Matching (TEM),
which adopts a learn-by-example approach. In
TEM the phrasing model identifies phrases that pre-
cisely match previously encountered training pat-
terns [11]. TEM matches parts of the sentence with
a list of valid phrases that have been arranged in de-
scending order of their likelihood of being correct.
Thus the phrasing algorithm matches the most reli-
able phrases first. Experimental results [11] show
that TEM attains a higher phrasing accuracy than
CREF, learning more effectively from the small train-
ing set.



USING PARTICLE SWARM OPTIMIZATION T0 ...

65

/SL-side corpus
| The kittens are hungry .
The child is at school .

Segmented

(Les chatons) (ont) (faim) . TL-side corpus

(L enfant) (est) (a I école).

¥ =

[ transfer of phrasing scheme]

Segmented I
SL-side corpus | (The kittens) (are) (hungry) .
(The child) (is) (at school) .

l

Ordered List

of SL phrases | (is): VC (freq=2)

(the child): PC (freq=1)
(hungry): PC (freq=1)

Attract-repel
(the kitten):PC (freq=1) | ——— | Phrasing model
(ARG)

Parallel corpus

PSO
algorithm

_——

optimized
attract-repel

Phrasing model
(ARG)

Figure 1. Schematic diagram indicating the development of the phrasing model based on a given training
dataset

2.2 Definition of Attraction and Repulsion
Forces

In analogy to the attraction-repulsion forces en-
countered in nature, many researchers have emu-
lated the concept of attraction-repulsion to formu-
late artificial intelligence tasks. This formulation is
combined with populations of agents, such as ant-
colony optimization [12] and bee colony optimiza-
tion [13]. Attractive and repulsive forces have been
used by Yu et al. [14], for segmenting an image
into different parts. Focusing on language-related
applications, the concept of attraction-repulsion has
been employed for phrasing purposes [15] in Text-
to-Speech synthesis.

In present work, the task is to transfer an exist-
ing phrasing scheme from one language to another,
by using a very limited training set. The require-
ment is for the SL phrasing to agree with the TL-
side phrasing as closely as possible. Within the in-
put text, at the point between any two consecutive
words in a sentence, one needs to decide whether a
phrase boundary is needed or not. This decision is
taken by combining attractive and repulsive forces
between words.

The definition of attractive and repulsive forces
is introduced via an example in the following Sec-
tion. The occurrence in the training set of word se-
quence {W; ; Wiy} within one phrase represents a

positive force between the two words that attracts
them to each other, and thus tends to place them in
the same phrase. On the contrary, the assignment of
words W; and W, to different consecutive phrases
represents a strong repulsive force, encouraging the
addition of a phrase boundary between them. As
pairs of words are studied, the range of this force is
equal to 2. As a second example, the frequent ter-
mination of a phrase after W; represents a repulsion
force between W; and its following word W, ir-
respective of the identity of W;y . In this case the
force takes into account a single word (the sampled
range of words being equal to 1).

Attractive and repulsive forces (represented as
F_attr(i) and F_repel(i) respectively) are combined
to give a constituent value, denoted as Pot, which
corresponds to the potential of the specific point be-
ing a phrase boundary. For each possible segmenta-
tion point, depending on the chosen modelling, a
number of attractive and repulsive forces are de-
fined (denoted by index j), each of which samples
a different range of words. Pot is defined as a linear
combination of forces

k
Pot (i) = ;(aj o F_attrj(i))—
k

= Z(bj o F_repel;(i)) —thres
i=1

()
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The total number of parameters in (1) is equal
to (2k+1). The actual set of attractive and repellent
forces is enumerated in Table 1, for the configura-
tion adopted in the present article, where forces are
defined over word ranges from 1 to 4.

Table 1. Constituent Forces in Attract-Repel

Id. | Type of Attractive and
Repulsive Force
Range  (sampled | Attractive| Repulsive
words) force force
1 1 (word w;) F_attry F _repel;
2 | 1 (word wiy) F_attr, F _repel,
3 | 2(wordsw; & wiiy) | F_attrs F _repels
4 |14 (wi—1, wi, wig, | Foattry F_repely
Wi+2)

The decision whether to place a phrase bound-
ary at a given point, depends on the summation
of constituent forces, each multiplied by a related
weight. When the potential for a given sentence
point is negative, it indicates that a phrase bound-
ary is located at this point. The aim then becomes
to determine the optimal weight parameters of the
model, as listed in Table 1.

