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Abstract

In this paper we investigate further and extend our previous work on radar signal identi-
fication and classification based on a data set which comprises continuous, discrete and
categorical data that represent radar pulse train characteristics such as signal frequencies,
pulse repetition, type of modulation, intervals, scan period, scanning type, etc. As the
most of the real world datasets, it also contains high percentage of missing values and
to deal with this problem we investigate three imputation techniques: Multiple Imputa-
tion (MI); K-Nearest Neighbour Imputation (KNNI); and Bagged Tree Imputation (BTI).
We apply these methods to data samples with up to 60% missingness, this way doubling
the number of instances with complete values in the resulting dataset. The imputation
models performance is assessed with Wilcoxon’s test for statistical significance and Co-
hen’s effect size metrics. To solve the classification task, we employ three intelligent ap-
proaches: Neural Networks (NN); Support Vector Machines (SVM); and Random Forests
(RF). Subsequently, we critically analyse which imputation method influences most the
classifiers’ performance, using a multiclass classification accuracy metric, based on the
area under the ROC curves. We consider two superclasses (‘military’ and ‘civil’), each
containing several ‘subclasses’, and introduce and propose two new metrics: inner class
accuracy (IA); and outer class accuracy (OA), in addition to the overall classification ac-
curacy (OCA) metric. We conclude that they can be used as complementary to the OCA
when choosing the best classifier for the problem at hand.
Keywords: machine learning, missing data, model-based imputation, neural networks,
random forests, support vector machines, radar signal classification.

1 Introduction

Missing values are unavoidable in real world
datasets and the radar once make no exception.
There is a variety of causes why data may be miss-
ing, but common ones are related to human errors,
equipment faults or to coarse environment condi-
tions that result in noise and propagation distortion,
leading to incomplete, incorrect or missed inter-
cepted signals. Dealing with it is important part of

the data pre-processing phase in any machine learn-
ing task and can lead to improved accuracy in the
later stages of classification [1].

Mechanisms of missing data usually belong to
three categories [1]: missing at random (MAR) –
where the missingness can be fully accounted for
by the variables where the information is complete;
missing completely at random (MCAR), where the
missingness is unrelated both to its value or to
the value of any other variables (observed and un-
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observed); and missing not at random (MNAR) -
where the missingness depends only on unobserved
data. The last group (MNAR), typically yields bi-
ased parameter estimates, while MCAR and MAR
analyses lead to unbiased ones (however, MCAR
still has a loss of statistical power).

Dealing with missingness requires an analysis
strategy leading to least biased estimates, without
losing statistical power of the dataset. However,
the nature of those two criteria is contradictory and
using the information from the partially completed
data (keeping their statistical power), while imput-
ing the missing values, inevitably brings biases.

There are two groups of methods widely used to
solve the missing data problem: Deletion methods
and Model-based methods [1-3]. The first group in-
cludes pairwise and listwise deletion. The pairwise
deletion (also called ”unwise” deletion) keeps as
many cases as possible for each analysis (this way
making use of all available information), but the
problem is that the analyses are incomparable be-
cause each of them is based on different subsets of
data, with different sample sizes and different stan-
dard errors. The listwise deletion (or complete case
analysis) is a simple approach which discards all
records with missing data. The advantages of this
technique include comparability across the analy-
ses and the fact that it does not introduce biased
parameter estimates (assuming the data is MCAR),
while the disadvantage is that there may be substan-
tial loss of statistical power (especially if there are
many excluded samples).

In this work we consider three model-based
imputation approaches: Bagged Tree Imputation
(BTI), K-Nearest Neighbour Imputation (KNNI)
and Multiple Imputation (MI).

The BTI with gradient boosting [4] is a machine
learning technique for solving regression problems,
which produces a prediction model ensembling
weak ones. For each predictor that has missing data,
a tree model is trained, based on the other predictors
and the values are imputed using a regression func-
tion.

The KNNI [3] approach comprises three
phases: the first one is to take only the subset with-
out missing data and to use it as a prototype dataset
to select the nearest one; the second phase is to
choose a distance/similarity metric and compute it

between each pattern with missing data and the
full dataset; and finally, the third one is to impute
the data, using the mean, the median or the mode
among the chosen neighbours.

The MI approach involves three distinct stages:
firstly, sets of plausible data for the missing ob-
servations are created and used to construct many
completed datasets (without missing values); sec-
ondly, each of these datasets is independently con-
sidered using standard statistical analysis for com-
plete datasets; and thirdly, all the sets from the pre-
vious stage are combined into one estimate for the
inference. The aim of the MI process is not just to
fill in the missing values with plausible estimates,
but also to preserve important characteristics of the
whole dataset. As with most (multiple regression)
prediction models, the danger of overfitting is real,
usually leading to less generalizable results com-
pared to the original data [2].

