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Abstract

This paper proposes nonlinear operator of extreme doubly stochastic quadratic opera-
tor (EDSQO) for convergence algorithm aimed at solving consensus problem (CP) of
discrete-time for multi-agent systems (MAS) on n-dimensional simplex. The first part
undertakes systematic review of consensus problems. Convergence was generated via
extreme doubly stochastic quadratic operators (EDSQOs) in the other part. However,
this work was able to formulate convergence algorithms from doubly stochastic matrices,
majorization theory, graph theory and stochastic analysis. We develop two algorithms: 1)
the nonlinear algorithm of extreme doubly stochastic quadratic operator NLAEDSQO) to
generate all the convergent EDSQOs and 2) the nonlinear convergence algorithm (NLCA)
of EDSQOs to investigate the optimal consensus for MAS. Experimental evaluation on
convergent of EDSQOs yielded an optimal consensus for MAS. Comparative analysis
with the convergence of EDSQOs and DeGroot model were carried out. The comparison
was based on the complexity of operators, number of iterations to converge and the time
required for convergences. This research proposed algorithm on convergence which is
faster than the DeGroot linear model.

Keywords: doubly stochastic quadratic operators, nonlinear convergence algorithm, con-

sensus problem, multi-agent systems.

1 Introduction

In recent years, a lot of research attention has been
directed towards distributed system problems of the
group autonomous agents. In such systems, the in-
volved group of agents are expected to operate au-
tonomously and in coordination to reflect the over-
all systems target goal [1]. These autonomous
agents (multi-agent systems) are in fact required to
converge to an intended point based on their lo-
cal interactions. Such convergence can only be

achieved through a common agreement between the
underlying agents. The agreement in this case, is a
consequence of consensus being reached by the re-
spective key players of the group [2]. This issue of
reaching consensus and convergence by the respec-
tive agents has been a major concern and problem of
study by researchers in the field. A particular case
of interest is the distributed systems that are com-
prised of coordinated and controlled multi agents.
In this system setup, the agents operate in a large
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scale network and access shared information so as
to reach a common agreed upon decision (value) or
consensus for an intended common point of conver-
gence.

Consensus problem has many applications is
engineering (robots), computer science (distributed
computing) and networks (sensors). One of the
most challenging problem in the multi-agent sys-
tem area, is to build a soft protocol that secures
all agents to reach a consensus by their negotiation.
According to context, the states could be designated
as opinions, values, estimates, beliefs, positions, ve-
locities, etc [3].

Consensus problems have a long history in
groups, management science, and statistics starting
from Parimutuel method for agreement to consen-
sus of individual distributions for subjective proba-
bility distribution [4]. Similarly, DeGroot [5] pro-
posed a solution for addressing consensus problems
using stochastic matrix and came up with a feasible
model called DeGroot Model. This model entails
all possibilities by individuals in reaching a certain
point of agreement from different opinions. It uti-
lizes transition matrix (stochastic matrix) to prove
how consensus is reached. Meanwhile, Berger [6]
improved on DeGroots [5] model and proved that
reaching a consensus also depends on vector col-
umn (initial values) that represents opinions on De-
Groots model.

The necessary and sufficient conditions play big
role in achieving convergence for consensus related
problems. All researches that have studied the con-
vergence of CP depended on suggested sufficient
conditions. The stochastic system also improves the
speed of convergence. In [7], the properties of lin-
ear convergence of CP are considered for communi-
cation network that is modelled by a random graph
scene with Markov based process. The work pro-
vided a mathematical proof of necessary and suf-
ficient conditions for achieving an average consen-
sus. The mathematical techniques based on the sta-
bility theory of Markov systems, together with the
results of matrix and graph theories can be used
to test the results of convergence for consensus re-
lated problems in a stochastic framework. More-
over, the work in [8] has provided a method for
reaching consensus normal nodes, irrespective of
the influence of malicious nodes under different as-
sumptions threat, where such derived conditions are

applied for robust network based on a novel graph-
theoretic approach. The work given in [9] how-
ever, has studied the problem of stress consensus for
MAS to dynamically change via asymmetric net-
works with communication delays. On this basis,
it was also demonstrated that the original system,
finally reached a consensus asymptotically even if
communication delays are defined arbitrarily.