An example sentence is depicted in Figure 2.
Based on the evidence provided by this simple sam-
ple sentence, the occurrence of the bigram “the
child”, where both words belong to the same phrase,
would give a strong attractive force (F_attrs)at the
point just after word “the”. Similarly, the repul-
sive force after the word “child” (F_repel;) would
be high (to indicate the increased likelihood of a
segmentation point).

A training set of 200 sentences, with 5 to 10
phrases each, results in approximately 1,500 in-
stances of phrases as training patterns. Such lim-
ited numbers of instances pose a data sparsity issue.
To learn efficiently from such sparse data, the cor-
responding part-of-speech tags replace the words in
the sentences (an example is shown in Figure 2).
The introduction of tags results in the calculation of
frequencies over higher-level features, allowing the
system to learn more effectively.

Initial experiments with the phrase generator
based on the Attract-Repel principle (hereafter this
generator is denoted as ARG) have involved the
manual setting of parameters, to identify whether
this phrasing model can generate a competitive

phrasing performance (cf. [16] for more details).
Forces that operate over a longer range (and con-
sequently necessitate the matching of a longer se-
quence of word tags) should have a higher multi-
plicative weight a; (or b;), to indicate the relative
value of information derived from more complex
patterns. This manual process does not guarantee
the achievement of a global optimum. As an alter-
native, the systematic optimization of the phrasing
model parameters via a PSO metaheuristic has been
studied.

3 Summary of the Selected PSO
Approach

One of the most widely-used metaheuristics for pa-
rameter optimization is particle swarm optimization
(PSO) [5]. PSO replicates the collective behavior
of a swarm of living organisms, by employing a set
of simple particles, each of which searches for the
best solution. During this search the particles in-
teract with each other while traversing the pattern
space. The next position to be evaluated by the /'
particle is defined by its current position X;(¢), the
best solution it has previously located P;(¢), and the
previous best solution P, () determined by all par-
ticles within its current neighbourhood. Depend-
ing on whether the local neighbourhood covers the
entire swarm or a smaller region around the given
particle, the swarm is termed as fully-informed or
canonical, respectively [17].

In PSO, two variables define the search of a par-
ticle through the pattern space, namely (i) the parti-
cle’s (i) location and (ii) velocity. The dimensional-
ity of the two variables is equal to that of the pattern
space. The new location and new velocity of the /"
particle at time step 7+ are defined as

Vi(t+1) =9 (1)+
+0,000,91] 8 (P(1) - X (1) + (2
+@U[0,92] o (P (t) — Xi(1)),

YN+ =X+ D) +vi@E+1). 3

In equation (2), U(y,z) is a vector of random
numbers, each within a range between y and z. The
PSO search can be distinguished into (i) exploration
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Input sentence: “The child goes to school.”
Sentence segmented into phrases: “(The child) (goes) (to school)”
Sentence expressed in part-of-speech tags: “(article noun) (verb) (preposition noun)”
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Figure 2. Example of sentence and its separation into syntactically annotated phrases. In the lower part of
the figure, the candidate phrase boundaries are indicated by single dashed lines and actual boundaries are
indicated by twin dashed lines.
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Figure 3. The average velocity of the swarm particles as well as the averages of velocities achiveing the
global best solutions and not achieving the global best
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(i.e. search of new portions of the pattern space) and
(i1) exploitation (local search near discovered com-
petitive solutions). Efforts have been made to bal-
ance PSO exploration and exploitation [18] and also
to increase the exploration capability of PSO vari-
ants [19]. A basic PSO algorithm has been applied
to the task of ARG weight optimization in a pre-
liminary study [16]. In the present article, results
on new experiments are presented, using two PSO
variants that are comparatively investigated. The
present article builds on the earlier work to improve
the handling of velocity within the PSO evolution
phase.

The first PSO variant is denoted sPSO (for
standard-PSO) and has originated as a direct imple-
mentation (by the authors) of the basic PSO algo-
rithm [5]. sPSO augments the basic PSO with (a) an
elitism component (the best solution located so far
is retained in all subsequent epochs), as well as (b)
a local-search process. Regarding the latter com-
ponent, we have adopted the approach of Gimmler
et al. [20], using Powell’s iterative method [21] to
determine alternative local solutions with the algo-
rithm of Press et al. [22]. For sPSO, ¢; and @, (cf.
equation (2)) take the values of 0.729 and 4.100 re-
spectively, in accordance to [23].