The remainder of the paper is organized as fol-
lows: Section 2 provides additional background on
radar signal classification and discusses prior work
in this area; Section 3 introduces briefly the used
classification methods; Section 4 gives the problem
statement and data set analysis; Section 5 presents
the employed data imputation models and the data
coding and transformation; Section 6 illustrates the
data imputation with two experiments – label im-
putation and continuous feature imputation; classi-
fiers training and obtained results are reported and
critically discussed in Section 7 (we also introduce
two new metrics: inner (super) class error and outer
class error to assess the classifiers accuracy); and fi-
nally, Section 8 concludes the discussion and gives
potential avenues for further research.

2 Radar Signal Classification

Over the years, radars have been used in various ar-
eas of application, but the two broad ones are mil-
itary and civil. In the military sector, radar activ-
ity has found application in surveillance, navigation
and weapon guidance (detecting, locating, tracing,
and identifying air, marine, and terrestrial objects,
at small to medium and large distances). In the
civil area, radars are widely used for traffic control,
navigation, weather forecast, pollution monitoring,
space observation, sport systems, and others [5-7].
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The radar characteristics (range, resolution and
sensitivity) are determined by its transmitter and
waveform generator. Most radars operate within the
micro-wave region of the electromagnetic spectrum
and are used for short range applications with high
resolution, while other radars operate in the radio-
wave region and are usually preferred for longer
range purposes [5].

Radar detection, classification and tracking of
targets against a cluttered background are consid-
ered as a ‘general radar problem’. For military pur-
poses ‘the general radar problem’ involves the in-
terception, localisation, analysis and identification
of radiated electromagnetic energy - also known
as radar Electronic Support Measures (ESM). They
are considered a reliable source of valuable infor-
mation for threat detection, threat avoidance, and in
general, situation awareness for timely deployment
of counter-measures [8].

A real-time identification of a radar emitter as-
sociated with each intercepted pulse train is a very
important function of the radar ESM. Typical ap-
proaches include sorting radar pulses into individ-
ual pulse trains, then comparing their features with
a library of parametric descriptions to get a list
of likely radar types. This can be a very difficult
task, as there may be radar modes with no records
in ESM library; increases in environment density
(e.g., Doppler spectrum radars transmitting hun-
dreds of thousands of pulses per second); overlaps
of different radar type parameters; agility of radar
features, such as radio frequency and scan, pulse
repetition interval, etc.; multiplication and disper-
sion of the modes for military radars; noise and
propagation distortion that lead to incomplete or in-
correct signals [9].

Intercepted and collected pulse train properties
typically include signal frequencies, type of modu-
lation, pulse repetition intervals, etc. The collected
information usually consists of a combination of
continuous, discrete and categorical data, and fre-
quently includes missing entries. Table 1 shows
several samples of radar data that illustrates the
above mentioned characteristics and includes miss-
ing values as well. Handling the missing data is
very important part of the pre-processing stage of
any machine learning experiment, before applying
the considered classification models [10].

3 Intelligent Techniques in Radar
Identification

3.1 Neural Networks

A number of approaches have been investigated and
applied to solve the radar emitter recognition and
identification problem and substantial part of this
research includes Neural Networks (NN), because
of their flexibility, fault tolerance and capability to
handle incomplete and noisy radar data. NN models
have previously been applied to solve different tasks
of radar ESM processing and more recently, many
new radar and target recognition systems comprise
neural networks as a key classifier [11]. Previ-
ous works using a variety of NN architectures and
topologies for radar identification, recognition and
classification based on ESM data include popular
Multilayer Perceptron (MLP), Radial Basis Func-
tion (RBF) based NN, Support Vector Machines
(SVM), single parameter dynamic search NN, [11-
13], and deep learning NN [14].

For example, in [9] the authors use initial clus-
tering algorithm to separate pulses from different
emitters according to position-specific parameters
of the input pulse stream when implementing their
“What-and-Where fusion strategy” and then apply
fuzzy ARTMAP neural network to classify streams
of pulses according to radar type, using their func-
tional parameters. They also do simulations with
dataset having missing input pattern components
and missing training classes, incorporating a bank
of Kalman filters to demonstrate high level perfor-
mance of their system on incomplete, overlapping
and complex radar data. The work presented in [11]
investigates the potential of NN (MLPs) when used
in Forward Scattering Radar (FSR) applications for
target classification. The authors analyse radar sig-
nal data and extract features, which are then used
to train NN for target classification. They also ap-
ply the more commonly used K-Nearest-Neighbour
classifier to compare the results from the two ap-
proaches and conclude that the NN solution has bet-
ter accuracy. In [13] the authors investigate the po-
tential of NN (MLP) when used in Forward Scat-
tering Radar (FSR) applications for target classifi-
cation. In [14] deep NN architectures are employed
for SAR images recognition, while in [15] a vec-
tor neural network is applied for emitter identifi-
cation. In many cases the NN are hybridized with
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Table 1. Sample radar data subset. Missing values (i.e., values that could not have been intercepted or
recognized) are denoted with ‘-’. The rest of the acronyms are defined in Table 2.