A quadratic stochastic operator (QSO), was first
Initiated by Bernstein [10] as a nonlinear differ-
ential equation, which emerged from some prob-
lems of population genetics. The dynamics of some
special QSOs on 2D simplex was studied by Val-
lander [11]. The QSO was later named Volterra,
which is the discrete analogue of the nonlinear
equation of Lotka-Volterra. The concept and def-
inition of majorization on the other hand was in-
troduced by Olkin and Marshall [12]. Majoriza-
tion vectors proved as useful tools for the classifi-
cation of the QSOs and their resulting subclasses.
The definition of doubly and dissipative of QSOs
are designed through the) majorization theory. The
result of Vallander [11] was then extended to the
entire finite-dimensional space by Ganikhodzhaev
[13] and the dynamics of Volterra QSO were stud-
ied successfully in this case as well. However,
we cannot say that all QSOs are of Volterra-type,
and the non-Volterra dynamics of QSO are still
open. Basic properties of majorization and dou-
bly stochastic matrices have been studied by Ando
[14]. The limit behaviour of trajectories of QSOs
was completely studied on 1D simplex by Lyubich
et al. [15], where it was shown that the limit of any
initial values is a finite set. The related problem
in higher dimensions even on 2D simplex is still
an open complexity problem. More general defi-
nition and improvement of the necessary and suf-
ficient condition of EDSQOs has been obtained by
Ganikhodzhaev [16] under the name of bistochas-
tic operators. A described overview of the results
and several open problems of the theory of QSOs
were discussed in the work of Ganikhodzhaev and
Rozikov [17]. The concept of the class of EDSQOs
was introduced by Ganikhodzhaev and Shahidi [18]
and the necessary and sufficient conditions for ED-
SQOs were studied in the same work.

It has been shown that there are 37 operators
up to permutation of components of EDSQOs on
2D simplex [19]. The class of extreme doubly
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stochastic quadratic operators is quite large, and
consequently the study of the limit behaviour be-
comes complicated. Shahidi [20] introduced the
notions of dissipative quadratic stochastic opera-
tor. QSOs along with their respective sufficient con-
ditions. Shahidi [21] also proved that the num-
ber of extreme points of the set of EDSQOs is
37. It was obtained that up to permutation matri-
ces; there are 222 extreme points [19, 22]. The
concept of EDSQOs based on majorization theory
was then introduced in [23] including the proof on
their related necessary conditions. Further, the no-
tion of dissipative quadratic stochastic operators on
infinite-dimensional simplex was defined in [24],
where the limit behavior of the trajectories and the
fixed points of dissipative QSOs were studied with
the results obtained on the conditions of conver-
gence. Moreover, the classification of the limit
behavior of trajectories of dissipative QSOs on a
finite-dimensional simplex is fully studied [25, 26].
It was proved that any dissipative QSO has either
unique or infinitely many fixed points. The limit
behavior of the trajectories of some extreme ED-
SQOs on 2D simplex was discussed [27]. It was
proved that the trajectories of some extreme ED-
SQOs tend to the center on the 2D simplex. Fur-
ther, a Lyapunov based example was provided for
the EDSQOs on a finite dimensional simplex. In
fact, the control of MAS has accepted the theory of
DSQOs [28, 29].

The nonlinear model of EDSQOs is subclass
of QSOs, where the EDSQOs are built based on
the QSOs and majorization theories. Furthermore,
it has been proved that the QSOs investigated are
characterized by fast convergence for CP in multia-
gent systems by using sufficient conditions of dou-
bly stochastic matrix and distributed matrices. Un-
fortunately, the functions cost of the QSOs involves
very complicated calculations and takes much time
to exit after convergence. This is due to the fact that
the function for each agent is polynomial.