The second PSO variant is Advanced PSO
(hereafter referred to as AdPSO) [24]. AdPSO has
been reported to be more effective than sPSO over
a set of standard test functions [24]. The AdPSO
algorithm has been reimplemented from scratch for
the research reported here, adhering to Zhan et al.
[24]. In AdPSO, four different states of search for
solutions are defined. The values of parameters @,
and @, are algorithmically varied during run-time,
depending on the current search state, enabling the
swarm to switch between exploration and exploita-
tion as appropriate. According to Zhan et al. [24],
AdPSO does not require a local search component,
in contrast to sPSO. Elitism is an integral part of
AdPSO, and is coupled with a perturbation algo-
rithm that exploits the search space around the best
solution P,(t), to find better local solutions.

4 Experimental Setup and Results

In our experiments, two swarm sizes are used, the
larger one comprising 80 particles (arranged in a
8x10 structure) and the smaller one 20 particles (in

a 4x5 structure). Each swarm is allowed to evolve
for 1,000 epochs. For each configuration tested, 10
independent runs have been implemented, to deter-
mine more accurately the characteristics of the so-
lutions. Local search is invoked in sPSO every 50
epochs, using a rate similar to other researchers.

4.1 Measuring the Segmentation Accuracy

Segmentation accuracy is determined as the
percentage of discovered segmentation points that
match the ideal segmentation points between
phrases for a test set. An automatically-calculated
metric is required to guide PSO during the evolu-
tion of the swarm, at each point estimating the qual-
ity of the current solution. The metrics used here
are based on the definitions of fp (true positives),
tn (true negatives), fp (false positives) and fn (false
negatives). Both the positive and negative instances
are taken into account to reach an accurate segmen-
tation, leading to the Precision and Recall metrics as
defined in (4) and (5). From these, the F-Measure,
Accuracy and F,-measure metrics are defined from
equations (6), (7) and (8), respectively.

. Ip
precision = ; 4)
tp+fp
Ip
recall = ———, 5
tp+fn ©)
tp+in
Accuracy = , 6
YT ipt fptintfn ©
F — medsure — 3.- prec-is'ion -recall e
precision+ recall
_ _ 2y precision - recall
Fy —measure = (1+ ) b2 - precision+ recall’ ®)
4.2 Manually Setting the Attraction-

Repulsion Parameters

Initially, the set of Attraction-Repulsion param-
eters was determined manually, by implementing a
series of experimental runs. To simplify the selec-
tion of weights, the configurations tested assume
symmetric values of the parameters (i.e. weights
a; and b; for attractive and repellent forces were
given the same values for the same range). The best
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manually-defined configuration is depicted in Table
2 with the corresponding scores achieved.

Table 2. Optimal ARG Configuration with
Manually Defined Weights and corrsponding
Phrasing Accuracy

Weights organized by type

Range 1 Range 2 | Range 4 Thres
ay :a2:0.0] as = b3 ay = b4 0

by =b=0.01 | =0.10 =1.00

Phrasing Accuracy

Precision Recall F-measure

0.9790 0.9590 0.9389

Table 3. Translation Quality Metrics Achieved by
Different Phrasing Models. The Improvement over
the Baseline (CRF) is Denoted in Brackets as a

Percentage
Phrasing | Translation quality
algorithm
BLEU NIST Notes
CRF 0.3289 6.8347 Baseline
solution
TEM 0.3667 7.1372 Optimum
(+11.49%)| (+4.43%) | solution
ARG 0.3515 7.0613 Best
(+6.87%) | (+3.32%) | manually-
tuned
solution

Table 4. F-measure Obtained with ARG via PSO
and AdPSO (80 particles), in Terms of the Best
Solution (minimum) and the Average over 10 Runs

Swarm | F-measure scores (over 10 runs)
type
Best solution Average
F- epoch| F- epoch
measure measure
sPSO 0.94458 638 | 0.94167 173.4
with
local
search
AdPSO | 0.94306 452 | 0.94107 124.6

Table 5. F-measure Obtained with ARG via PSO
and AdPSO (20 Particles), in Terms of the Best
Solution and the Average over 10 Runs

Swarm | F-measure scores over 10 runs
type
Best solution Average
F- epoch| F- epoch
measure measure
sPSO 0.92406 142 | 0.90939 73.5
with
local
search
sPSO 0.92391 206 | 0.90890 129.2
without
local
search
AdPSO | 0.91535 858 | 0.90351 257.6