ID FN RFC RFmi RFmi PRC PRImi PRIma PDC PDmi PDma ST SPmi SPma
84 SS B 5300 5800 K – – S – – A 5.9 6.1
4354 AT F 2700 2900 F 1351.3 1428.6 S – – A 9.5 10.5
7488 3D B 8800 9300 K 100 125 S 13 21 B 1.4 1.6
9632 WT F 137 139 T – – V – – D – –
9839 3D S 2900 3100 J – – V 99 101 A 9.5 10.5

Table 2. Data description and percentage of missing values. In column ‘Type’: I – integer; C – categorical;
R – real values

Field Field Description Type Levels % Missing
ID Reference for the line of data I - -
FN Function performed by the radar (‘3D’ – 3D surveillance, ‘AT’ –

air traffic control, ‘SS’ – surface search, ‘WT’ – weather tracker,
etc.)

C 142 1.4

RFC Type of modulation used by the radar to change the frequency from
pulse to pulse (‘A’ – agile, ‘F’ – fixed, etc.)

C 12 20.7

RFmi Min frequency used by the radar R - 11.2
RFma Max frequency used by the radar R - 11.2
PRC Type of modulation used by the radar to change the Pulse Repeti-

tion Interval (PRI), (‘F’ – fixed, etc.)
C 15 15

PRImi Min PRI used by the radar R - 46.7
PRIma Max PRI used by the radar R - 46.7
PDC Type of modulation used by the radar to change the pulse duration

(‘S’ - stable)
C 5 12.9

PDmi Min pulse duration used by the radar R - 46.1
PDma Max pulse duration used by the radar R - 46.1
ST Scanning type – used method by the radar to move the antenna

beam (‘A’ – circular, ‘B’ – bidirectional, ‘W’ – electronically
scanned, etc.)

C 28 11.3

SPmi Min scan period used by the radar R - 59.4
SPma Max scan period used by the radar R - 59.4
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other techniques such as fuzzy systems, clustering
algorithms, wavelet packets, Kalman filters, parti-
cle swarm optimization-based SVM, etc., which in
turn leads to recognition systems with increased ac-
curacy [9,15].

3.2 Support Vector Machines

Support Vector Machines (SVM) are learning ma-
chines based on the statistical learning theory, that
can use linear, polynomial, Gaussian, exponential
and hybrid kernels for the classification, Radial
Basis Function (RBF) networks, and even parti-
cle swarm optimization in some cases [16]. They
minimise the structure risk in a higher dimensional
feature space, searching for the hyperplane with
the largest margin between the classes. In other
words, if the feature space is non-linearly separa-
ble, the SVM use non-linear mapping to find an
optimal classification hyperplane. The choice of
a map function (kernel) can significantly influence
the classification results [17]. One advantage of this
approach is that it is possible to design and use a
kernel function for a specific task that could be ap-
plied to the data without the need of a previous fea-
ture extraction process.

The SVM have been used recently to classify
radar pulse signals. For example, in [18] the authors
use SVM to classify targets by analysing micro-
motions of an object having single signature. Target
recognition method based on SVM with hybrid dif-
ferential evolution and self-adaptive particle swarm
optimization is investigated in [16]. The reported
low error rate results in these works showed that the
SVM are useful approach for solving radar classifi-
cation and recognition problems.

In this work we used the SVM implementation
from the R package ‘E1071’, which we found to
work faster on multi-class problems [19].

3.3 Random Forests

Random Forests (RF) [20] is a machine learning
technique that builds a multitude of weak deci-
sional trees at training time and outputs the class
that is the mode of the classes (classification) or av-
erage prediction (regression) of the individual trees.
Each tree is individually trained on a sample of the
training data, and at each node, the algorithm only
searches across a random subset of the features to

determine a split. The input vector to be classified is
submitted to each of the decision trees in the forest
and the prediction is then formed using a majority
vote. The method combines Breiman’s “bagging”
idea [20], and the random selection of features, in-
troduced independently by [21].

Some authors [22] consider random forests as
“clearly the best family of classifiers”, while others
[23] argue that such statement is flawed and ques-
tion their conclusion, showing that the study’s own
statistical tests indicate that “RF do not have signif-
icantly higher percent accuracy than support vector
machines and neural networks”. Nevertheless, most
authors agree that key advantages of RF comprise:
the capability of determining variable importance;
avoiding decision trees’ habit of overfitting; and a
high classification accuracy [20]. However, as the
split rules for classification are unknown, the RF
could be considered as a black box type classifier.
In our implementation, we used the R ‘randomFor-
est’ package, which implements the Breiman’s ran-
dom forests algorithm [20].