Therefore, in our paper we propose a model
of EDSQOs and compare it with the oldest linear
model of DeGroot for CP that was given in [5].

2 The Consensus Problem in MAS

A multi-agent system in the most general sense,
is defined as a network system of several au-

tonomous agents that are capable of local interac-
tions [30]. Each agent is assumed to hold a state
regarding a certain quantity of interest. According
to the context, states of agents could be opinions,
values, beliefs, positions, speed, etc [3]. The agents
update their states based on the algorithm by using
protocols which could be linear or nonlinear with
local interaction among agents and their respective
neighbors [31, 2]. In general, the meaning of con-
sensus is a convergence of all states of agents to a
certain value in time of all updated statuses in MAS
algorithms [32]. The distributed algorithm for the
calculation of averages related to convergence is of
high significance and has been well studied in re-
lated works. These algorithms require updates of
each agents status as a convex combination of the
present states of their neighbors and their own [2].
The application of consensus comes up in many ar-
eas of research; in biology, the dynamic of consen-
sus is studied for the behavior of flocking of fish
and bird schools, etc. [33], where consensus mod-
els can be used to analyze, predict and elucidate the
behaviour of flocking. In robotics and control, CP
come to light in coordination and cooperation of
agents in robots and sensors, where this is an im-
portant matter in the application of network envi-
ronment [34, 35]. In economics, the consensus is
used to agree on a common confidence in the price
or pricing process. In management science, the CP
has been studied for community of management [5].
In sociology, it is employed for a common language
in primal societies and for the dynamics of opin-
ion formation in social networks [36]. In computer
science, a distributed computing algorithm is ad-
dressed for many typical problems associated with
consensus and synchronization where the result of
the algorithms is controlled based on the elementary
expectations of the distributed formation [37].

2.1 DeGroot Linear

A formal system is considered of n agents
which are numbered from 1 to n. Let state x;(¢)
scaled agent i at time r > 0. The algorithm of dis-
tributed systems could be either based on continu-
ous or discrete times. A general linear model for
distributed discrete time can be given as

£ = P(6)x(1),t > 0, (1)

where x(t) is vector representing the state of agents
at time 7, and P(t) is the chain matrix of the sys-
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tem at time, which is a stochastic matrix where all
elements are nonnegative and the sum of each row
equals 1. Meanwhile, a general linear model for
distributed continuous time can be presented as fol-
lows

x (1) = P(1)x(t),t > 0, 2)

where x(¢) is vector representing the state of agents
at time 7, and P(t) is the chain matrix of the sys-
tem. The matrix in this case is characterized by the
sum of each row being equal to zero and the non-
diagonal elements being nonnegative. The mean-
ing of consensus is the convergence of initial values
of x; to the same certain value at #;;1. In fact, the
limit will be different for different agents. In our
research, we will focus on the case of a distributed
discrete time.

2.2 QSO Non-linear

The first study of QSOs can be referred to the
work of S.Bernshtein [10]. Over the last 90 years,
this theory has evolved and been developed into
many classes with significant use to different ap-
plication areas including physics, biology, and en-
gineering. The theory of QSOs was investigated
in [11, 15, 16 and 38]. Vallander [11] established
the main result of QSOs on a 2-dimensional sim-
plex. A complete study of the QSOs on one-
dimensional simplex was by Lyubich [15]. Con-
tinuously, Ganikhodzhaev [16] has studied the dy-
namics of QSOs on infinite-dimensional simplex.
Unfortunately, this area has limited applications
where all previous studies refer to genetics popu-
lation. Our proposed approaches in this research
is to apply this nonlinear model CP in MAS. This
model is a nonlinear which considers a set of points
x = (x1,X2, .., Xm), Yy xi =1 and x; > 0 for i =
1,2,...,m. We define the (m — 1)— dimensional
simplex as follows