To determine how ARG compares to alterna-
tive phrasing modules, it was integrated to the
PRESEMT translation system. At this point, the
manually-tuned version of Table 1 is used. The MT
system used for experimentation involves translat-
ing from the Greek language (SL) to the English
(TL) one, using the configuration discussed in [11].
The default parallel corpus of PRESEMT has been
used (available at www.presemt.eu), which com-
prises 200 parallel sentences. The translation per-
formance is evaluated on the PRESEMT test cor-
pora (available at www.presemt.eu). The TreeTag-
ger tool ([25], [26]) processes the TL side of the
parallel corpus to determine the part-of-speech tags
of words and divide the sentences into phrases. The
corresponding phrasing in SL was determined us-
ing the PRESEMT phrase-alignment module [4].
The results using two widely-used objective mea-
sures for translation tasks, namely BLEU [27] and
NIST [28], are shown in Table 3. For both BLEU
and NIST a higher score indicates a higher-quality
translation.

According to Table 3, ARG performs better
than CRF, which is the default choice for phrasing
models. TEM is superior to both CRF and ARG.
The next Sections examine whether ARG perfor-
mance can be improved towards the TEM level,
via a systematic method for defining new parameter
values.
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4.3 Optimization of ARG Parameters via
PSO

After setting the weights manually to establish a
baseline performance, PSO is tasked with determin-
ing the optimal attraction/repulsion weights. All
weights take values that range from O to 1. Between
the two swarm configurations (fully-informed and
canonical), the fully-informed swarm achieved the
best F-measure score, corresponding to a superior
solution [16]. For this reason, in the present article
only experiments with fully-informed swarms are
reported, unless otherwise stated.

Table 4 summarises the results for the larger
80-particle swarm, by reporting the characteris-
tics of the population formed by the 10 randomly-
initialised runs. A substantial improvement is
achieved over the manually-defined parameter set
(cf. Table 2). The segmentation accuracy of each
run of the PSO optimized system exceeded the best
manual solution after fewer than 25 epochs. This
demonstrates the fast convergence of PSO to a so-
lution superior to the baseline. In addition, even
the mean errors for each of the swarm configura-
tions are substantially better that the best manually-
tuned phrasing system, confirming the effectiveness
of the PSO algorithm. The standard deviation of F-
measure for the population of best solutions is very
low over the 10 randomly-initialised runs, indicat-
ing that all runs consistently achieve solutions very
close to the best solution.

To verify the effectiveness of the PSO optimiza-
tion process, statistical tests are applied. The t-
test is applied to determine whether the population
of PSO-derived solutions is statistically better than
the best manually-optimised solution. According
to this test, the fully-informed swarm scores are
significantly better than the manually-tuned one (p
<0.0001).

5 Previous Work on PSO Velocity
Handling

Experimental results [16] using AdPSO have shown
that exploration tails off quite early in experiments
as the velocity vector is reduced to a relatively low
magnitude, and most (if not all) particles gradually
converge to a very limited area of the pattern space.
When the swarm reaches this state, it is unable to

discover radically new solutions. A likely solution
is to reinitialise the velocity of the particles, to en-
courage exploration of the pattern space.

In the base PSO algorithm, parameters ¢; and
¢, are assigned fixed values to balance between ex-
ploration and exploitation. Later PSO variants have
been aimed to improve the quality of solutions, this
most frequently involving encouraging exploration
versus exploitation. An inertia weight has been pro-
posed [29] which is modified by a linear rule during
the PSO optimisation process, so as to favour ini-
tially exploration and at the final stages turn towards
exploitation. To ensure settling to a stable solu-
tion, Clerc and Kennedy [30] augment the velocity-
update rule with a constriction factor that prevents
the unbounded growth of particle velocity.

Garcia-Nieto et al. (2011) [31] introduce a
velocity modulation algorithm, which controls the
movement of the particles in each epoch so as not
to exceed the limits of the problem domain. Evers
et al. (2009) [32] aim to prevent premature conver-
gence via a maximum swarm radius criterion. If a
threshold is exceeded, then the swarm is regrouped
at a radius around the best solution found so far, and
the velocity component is also reinitialized. Helwig
et al. [33] suggest recording the times a particle has
succeeded in finding a new personal best, out of the
last n epochs, to perform a more extensive search;
otherwise the velocity is reduced to perform a nar-
rower search. Chen and Li (2007) [34] introduce
a stochastic velocity element to prevent the swarm
from converging too quickly to a final solution. Fi-
nally Liu et al. [35] introduce a novel scheme that
differentiates swarm particles into leaders (who per-
form exploration) and followers (who perform ex-
ploitation). A number of particles are teamed into
a composite particle, with a velocity-anisotropic re-
flection (VAR) scheme used to stop velocities from
reducing to very low values.