4 Problem Statement and Data Set
Analysis

Accurate and real-time classification of radar sig-
nals is of crucial importance for timely threat detec-
tion, threat avoidance, and deployment of counter-
measures. In this context, this paper investigates
the potential application of three methods for iden-
tification of radar types, associated with intercepted
pulse trains.

In our previous work [24], we initially used a
deletion technique (listwise) to obtain 7693 com-
plete samples from a total of about 30000 in-
tercepted generic data samples and subsequently
adopted multiple imputation (MI), to take advan-
tage of the whole dataset when solving identifica-
tion and classification tasks. Each signals in the
dataset is pre-classified by experts into one of 125
categories, based on the main radar emitter func-
tions (e.g., weather tracking, surveillance, air traffic
control, air defence, etc.).

As mentioned above, in this work we investi-
gate three different state-of-the-art classifiers: NN;
SVM; and RF; as well as three imputation tech-
niques: MI; KNNI; and BTI. Firstly, we employ MI
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using 15656 samples, including the recovered 7963
samples with missing data (doubling the number
of the complete available data). When employing
KNNI and BTI we managed to recover all missing
data and used 29094 samples (the whole dataset).
From the missing data samples (example given in
Table 1), we excluded only those with above 60%
missingness and used MI, RNNI, and BTI for sub-
stituting the missing data.

Table 1 contains all the relevant information
of the dataset at hand. The first two columns in-
clude the data sample identifier and the category la-
bel (specifying the radar function and considered as
the output to classify), followed by the radar signal
pulse train characteristics (e.g., type of modulation,
signal frequencies, pulse repetition intervals, etc.),
which are considered as input features.

A summary of the data distribution is presented
in Table 2, where an overview of the type, range
and percentage of missing values in the dataset is
also given. The included data consists of both nu-
merical (discrete and continuous) and categorical
values, the latter of which we coded during the
data pre-processing stage, using different represen-
tations (i.e., continuous, binary and dummy). The
table also shows that the percentage of missing-
ness varies from 11.2% to 59.4% (for the radar fre-
quency and scan period features respectively).

5 Data Imputation and Pre-
processing

The pre-processing of the available data is of pri-
marily importance in machine learning as it can
significantly affect the overall accuracy of the em-
ployed classification algorithm. The main objective
is to analyse inconsistences and outliers in the data,
and to facilitate the underlying mathematical appa-
ratus of the machine learning method, leading to an
overall improvement of the classifier’s performance
in terms of faster convergence and higher accuracy.

5.1 Bagged Tree Imputation (BTI)

Bagging predictors approach generates manifold
versions of a predictor to get an aggregated one.
The aggregation function usually is the average
value over all predictor estimations when for a nu-
merical outcome, or employs a majority vote when

the desired output is a categorical one. The multi-
ple predictions are estimated by bootstrapping from
the training set and subsequently using these as new
learning sets. Tests on real and artificial data sets,
using classification and regression trees and subset
bootstrap with linear regression, show that bagging
can benefit the accuracy. Vital component of this
technique is the instability of the prediction model,
but if perturbing the learning set can cause signifi-
cant changes in the constructed predictor, then bag-
ging can improve the accuracy [10], [25].

BTI is robust to outliers and is able to im-
pute the data very accurately using surrogate splits,
which are essential in handling the missing data
[26]. For example, if a decision tree is trained to
predict variable p, using a set of features a, b and c,
and if for a new data point there are values only for
a and b, the missing value of c would raise problems
for the prediction of p. In such cases, the models are
trained to include surrogate splits. So, whenever the
variable c is missing, the algorithm defers the deci-
sion to another variable that is highly correlated to
c, which will allow the prediction to continue. An-
other important feature of the tree model is its flexi-
bility, with the RF we can train different models and
postpone the real prediction to a system vote among
the models.

In this work we employ gradient boosting tech-
nique for the values regression, which is based on
an ensemble of weak decision trees, implementing
the R “gbm” package [4] for the imputation func-
tion.

Algorithm 1. Pseudocode of BTI
1: Input: X (data matrix)
2: Repeat:
3: In parallel:
4: For each predictor p in X, train a tree model

that predicts p using all other p-1 features
5: Predict missing values for predictor p, but do

not write to X yet
6: Sync threads
7: Fill X with predicted values

5.2 K-Nearest Neighbour Imputation
(KNNI)

Another imputation approach used in this work is
the K-Nearest Neighbour (KNNI) [3], [27]. This
technique has several benefits: the method can pre-
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In this work we employ gradient boosting tech-
nique for the values regression, which is based on
an ensemble of weak decision trees, implementing
the R “gbm” package [4] for the imputation func-
tion.