S" = {x = (x1,x2,...,%,) ER™:x; >0,
m
Vi=12..m)Y x=1} (3)
i=1

In this case, the general nonlinear model for dis-
tributed discrete time is given by:
A0 = Pl > 0, (4)

where xl@ and xy) is the row and column of points

respectively and P = (Py|P,|...|Py) is a stochastic

matrix. Therefore, the nonlinear dynamic system of
QSOs for CP in MAS can be written as

m m
V=Y Pjixixj, Y Pjoxixj,...,
i,j=1 i,j=1

m
Y Pijmxix;).
i1

&)

3 Proposed Work

In this Section we provide some preliminaries
from majorization theory, and define EDSQOs.The
EDSQO is defined on the simplex that was de-
scribed in Equation (3).

The set intS" ! = {x € §"~1 : x; > 0} is called
the interior of the simplex. The points e, =
(0,0,...,_ 1 ,...,0) are the vertices of the simplex

X
and the scalar vector (
the simplex.
A quadratic stochastic operator V : §”~1 — gm—1
is defined as

%,%,...,%) is the center of

m
V(x) = Z PijiXiXj, (6)
ij=1
where k is the number of the transition matrix for
each agent x;, the x; and x; represent the number of
agent in row and column vectors, respectively. The
coefficients p;; x satisfy the following conditions

m
Dijk = Pijx =0, Zpijvk =1, Vk=1,...m. (7)
k=1
where k = 1,2,...,m, and the operator can be writ-
ten in a matrix form as follows

Pijk = (Pijilpij2l---|Pijm)s (8)

where the p;;  is the transition matrix which satis-
fies the conditions given in the Equation (8). The
matrices p;; . are non-negative and symmetric. For
any x = (x1,X2,...,%,) € S, we define x| =
(XM,X[Q},. .. ,X[m]) where A1) > X2 > ... 2 X[m] - is
a non-increasing rearrangement of x. It can be re-
called from the works in [14, 12] that for two ele-
ments x, y of the simplex $”~! the element x is ma-
jorized by y and written as x <y or y > x if the
following condition holds

m

Y < R 9

i=1 i

3
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forany k=1,2,. — 1. In fact, this definition is
referred to as weak majorlzatlon [12], the definition

of majorization requires that Z X = Z yji- How-

ever, since we consider pomts only from the sim-
plex, we may drop this condition.

A matrix P = (pjj)i j=12,..m is called stochastic
(sometimes bistochastic), if

Pij = Oij—l sz—l Vi j= ,m.

" (10)
For a doubly stochastic matrix P = (p;;), if its en-
tries consist of only 0’s and 1’s, then the matrix is a
permutation matrix.
A linear map T : S ! — §”~! is said to be T-
transform, if 7 = (A)I + (1 — A)P where [ is an
identity matrix, P is a permutation matrix which
is obtained by swapping only two rows of / and
O0<AL L

Lemmal. [12] For the concept of majorization
and x,y € §"~!, the following assertions are equiv-
alent.

1)x<ythatlst <Zy], =1,2,....m—1.

2) x = Py for some doubly stochastic matrix P.

3) The vector x belongs to the convex hull of all m!
permutation vectors of y.

4) The vector x can be obtained by a finite com-
positions of T- transforms of the vector y, that is,
there exist T— transforms 7i,75,...,T; such that
x=NLTG:T... Ti(y).
5) The inequality @(x)
convex function.
From the above lemma, it follows that doubly
stochasticity of a matrix P is equivalent to Px <
xVx € §"~!. Motivated by this in [12], the defini-
tion of doubly stochastic operator is then given as
follows

Definition: A continuous stochastic operator
V8"l — §m1 is called doubly stochastic,
if Vx < xVx € "', Identity operator, permu-
tation operators (the linear operators with per-
mutation matrix) and 7'- transforms are all dou-
bly stochastic. Let V be doubly stochastic op-
erator and 1 € §”~!. The sequence is infinite
X%V (x0),V2(x0),...,v"(x?),...} and it is called
the trajectory starting at x°. Here, V°(x?) = x° and
V'(x%) = V(v 1(xY)). We denote by (x°) the set
of limit points of the trajectory starting at x° and it

< @(y) holds for any Schur-

is said to be the ®- limit set of the trajectory starting
at x0.