6 The Velocity Component in
AdPSO

AdPSO [24] is chosen for further experimentation,
since it is the more promising algorithm. The
study of AdPSO simulations has revealed that as
the swarm searches through the pattern space, grad-
ually the magnitude of the velocity vector of indi-
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vidual particles decreases and converges to a value
very close to 0.

A typical run of the standard AdPSO algorithm
is summarized by Figure 3, which presents for each
epoch the average velocity over (1) all particles in
the swarm, (2) the particles which have achieved a
score equal to the global best and (3) the particles
with a score inferior to the global best. The average
velocity for all particles falls rapidly to low levels
(less than 0.2, from a level of around 1.0), indicat-
ing that the swarm ceases to perform exploration
and is restricted to exploitation. The average veloc-
ities of groups (2) and (3) are directly comparable
in magnitude and all diminish to low levels. Hence,
the stagnation phenomenon affects all particles in
the swarm.

The proportion of swarm particles attaining a
score equal to the global optimum for a given epoch
is very high, far before the maximum number of
iterations is reached. Concentration of particles
to specific solutions becomes excessive, since in a
1000-epoch run from epoch 150 onwards, 50% of
the particles converge to a solution equivalent to the
global best, this percentage rising to 75% at epoch
550, indicating swarm stagnation.

To reinvigorate the search in the later phases,
a scheme is defined to update the velocity period-
ically. Two aspects of the velocity component are
studied, (i) reinitialising the velocity vector when a
particle has stagnated and (ii) limiting the velocity
magnitude during PSO operations so that the search
is more gradual and stagnation is prevented.

6.1 Modification 1: Reinitialising the Ve-
locity Component

The first potential improvement involves reinitial-
ising the velocity vector when a given particle is
found to have stagnated. Stagnation is assumed
when the magnitude of velocity falls below a given
threshold. This threshold, veloc_thres, is selectable
by the users but is typically low (for a range of val-
ues k, the threshold is of the order of 0.7°k). If the
particle velocity drops below this threshold, the ve-
locity is reinitialized.

1 FORi=1TONDO [*iterate over all N particles of swarm*/
2 {

3 CALCULATE magnitude of velocity [lv;(t)l= 557 vy ;(t)

4 IF ((Jlv;(t) [l<veloc_thres) AND

5 (curr_epoch % reinitialize_interval == 0))

6 {

7 [reinitialise velocity vector v;(t) of i-th particle= /
-] FOR j=1 TO dim DO

9 { [*reinitialise j-th dimension of velocity*/
10 v;,;(t + 1)= random();

11 H

12 }

13 }

/*Proceed to RUN AdPSO algorithm*/

Figure 4. Description of the velocity
reinitialisation procedure

The velocity reinitialisation process is ex-
pressed using pseudocode in Figure 4. To ensure
swarm stability, reinitialisation is only allowed at
specific points during the PSO evolution (once ev-
ery a epochs), and only after a number of E initial
epochs have been carried out. Thus only at epochs
E+a, E+2a, E+3a, etc. is it possible to reinitialize a
stagnating particle’s velocity component. The abil-
ity to to only reinitialise velocities evey a epochs is
expressed by the modulo operator (%) used in step
5 of Figure 4.

6.2 Modification 2: Bounding the velocity
vector to specified levels.

One observation from PSO test runs is that in
several cases particles reach a state where along
one or more dimensions, their parameter values are
stuck to the minimum or maximum value very early
on. This is due to a large initial velocity for the
corresponding dimension, which sends the parti-
cle very rapidly to a specific region of the pattern
space. Subsequently, the particle is unable to dis-
lodge from this point due to the strong velocity
component. A possible solution involves setting the
magnitude ||v(7)|| of velocity to a more moderate
level, so that excessive movements in the pattern
space in one step are discouraged and each parti-
cle uses a number of steps to transition from e.g. a
very low value to a very high one along any given
dimension.
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7 Velocity Modulation