Algorithm 1. Pseudocode of BTI
1: Input: X (data matrix)
2: Repeat:
3: In parallel:
4: For each predictor p in X, train a tree model

that predicts p using all other p-1 features
5: Predict missing values for predictor p, but do

not write to X yet
6: Sync threads
7: Fill X with predicted values

5.2 K-Nearest Neighbour Imputation
(KNNI)

Another imputation approach used in this work is
the K-Nearest Neighbour (KNNI) [3], [27]. This
technique has several benefits: the method can pre-
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dict both continuous (the average among the nearest
neighbours) and categorical variables (the most fre-
quent value); there is also no need to build a model
beforehand (as in the BTI).

If the available data set is denoted with X and
the complete subset with Xc, for each sample con-
taining a missing point, the procedure will search
the K most similar records in the Xc dataset, accord-
ing to the adopted distance measure, before imput-
ing the missing value. This means that there is a
need to separate the complete dataset from the ini-
tial one containing missing data, define an appro-
priate distance measure, and for each sample in the
missing dataset to look for the nearest neighbours,
using that measure. Then, the mode value is used
when substituting a categorical variable and the av-
erage value for a continuous one. In this work, we
use the function kNN of the R package VIM [28].

5.3 Multiple Imputation

For imputing the missing multivariate data, we use
sequential multiple imputation algorithm [29], im-
plemented in the impSeq function from the R pack-
age (we also tried two other R functions: impNorm;
and impSeqRob; but they did not produce better re-
sults when tested on the complete dataset).

If Xc is a subset with no missing data, derived
from the available data set X, the procedure will
start with Xc to estimate sequentially the missing
values of an incomplete observation x*, by mini-
mizing the covariance of the augmented data matrix
X* = (Xc, x*). Subsequently, the data sample x* is
added to the complete data subset and the algorithm
continues with the estimate of the next data sample
with missing values.

Algorithm 2. Pseudocode of MI

1: Input: X (data matrix), Xc (complete sub-
set of X)

2: For each x* (incomplete observation in
X):

3: x = Min var( (Xc, x* )
4: Add x to Xc

Because impSeq uses the sample mean and co-
variance matrix, it is vulnerable to the presence of
outliers, but this can be enhanced by including ro-
bust estimators of location and scatter (which is re-
alised in impSeqRob function) [29]. Because the
outlyingness metric can be computed for a complete

dataset only, firstly the sequential imputation of the
missing data is done and then the outlyingness mea-
sure is computed and used to define whether the
observation is an outlier or not. If the measure
does not exceed a predefined threshold, the obser-
vation is included in the next steps of the algorithm
(nevertheless, the use of impSeqRob in our case did
not produce better results when tested on complete
dataset, which may be simply because of the lack of
outliers).

As we mentioned before, in the available radar
dataset of about 30000 samples, there are 7693 fully
intercepted and recognised radar signals that con-
stitutes the complete subset (received after listwise
deletion of the original dataset) [24]. Subsequently,
employing the MI on the missing data samples with
less than 60% missingness, led to dataset of 15656
observations, which exceeds the doubled size of the
initial data subset. Processing the subset with miss-
ingness with the KNNI and the BTI tripled the com-
plete data samples, enabling us to utilise valuable
information and use the statistical power of the data
contained in the samples with missing values.

The applied supervised learning for the identi-
fication and classification of the radar signals uses
from two to eleven output classes: two classes for
the first set of simulations - civil and military; and
eleven (four civil and seven military classes) in the
second set of simulations (defined by experts in the
field from a total of 125 functional categories). Ta-
ble 3 shows the samples from Table 1 with the in-
putted values produced by the implemented MI.

5.4 Data Coding and Transformation

This stage of the pre-processing aims to transform
the data into a suitable form for feeding the cho-
sen classifier. A transformation coding is applied to
convert the categorical features to numerical ones.
Three of the most broadly applied coding tech-
niques are implemented: continuous; binary; and
dummy. In the first case, each of the categorical val-
ues is substituted with an ordinal number, e.g., the
12 categories for the RFC input are encoded within
(1-12) interval, the 15 PRC categories within (1-15)
interval, etc.

A sample of a data subset coded with continu-
ous values is given in Table 4. With the Binary cod-
ing, each categorical value is substituted by log2N
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Table 3. Sample radar data subset with imputed values for the missing continuous values

ID FN RFC RFmi RFma PRC PRImi PRIma PDC PDmi PDma ST SPmi SPma
84 SS B 5300 5800 K 963.2 5625 S 5.8 17 A 5.9 6.1
4354 AT F 2700 2900 F 1351 1428 S 4 6.3 A 9.5 10.5
7488 3D B 8800 9300 K 100 125 S 13 21 B 1.4 1.6
9632 WT F 137 139 T 622.6 31312 V 61.1 93.1 D 12 47.8
9839 3D S 2900 3100 J 2058 48128 V 99 101 A 9.5 10.5

new binary variables (where N is the number of cat-
egories taken by that variable), each having value
of either 0 or 1 (illustrated in Table 5 for 32 cate-
gories).