The point x is called p-periodic, if there is a pos-
itive integer p such that V”(x%) = x? and Vi(x?) #
X Vi=1,p—1if p=1,thenthe point is referred

to a fixed point.

From the classification of extreme of EDSQOs,
we found that all 198 of 222 operators converge to
the center for any initial values from the entire sim-
plex. Therefore, we will consider these operators to
apply for CP in MAS.

4 The Consensus Algorithm of ED-
SQO

A fundamental question in CP is, how the con-
sensus can be guaranteed based on local informa-
tion exchange with time-varying node interconnec-
tions. Therefore, we combine two algorithms to de-
velop a nonlinear reaching convergence algorithm.
We start with the design of the NLAEDSQO (Algo-
rithm 1) to define all the convergent EDSQOs. Then
we develop the NLCA of EDSQOs (Algorithm 2) to
investigate the optimal consensus via nonlinear ED-
SQOs.

4.1 The Nonlinear Algorithm of Extreme
Doubly Stochastic Quadratic Operator
(NLAEDSQO)

From the theory of QSO [15] and the condi-
tions of EDSQOs in [18] and [23], we define the
EDSQOs on 2D simplex by using QSO under the
conditions of majorization concept by the NLAED-
SQO (see Figure 1) in the following steps: In the
first step we define matrices n by n, and n is the
number of points (P, P,...,P,), where all the el-
ements of the matrices are non-negative Lyubich,
real number and symmetric. Moreover, the sum
of elements of all three matrices for each row and
for each column should be doubly stochastic. The
extra necessary conditions are defined for the ED-
SQOs from the majorization theory, where the di-
agonal elements of each matrix should be either 1
or 0 while the remaining elements should either be
1 or % or 0 [18, 23]. Thus the resulting matrices
will be (P, P,...,P,). Finally, the sum of entries
of any two-by-two sub-matrix should be equal or
less than 2.
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In the next step, we multiply the row vectors

(x y z) by (P, P, ..., P,) matrices to obtain

new matrices which are further multiplied by the
X

column vectors of , hence EDSQO for the ma-

Z

trices are formed as (V(x),V(y),...,V(z)). In turn,
we form many operators of EDSQO on infinite di-
mensional simplex, up to permutations of the matri-
ces where there are 222 [18] [22] extreme points of
EDSQOs on 2D simplex. At the end of this proce-
dure, we classify the results to three categories: 198
operators are in center convergent class (CCC), 18
operators are in line convergent class (LCC) and 6
operators are periodic (non-convergent) class (PC).
Finally, we take those 198 of the CCC to NLCA to
apply them for CCP in MAS.

Creating n matrices debend on the n» simplex, &nd each
n+l matrix is o by n elements. The conditions of the ele-

ments of the matrices are based on majorzation theory

v
Multipliy n vetors row by each matrix then on
/ Multipliy the msult of that by n vectors column

Desgin the operator of DEQ0Os

If only if one of
yas Vix) — Vixg)
that ¥ixi) = xe

yes
Stop
Figure 1. The nonlinear algorithm of extreme

doubly stochastic quadratic operator
(NLAEDSQO).

no

4.2 The Nonlinear Convergence Algorithm
(NLCA)

The derived nonlinear convergence algorithm
NLCA of EDSQO operator is as depicted in (see
Figure 2) and designed to reflect consensus among
agents, where each agent is assigned on appropriate
initial values. The aim of the consensus algorithm
is to keep the model controlling these values so as
to reach a convergence [39].

Start
J." Creating n agents J,"
f Initialize the agents ,,"

Select the operator ¥ of DECOKs
from the CCC of NLADSQO
m

(Ve = ‘_1,13.),;,.1.1..