ments

Experi-

To reduce the simulation requirements, when evalu-
ating the aforementioned modifications a relatively
small AdPSO swarm was chosen, comprising 20
particles in total, allowed to evolve over a total of
1,000 epochs. For each swarm configuration, a set
of 10 independent runs with different random ini-
tialisations was implemented. In the present article,
the reinitialisation operation a is applied every 50,
25 or 10 epochs. The control result (baseline) is
obtained by deactivating the velocity reinitalisation
mechanism. The reinitialisation operator is only
activated between epochs 300 and 900, to permit
the swarm to settle to an initial solution during the
first 300 iterations, and to then converge to a final
solution in the last 100 iterations. Regarding the
second improvement, the velocity magnitude ||v(¢)||
has been set to values of 0.125, 0.250, 0.333, 0.50,
1.00, 2.00 and 4.00. To obtain control results, simu-
lations with an unrestricted velocity vector, without
magnitude normalisation, were also run (denoted as
“no-normal”).

7.1 Evaluating the Velocity Reinitialisation
Algorithm

The effectiveness of the PSO approach is reflected
by the error attained by each swarm simulation. The
statistics of the solution populations are expressed
in Table 6, including the lowest and average error
over 10 runs, when using no velocity reinitialisation
(denoted as “no_reinit”), as compared to using a
reinitialisation step every 50, 25 and 10 epochs. As
can be seen, when using F-Measure the reinitialisa-
tion of velocity (second, third and fourth columns)
contributes to lowering the error rate in compari-
son to using the standard AdPSO algorithm (1% col-
umn). The boxplots of Figure 5 also depict the char-
acteristics of the solution populations when the F-
Measure metric is used by AdPSO. The reduction
of the phrasing error is evident when velocity reini-
tialisation is applied.

Similar results are recorded when using AdPSO
with the Accuracy and F»-Measure metrics (cf. Ta-
ble 6, and also Figure 6 for the Accuracy met-
ric). Thus when velocity reinitialisation is activated,
both the average error as well as the lowest error are
reduced for the metrics tested. One key difference

is that for the Accuracy metric, the improvement
achieved is reduced in comparison to that obtained
with F-measure.
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Figure 5. Boxplots of AdPSO phrasing errors
using the F-measure metric. Velocity
reinitialisation leads to a lower error than without
reinitialisation (“no_reinit”)
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Figure 6. Boxplots of AdPSO best solutions in
terms of error using the Accuracy metric

Paired-sample t-tests have been performed, to
determine whether the addition of velocity reini-
tialisation contributes in a significantly improved
AdPSO performance. When running AdPSO with
F-measure, the error rate obtained with no reinitial-
isation (the baseline configuration) is significantly
larger than with any of the three reinitialisation rates
(cf. Table 5). With velocity reinitialisation, for rates
of 50 and 25 the improvement over the baseline is
significant at a 0.05 level of confidence. For a rate
of 10, at a 0.01 level of confidence the accuracy is
improved over the standard AdPSO algorithm (the
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baseline). On the contrary, the populations of so-
lutions obtained with the three different reinitialisa-
tion rates are statistically equivalent to each other at
a 0.05 level. When using the Accuracy metric, once
again the reinitialisation leads to a numerical re-
duction of the error, though now the improvements
over the baseline are statistically not significant (at
a level of 0.05).

R® Lineat = 0.387

error rate

0 2000 4000 G000 8000 100000
settling step
Figure 7. Relation between the swarm settling step
and the final segmentation accuracy obtained, in
the case of the F-Measure metric with

reinitialisation every 10 epochs

As a second test, the correlation between the at-
tained F-measure and the epoch at which the swarm
reaches the best solution have been studied, using
a linear regression test. Table 7 indicates in which
epoch the optimal solution is achieved, when each
of the three metrics is used with AdPSO. By com-
bining Tables 6 and 7, a trend is observable of
achieving lower error rates when more epochs of
exploration are performed to reach the best solu-
tion. For instance, when using F-Measure to de-
termine the error and without velocity reinitialisa-
tion, the average number of epochs to reach the best
solution is 228 epochs, whilst for a reinitialisation
rate of 50 a total of 508 epochs are needed. As
expected, the activation of the reinitialisation algo-
rithm results in the swarm utilizing more epochs to
explore the search space to converge to a solution
of a superior quality.

The actual correlation results for the 10 runs
with the F-Measure metric are shown in Figure
7, for the reinitialisation rate of 0.10. A close
to linear relation exists between the epoch where
the minimal error is obtained and the error magni-

tude, showing that when more epochs are used ef-
fectively before convergence, a better optimization
is achieved. Experimental results indicate that the
velocity reinitialisation algorithm contributes to a
longer (in terms of epochs) and more effective evo-
lution of the swarm.