Finally, the non-numerical attributes are coded
using dummy variables. In particular, every p levels
of a categorical variable are represented by intro-
ducing p dummy variables. An example of dummy
coding for 32 categorical levels is shown in Table 6.

To balance the impact of the different input pa-
rameters on the training algorithm, the data was
scaled during the pre-processing phase. Corre-
spondingly, each of the conducted experiments in
the next section is evaluated using three forms of
the input data set: the original data (with no scal-
ing); normalized data (i.e., within (0, 1) interval);
and standardized data (i.e., 0-mean and 1-variance).

6 Assessment Baseline

To begin with, it is essential to determine which im-
putation method leads to the best substitution of the
missing values. For this purpose, we designed two
experiments, as described below.

6.1 Label Imputation

To test the reliability of the investigated imputa-
tion models, 25% of the labels in the complete sub-
set (˜4000 records), were randomly removed. The
labels were subsequently imputed, using the three
methods: BTI, KNNI and MI. To cope with the ran-
dom nature of the algorithms, we run each imputa-
tion 30 times. This was done for the two simula-
tions: with 2 classes and with 11 classes.

In the 2 class imputation case, the KNNI
method showed the best performance with 90% ac-
curacy, followed by BTI with 84% and MI with
65% (Figure 1). We think that KNNI achieved the
best accuracy due to the skewed nature of the data:

in fact, 75% of the data belongs to the second class,
this way, the unbalanced dataset helps the search
of nearest neighbours to go towards the class with
more samples. On the contrary, the MI and BTI
methods assume balanced label distribution, which
probably led to limited accuracy of their imputation.

Figure 1. Label imputation for MI, BTI and KNNI
over 30 runs for 2 classes. Each boxplot displays

the minimum and maximum values (whiskers), the
first and the third quartile (boundaries of the box
represent 50% of the data), and the median (the

thick line)

In the 11-class case (Figure 2), the effect is even
more evident, as the samples are not equally dis-
tributed among the classes, leading to a low accu-
racy for MI and BTI and a high variance for KNNI
due to the randomness of the labels removed in each
of the 30 runs.

6.2 Continuous Feature Imputation

The second experiment aimed to validate the al-
gorithms’ accuracy in presence of continuous fea-
tures. Eight features from the dataset without miss-
ing data (RFmi, RFma, PRImi, PRIma, PDmi,
PDma, SPmi, SPma) were considered in this im-
putation. As in the previous experiment, 25% of
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Table 3. Sample radar data subset with imputed values for the missing continuous values

ID FN RFC RFmi RFma PRC PRImi PRIma PDC PDmi PDma ST SPmi SPma
84 SS B 5300 5800 K 963.2 5625 S 5.8 17 A 5.9 6.1
4354 AT F 2700 2900 F 1351 1428 S 4 6.3 A 9.5 10.5
7488 3D B 8800 9300 K 100 125 S 13 21 B 1.4 1.6
9632 WT F 137 139 T 622.6 31312 V 61.1 93.1 D 12 47.8
9839 3D S 2900 3100 J 2058 48128 V 99 101 A 9.5 10.5

new binary variables (where N is the number of cat-
egories taken by that variable), each having value
of either 0 or 1 (illustrated in Table 5 for 32 cate-
gories).

Finally, the non-numerical attributes are coded
using dummy variables. In particular, every p levels
of a categorical variable are represented by intro-
ducing p dummy variables. An example of dummy
coding for 32 categorical levels is shown in Table 6.

To balance the impact of the different input pa-
rameters on the training algorithm, the data was
scaled during the pre-processing phase. Corre-
spondingly, each of the conducted experiments in
the next section is evaluated using three forms of
the input data set: the original data (with no scal-
ing); normalized data (i.e., within (0, 1) interval);
and standardized data (i.e., 0-mean and 1-variance).

6 Assessment Baseline

To begin with, it is essential to determine which im-
putation method leads to the best substitution of the
missing values. For this purpose, we designed two
experiments, as described below.

6.1 Label Imputation

To test the reliability of the investigated imputa-
tion models, 25% of the labels in the complete sub-
set (˜4000 records), were randomly removed. The
labels were subsequently imputed, using the three
methods: BTI, KNNI and MI. To cope with the ran-
dom nature of the algorithms, we run each imputa-
tion 30 times. This was done for the two simula-
tions: with 2 classes and with 11 classes.