Updated values

0 stability

yes

l.l'l Final result [

3 B
[ Stop

)

Figure 2. The nonlinear convergence algorithm
(NLCA).

Based on the NLCA, we create n agents. Hence,
initialize these agents by inserting initial value for
each agent. The initial values in this case, are evalu-
ated by using the EDSQO operator. In turn, the state
of each agent is subsequently updated as accord-
ingly. the algorithm the checks to see if the states
of all agents are stable, then the process would be
stopped. However, if the states of agents are not
stable, the algorithm then consider the new updated
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state as the initial state and repeats the evaluation
(using EDSQO) and updating processes until sta-
bility is reached.

In fact, we focus on the NLCA defined by ED-
SQO to update the states for each variable xo which

m
are of the form: (Vx)r = ¥ pjjixixj, where p;j i
i=1

are doubly stochastic matrices of non-negative real
number and symmetric, while x; and x; are the col-
umn and row vectors of initial values respectively.
In this procedure and at each round ¢, process (Vx)
updates xp to some weighted convergence of the
values x; it has just received. Each agent has an
initial state value and shares this value with their
local neighbors in the network. Then the agents
have to update their behavior by using local inter-
actions rule. The goal of the update rule is to drive
each agent to a state that corresponds to the conver-
gence value of all initial state values. Then we can
deduce that the agents have reached convergence-
consensus. More generally, the CP requires only
that the agents converge to a common state value
via these local interactions and some rules. There-
fore, our NLCA of EDSQO will operate to reflect be
agreed upon the common state value that converges
to the center of the simplex of all of the agent’s ini-
tial states.

5 Discussions and Results

In this Section, we provide the comparative
analysis of the linear DeGroot model, then nonlin-
ear model of QSOs and the nonlinear model of ED-
SQOs for CP in MAS.

Let us consider the number of agents as three and
given by x,y and z.

5.1 DeGroot Linear Model
We will start with the DeGroot linear model where

XD = P(6)x(1),

app ap aps X
= \|ax axp az; Y,
asy asy asz Z

KD

X =anx+apy+asz
Y =axx+axny+axpz
Z = azix+asy+asz
with the conditions:

1)a;; >0,

2) ay1 +app+aiz = az +axn+ax; =az +azp +
az =1,

3) aiy+an +az =an+an+an =az+as+

5.2 Nonlinear Model of DSQO

Now, we explore the case of protocols with non-
linear model of DSQO [26, 28] that is given by

m
(Vx) =Y pijaxix;,
ijk=1

(Vx) = x,-pij’lxj +X,'pij72xj + ... —|—x,-p,-j,mxj,
and which will be as follows
m
PijiXiXj =
ijk=1

ai,; apg apg\ [x
(x v 2)|any ami asi| |y

asyl  aszl  assg Z
ailp dapp aizp X
(x vy 2) a2z any ana]| |y (11)
aszlp a3z daszn Z
a3z a3 aiss X
(x vy 2)[ans ans ans]| |y

as13 a3 dss <

V(x) = an x> + an1y? + a2 + anaxy +
asy1xz+ap1xy+az1yz+aiz1xz2+a3,1yz
V(y) = anpx®* + anpy? + aaz® + anpxy +
as1pxz+ap2xy+azyz+aspxz2+ a3 2yz
V(z) = ansx® + ansy* + asz® + ansxy +
as1 3xz+ap3xy+az3yz+ai3xz+ a3 3yz

with the same conditions as of the DeGroot model
1) a;j >0,

2) ajjy +aij2+aijz =1,

where ij = ijVk.

5.3 Nonlinear Model of EDSQO

Finally, we present the case of protocols of the
nonlinear EDSQO model. Formally, the theory of
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the EDSQOs belongs to that of the DSQOs. How-
ever, the new sufficient conditions of EDSQOs us-
ing majorization theory makes it easier for structure
of functions (polynomial) than the DSQO’s struc-
ture.

m
(Vx) =Y pijaxixj,
i=1

1=

(Vx) =XiPij1Xj+XiPij2Xj+ ... FXiDijmXj,

Remark: According to the dynamic classifications
of EDSQOs, we have mentioned that there are three
classes of EDSQOs which are CCC, LCC and PC.