7.2 Evaluation of Velocity Normalisation

The second improvement concerns setting an
upper bound to the initial velocity of each particle.
For the present application, each weight takes val-
ues from 0.0 to 1.0 and thus the range along each
dimension is equal to 1.0. Normalizing the mag-
nitude of the velocity vector to a value lower than
1.0, ensures that the velocity along any dimension
is substantially smaller than the range of values.
This guides the swarm to settle more gradually. On
the contrary, when the velocity magnitude is larger,
in the first epoch (or the first few epochs) certain
weights may take values at or beyond the maxi-
mum or minimum value of the range (1 or 0, re-
spectively). These weights then are likely to remain
fixed at this extreme value for the entire swarm evo-
lution.

The levels of the velocity magnitude simulated
are 0.125, 0.250, 0.333, 0.50, 1.00, 2.00 and 4.00.
In addition, a configuration without velocity nor-
malization has been run (this being depicted as
“no_normal’). The results are summarized in Ta-
bles 8 and 9 for the three metrics. When using the
F-Measure and Accuracy metrics, both the mini-
mum error and the average error are substantially
improved with small velocities (bounded at a 0.50
level), in comparison to an unconstrained velocity.
The reduction in the error is substantial, amount-
ing to 1.5%. On the contrary, when the velocity is
bounded to a level higher than unity (for instance
for a level of 4.00) then the optimized solution is
inferior (the error rises). In the case of the F2-
Measure, the improvements achieved for low ve-
locity magnitudes are much smaller, though this
is partly due to the lower error obtained for F2-
Measure as compared to the other metrics.

The statistical characteristics of the solutions
are depicted in more detail in Figures 8 and 9 re-
spectively, when using the F-Measure and Accu-
racy metrics. Again, an improved performance (ex-
pressed as a reduced phrasing error) is obtained
when the velocity magnitude is set to lower values.
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A set of t-tests have been performed to deter-
mine whether this improvement in accuracy is sig-
nificant. When using velocity normalization com-
bined with the F-measure metric, the lower velocity
magnitudes (namely those from 0.125 up to 0.50)
give statistically equivalent results, with p<0.01.
On the contrary, there is a statistically significant
difference between the lower velocity magnitudes
(5) and the higher magnitudes (of 2.0 or 4.0) at a
level p<0.001. This indicates that lower velocities
improve the effectiveness of the optimization pro-
cess.
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Figure 8. Boxplot of minimum error over 10 runs
using the F-Measure metric for different
normalisation levels of the velocity magnitude
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Figure 9. Boxplot of minimum error over 10 runs
using the Accuracy metric for different
normalisation levels of the velocity vector
magnitude

Similarly, when using the Accuracy metric,
a statistically significant improvement in error is
achieved for lower velocity magnitudes (||v(7)]] <
0.5), in comparison to higher values (equal to 2.0

or 4.0) or to using no bounds whatsoever. For in-
stance, with a velocity magnitude of 0.125, a supe-
rior solution is obtained in comparison to a mag-
nitude of 2.0 or 4.0 (p<0.01). For magnitudes of
0.250, 0.333 and 0.50, the population of solutions
is superior to those for a magnitude of 2.0 (p<0.02)
and to a magnitude of 4.0 (p<0.001). This analysis
confirms that it is preferable to use a lower veloc-
ity magnitude (below 1.0), as this results in a sta-
tistically significant reduction in optimization error.
The best results are obtained for normalisation lev-
els of 0.125 and afterwards of 0.250, for all three
metrics used.

8 Conclusions

The present article has discussed the use of PSO-
type algorithms to optimize the weights of a phras-
ing model based on attraction-repulsion principles.
It has been found that PSO-type algorithms substan-
tially improve the phrasing performance of a model
based on attraction and repulsive forces. However,
frequently the swarm converges prematurely to so-
lutions, being unable to persevere the exploration
of the pattern space to discover new solutions. As a
result, new approaches to handle the velocity vector
more appropriately have been designed and exten-
sively tested.