In the 2 class imputation case, the KNNI
method showed the best performance with 90% ac-
curacy, followed by BTI with 84% and MI with
65% (Figure 1). We think that KNNI achieved the
best accuracy due to the skewed nature of the data:

in fact, 75% of the data belongs to the second class,
this way, the unbalanced dataset helps the search
of nearest neighbours to go towards the class with
more samples. On the contrary, the MI and BTI
methods assume balanced label distribution, which
probably led to limited accuracy of their imputation.

Figure 1. Label imputation for MI, BTI and KNNI
over 30 runs for 2 classes. Each boxplot displays

the minimum and maximum values (whiskers), the
first and the third quartile (boundaries of the box
represent 50% of the data), and the median (the

thick line)

In the 11-class case (Figure 2), the effect is even
more evident, as the samples are not equally dis-
tributed among the classes, leading to a low accu-
racy for MI and BTI and a high variance for KNNI
due to the randomness of the labels removed in each
of the 30 runs.

6.2 Continuous Feature Imputation

The second experiment aimed to validate the al-
gorithms’ accuracy in presence of continuous fea-
tures. Eight features from the dataset without miss-
ing data (RFmi, RFma, PRImi, PRIma, PDmi,
PDma, SPmi, SPma) were considered in this im-
putation. As in the previous experiment, 25% of
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Table 4. Sample subset with imputed radar data and natural number coding of ‘RFC’, ‘PRC’, ‘PDC’, and
‘ST’

ID RFC RFmi RFma PRC PRImi PRIma PDC PDmi PDma ST SPmi SPma
84 2 5300 5800 7 963.2 5625 1 5.8 17 1 5.9 6.1
4354 4 2700 2900 4 1351 1428 1 4 6.3 1 9.5 10.5
7488 2 8800 9300 7 100 125 1 13 21 2 1.4 1.6
9632 4 137 139 11 622.6 31312 2 61.1 93.1 4 12 47.8
9839 9 2900 3100 6 2058 48128 2 99 101 1 9.5 10.5

Table 5. Example of binary coding for 32-level categorical variable

Original Category Encoded Variables
Index Label B1 B2 B3 B4 B5
1 ‘2D’ 0 0 0 0 0
2 ‘3D’ 0 0 0 0 1
3 ‘AA’ 0 0 0 1 0
...

16 ‘CS’ 0 1 1 1 1
...

32 ‘ME’ 1 1 1 1 1

Table 6. Example of dummy coding for 32-level categorical variable

Original Category Encoded Variables
Index Label D1 D2 D3 D4 D5 ... D16 ... D32
1 ‘2D’ 1 0 0 0 0 ... 0 ... 0
2 ‘3D’ 0 1 0 0 0 ... 0 ... 0
3 ‘AA’ 0 0 1 0 0 ... 0 ... 0
...

16 ‘CS’ 0 0 0 0 0 ... 1 ... 0
...

32 ‘ME’ 0 0 0 0 0 ... 0 ... 1
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the data was removed for each feature and sub-
sequently imputed. The Root Mean Square Error
(RMSE) between the imputed values and the real
ones was selected to measure the methods’ per-
formance. The experiment was iterated 30 times
and the non-parametric Wilcoxon test for statistical
significance [30] along with the relative effect size
(Cohen’s d) [31], were calculated.

The Wilcoxon test uses the rank of the data to
determine if there is any difference between two
samples, without making any assumption about the
data distributions’ nature. If the p-value is greater
than the significance threshold α (α = 0.05 in our
case), then there is no significant difference be-
tween the two samples.

The Cohen’s d effect size metric shows how
much, on average, one technique outperforms an-
other. The measure applied to the two populations
(1st technique vs 2nd technique) gives a response be-
tween 0 and 1 and is calculated with (1)

d =

���µ2
group1 − µ2

group2

���
|σboth|

,

σboth =

√
σ2

group1 + σ2
group2

2
,

(1)

where µgroup1 and µgroup2 are the average of the two
techniques respectively, and σboth is the average of
their standard deviations.

Figure 2. Label imputation with MI, BTI and
KNNI over 30 runs for the 11 classes. Each

boxplot displays the minimum and maximum
values (whiskers), the first and the third quartile

(boundaries of the box represent 50% of the data),
and the median (the thick line)

In [31], the results are grouped in 3 categories:
small with d ∈ [0.2, 0.5); medium d ∈ [0.5, 0.8);
and large d ∈ [0.8, 1.0]. If d<0.2 the difference of
the two groups is insignificant, even if the p-value
shows statistical significance.

The considered imputation algorithms were
also compared with the median imputation (an algo-
rithm from the “single imputation” family, largely
rejected by the research community) and for this
reason, used just as a comparison baseline. As
expected (Figure 3), all other algorithms produced
smaller errors, outperforming the median imputa-
tion. In 23 out of 25 cases BTI had better sta-
tistical significance and median (p-value < 0.025)
than MI and KNNI and with effect size d=1. The
comparison between BTI and KNNI on PRImi and
PRIma, despite a p-value < 0.025, showed slightly
lower effect size, d=0.83 and d=0.78 respectively.
Analysing the results for the two features led to the
conclusion that KNNI is again strongly influenced
by the data distribution, which is highly positively
skewed for PRImi and PRIma (Figure 4).