We provide some examples for each class of CCC,
LCC and PC of EDSQOs on 2D simplex. CCC:
Example of CCC.

The following operator V : §2 — §2

Veee(x) = yz+42xy;
Veee(y) = yz+ 22 + 4%
Veee(z) = 2xz+y%;

Veee =

In the Figure 3, it has been shown that all compo-
nent vectors (x,y and z) converge to the center. We
have found that there are 198 operators of EDSQOs
that converge to the center, which are called CCC.

The convergence of DSQOV23H
Itrations Number= 15 & Time to run: 3.859e-05 seconds
07

0.6 —_—

o
n

o
-

Inatial values [x,y.z)

o
9

[+] 5 10 15
Iterations

Figure 3. The limit behavior of operator from
CCC.

The corvergence of DSQOV20F
Itrafions Mumber= 40 & Time fo run: 6.07582-05 seconds.
0.7,

i

—_—

0.8

0.5

0.4

—--4.._\'/__..-—-'—

0.3

Inetial values [x.y.z)

0.2

01

0
0 5 10 15 20 25 30 35 40

Iterations

Figure 4. The limit behavior of operator from PC.

Example of LCC.
The following operator V : §* — §?

Vice(x) = yz+ 72 +x%
Vice(y) =xy+yz+y%
Vice(z) =xy+2yz;

Vice =

In the Figure 5, it can be seen that one of the vec-
tor components y is constant, while the other two
components x and z converge to the same limit. In
this case, we have found 18 operators of EDSQOs,
where the limit of one of their components does not
change. We call these operators LCC.

Example of PC.
The following operator V : §2 — §2

Vpc(x) = xz+yz+ 2%
Vec(y) = xy+y* +yz;
Vpe(z) = X2 +xy+1xz;

Vpc =

In the Figure 4, it can be seen that the three vector
components never converge. We have found 6 op-
erators under this case, where these operators have
a periodic limit. Therefore, it has been called PC.

From the three studies we exclude the classes
LCC and PC from applying for CP in MAS. There-
fore, we can apply all 198 EDSQOs on 2D of CCC
for CP in MAS.

In the case of the nonlinear model of EDSQO

m

Zpij,kxixj:

i=1
ai;,l ap apg\ [x

(x v 2)|ang ami ax y
as;, Ay, a3 z
ajlp app app\ [x

(x v 2)|any amp ana| |y (12)
az1p axnp aynp) \2
ajly aps apz\ [x

(x v 2)|ans an3 anz| |y
az13 axnz aynz) \2

The new sufficient conditions of EDSQOs by

using majorization theory are:

Dajjr =0,

2)ajj1+ajj+...Faijr=1,
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3a;=0V1,

1
4)a,~j:0\/§\/1,
5) aij = aji,

6) The sum of any sub-block 2 by 2 < 2,
7) The sum of elements of each matrix = 3.
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Figure 5. The limit behavior of operator from
LCC.

6 Simulation

In this case, suppose the initial values of x,y,z
are any random values between 0 and 1, and their
summation is equal 1 and given that the transition
matrix for DeGroot and DSQO models is a dou-
bly stochastic matrix, while the transition matrix for

1
EDSQO is consisting of 0 or 1 or 3 based on ma-

jorization conditions, thus a comparison between
DeGroot, DSQO and EDSQO carried out. The re-
sults are presented in graphs 9 and 10.
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In graphs 9 and 10, it is shown that the conver-
gence time of EDSQOs is faster than that of DeG-
root and DSQOs.

The disadvantages of the linear DeGroot
model:

1. The linear consensus cannot always be achieved
because of the fact that many physical systems
in engineering have a special type of consensus
problem [40, 41].