Based on the results of these experiments, two
main conclusions can be drawn. The first is that
for splitting arbitrary sentences into syntactically-
motivated phrases, the AAPSO performance can be
improved. Improvements involve modifying the
handling of the particles’ velocity vectors. The
first modification, which provides a major part of
the improvement, concerns monitoring the velocity
component of each particle and reinitializing it —
if it falls below a certain level — to encourage the
swarm’s exploration effort. The second modifica-
tion consists of bounding the magnitude of the ve-
locity, so that the particle is prevented from finding
a local-best solution very quickly, from which it is
difficult to later disengage. Statistical analyses have
shown that in many cases the proposed modifica-
tions provide statistically significant improvements
in the solutions found.

The experiments summarised in the present
manuscript have focused on a single application. A
future activity is to investigate whether similar im-
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Table 6. Statistics of the phrasing error for each of the 3 metrics used, calculated over 10 independent runs

_ F-Measure Accuracy F2-Measure
Reinit_rate [no_reinit| 50 25 10 no_reinit| 50 25 10 no_reinit| 50 25 10
minimum | 9.64% | 7.67%| 8.30%| 811% 8.94% | 9.49% | 9.49%| 7.30% 6.31%| 5.53%| 6.28%| 5.61%
maximum |10.59% 10.44% | 10.44% |10.44% 11.08% |11.08% |10.945 |11.08% 6.52% | 6.45% | 6.49% | 6.37%
average  |10.19% | 9.35%| 9.58%| 9.47% 10.21% |10.16% |10.08% | 9.78% 6.38% | 6.25% | 6.37% | 6.25%
mean 10.29% | 9.68%| 9.61%| 9.57% 10.34% |10.10% |10.125 | 10.06% 6.37%| 6.32%| 6.35%| 6.33%

Table 7. Epoch where the best result is achieved for each of the 3 metrics used, calculated over 10

independent runs

_ F-Measure Accuracy F2-Measure |
Reinit. Rate |no_reinit] 50 25 10 no_reinit] 50 25 10 no_reinit 50| 25 ld
minimum 7 26 14 77 8 13 394 16 7 12 19 10
maximum 890 861 872 495 942 878 605 879 577 498
average 227.7| 508.4| 510.9 156.5| 438.6| 646.1 101.6| 363.4| 352.3| 283.8
mean 15| 485.5 526 58 464| 655.5 13| 409.5] 397.5| 319.5

Table 8. Effect of velocity magnitude on final AdPSO solutions for F-measure and Accuracy

[ —=;"] F-Measure Accuracy

vl 0125 | 025 | 0333 | 050 | 1.00 [ 2.00 | 400 |unconstr. 0.125| 025 | 0333 | 050 | 1.00 | 2.00 | 4.00 |unconstr,
minimum | 7.19%| 7.36% 7.65%| 7.32%| 8.11%| 8.03%| 9.22%| 8.10% 7.67%| 7.75%| 8.59%| 7.77%| 7.30%| 9.49%| 9.73%| 8.49%
maximum | 9.67%| 9.81%| 9.78%|10.26% | 10.44% | 10.54% | 10.44% | 10.39% | [ 10.44% | 10.65% | 10.26% | 10.23% | 11.08% | 11.18% | 11.05% | 10.44%
average | 8.26%| 8.48%| 8.73%| 8.90%| 9.47%| 9.76%|10.02%| 9.46% 9.16%| 9.14%| 9.33%| 9.27%| 9.78%|10.15% 10.31% | 10.00%
median 8.23%| 8.18%| 8.66%| 867%| 9.57%| 9.98%)10.16%| 9.71% 9.30%| 9.08%| 9.52%| 9.54%|10.06%| 10.01% 10.31% | 10.16%

Table 9. Effect of velocity magnitude on final AAPSO solutions for F, _Measure

- Fb-Measure

| v 0.125| 0.25 | 0.333 | 0.50 | 1.00 | 2.00 | 4.00 |unconstr.
minimum 5.47%| 548%| 6.21%| 5.40%| 5.61%| 6.24%| 6.24%| 5.58%
maximum | 6.41%| 6.47%| 6.40%| 6.43%| 637%| 7.09%| 7.13%| 6.45%
average 6.21%| 6.20%| 6.30%| 6.24%| 6.25%| 6.42%| 6.45%| 6.25%
median 6.31%| 6.33%| 6.29%| 6.32%| 6.33%| 6.32%| 6.31%| 6.31%
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provements in performance can be achieved when
AdPSO is applied to other real-world tasks. A sec-
ond research activity would be to determine if sim-
ilar improvements could be achieved by modifying
the velocity component of other PSO variants.
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