2. The linear protocol of DeGroot model needs
more iterations resulting in more time to con-
verge.

The disadvantages of the nonlinear DSQO
model: Since every agent member of the group has
a positive subjective distribution, it often makes the
calculation highly complex, because each agents
has m? product to run in each iteration.

The advantages of the proposed nonlinear pro-
tocol based on EDSQO:

1. EDSQO is a nonlinear model; therefore, it is a
more accurate model for many physical systems.

2. It requires a few iterations to converge.

3. The transition matrix for each agent does not
necessarily need to be stochastic or doubly
stochastic as restricted conditions.
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4. The operators are very easy to calculate because
the values of the transition matrices are O, 1/2 or
1, which make all the coefficients equal to one to
update the status for each agent, and each agent
has only m product to run in each iteration.

6.1 The Simulation of The Convergence
Consensus of Some EDSQOs

We show some examples of EDSQOs in the
following [18, 42]

Vi(x) =¥ +y* +az;
Vi=Vi(y) =22 +xy+az;
Vi(z) = xy +2yz;
Va(x) = x> +y? +yz;
Vo, = Vz(y) :Z2+XZ+yZ;
Va(2) = xz+ 2xy;
Vi(x) = y* + 22 +xz;
V3 =< Va(y) = x> +xy+xz;
Vi(z) = xy+2yz
Vi(x) = y* + 22 +xy;
Va= < Vuly) =xz+yz+yz;
Vi(z) = ¥ +xy+xz;
Vs(x) = y* +xz+yz;
Vs =< Vs(y) = x> +xy+yz;
Vs(z) = 22 +xy +xz;
Ve(x) = y* +xy+xz;
Vo =< Vs(y) =22 +xy+yz:
Ve(z) = x> +xz+yz;
Vo(x) = 22 4+ xy +xz;
Vi =< Vi(y) = x> +xy+yz;
tV7(z) =y +xz+yz;
Vs(x) = x> +y* +xz;
Vs =< Ws(y) =xy+xz+yz;

Va(z) = 22 +xy +yz;
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Figure 8. The convergence of the trajectory of
EDSQO.

In simulation, we discuss the results of the anal-
ysis and then provide general result for all models
of DeGroot linear model, DSQOs nonlinear model
and EDSQOs nonlinear model (see Figures 6 and
7). At this general result, we observe that the mod-
ification of EDSQOs has an advantage over DeG-
root linear model and DSQOs nonlinear model. In
general, the outcome holds that the nonlinear con-
sensus converges by DSQOs has more complicated
function than by EDSQOs. It has been seen that for
example the number of agents are three (x,y,z) as
well as the number of polynomial is 9 for each agent
in the case of DSQOs, while the EDSQO has just 3
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polynomial for each agent. Therefore, the nonlinear
EDSQO model has faster time and low complex-
ity calculation than linear DeGroot and nonlinear
DSQO models. Finally, we see in Figures 8 and 9
the convergence of some examples of EDSQOs of
different initial values. It can be seen clearly that
we can design many operators of EDSQO to solve
the CP in MAS. Furthermore, we observe that the
convergence time for EDSQO:s is still fast in all op-
erators.

The convergence of DSQOV1
=25 & T=0.0001285
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Figure 9. The convergence of the trajectory of
EDSQO.

7 Conclusions

The novelty of this paper is that a new nonlinear
convergence algorithm was presented for a CP in
MAS. The NLCA of EDSQOs is developed based
on majorization theory. Generally, we presented the
nonlinear extreme doubly stochastic quadratic op-
erator convergence as a modification of QSOs and
DeGroot models. We defined two algorithms 1) the
NLAEDSQO to design all the convergent EDSQOs
and 2) the NLCA of EDSQOs for CP in MAS. Fur-
thermore, we showed the comparison of the con-
vergence NLCA of EDSQOs, DSQOs and DeGroot
models for CP. We investigate the NLCA of ED-
SQOs and found that it is superior than the DeG-
root linear and DSQO nonlinear models. Finally,
we showed the simulation of NLCA.
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