Figure 4. Density function for the features: RFmi,
PRImi, PDmi, SPmi on the dataset without missing

value. Each feature is normalized within (0, 1)
interval. The distribution of PRImi and PDmi sows

highly positive skewedness. For a better
visualisation, the features RFma, PRIma, PDma

and SPma are omitted due to the similar
distribution and high correlation with the

respective minima

Figure 4 shows the normalized density func-
tion for four features, from which PRImi and PDmi
have high positive skewness, concentrated in the
first quartile. It seems, as for the label imputation,
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the data was removed for each feature and sub-
sequently imputed. The Root Mean Square Error
(RMSE) between the imputed values and the real
ones was selected to measure the methods’ per-
formance. The experiment was iterated 30 times
and the non-parametric Wilcoxon test for statistical
significance [30] along with the relative effect size
(Cohen’s d) [31], were calculated.

The Wilcoxon test uses the rank of the data to
determine if there is any difference between two
samples, without making any assumption about the
data distributions’ nature. If the p-value is greater
than the significance threshold α (α = 0.05 in our
case), then there is no significant difference be-
tween the two samples.

The Cohen’s d effect size metric shows how
much, on average, one technique outperforms an-
other. The measure applied to the two populations
(1st technique vs 2nd technique) gives a response be-
tween 0 and 1 and is calculated with (1)
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where µgroup1 and µgroup2 are the average of the two
techniques respectively, and σboth is the average of
their standard deviations.

Figure 2. Label imputation with MI, BTI and
KNNI over 30 runs for the 11 classes. Each

boxplot displays the minimum and maximum
values (whiskers), the first and the third quartile

(boundaries of the box represent 50% of the data),
and the median (the thick line)

In [31], the results are grouped in 3 categories:
small with d ∈ [0.2, 0.5); medium d ∈ [0.5, 0.8);
and large d ∈ [0.8, 1.0]. If d<0.2 the difference of
the two groups is insignificant, even if the p-value
shows statistical significance.

The considered imputation algorithms were
also compared with the median imputation (an algo-
rithm from the “single imputation” family, largely
rejected by the research community) and for this
reason, used just as a comparison baseline. As
expected (Figure 3), all other algorithms produced
smaller errors, outperforming the median imputa-
tion. In 23 out of 25 cases BTI had better sta-
tistical significance and median (p-value < 0.025)
than MI and KNNI and with effect size d=1. The
comparison between BTI and KNNI on PRImi and
PRIma, despite a p-value < 0.025, showed slightly
lower effect size, d=0.83 and d=0.78 respectively.
Analysing the results for the two features led to the
conclusion that KNNI is again strongly influenced
by the data distribution, which is highly positively
skewed for PRImi and PRIma (Figure 4).

Figure 4. Density function for the features: RFmi,
PRImi, PDmi, SPmi on the dataset without missing

value. Each feature is normalized within (0, 1)
interval. The distribution of PRImi and PDmi sows

highly positive skewedness. For a better
visualisation, the features RFma, PRIma, PDma

and SPma are omitted due to the similar
distribution and high correlation with the

respective minima

Figure 4 shows the normalized density func-
tion for four features, from which PRImi and PDmi
have high positive skewness, concentrated in the
first quartile. It seems, as for the label imputation,
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Figure 3. Root mean square error (RMSE) for the imputation of the continuous values (30 runs). Low
median values represent preferable imputation methods. Non-overlapped boxplots indicate statistical

difference between the algorithms. For a better visualisation, the features RFma, PRIma, PDma and SPma
have been omitted due to the similar distribution and high correlation with the respective minimum
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that a highly imbalanced distribution can affect the
imputation process, explaining why each imputa-
tion method produces different accuracy for the fea-
tures given in Figure 3 (although, BTI is the overall
winner).

The results for the Wilcoxon test subjected to
the Benjamini-Hochberg and Bonferroni correc-
tions [32] for multiple statistical test are still sig-
nificant (α = 0.05).

7 Classifiers Training Results

The efficiency of each classifier when solving the
radar emitter recognition problem is tested with two
main experiments. The dataset is split into two sub-
sets before the imputation: training one (75% of
the whole data) and testing one (25% of the whole
data).

Batch-mode training is adopted and the investi-
gated neural network topologies include one hidden
layer with fully connected neurons between the ad-
jacent layers. For a given experiment with P learn-
ing samples, the error function is given with (2)

Ep =
1
2

P

∑
p=1

L

∑
i=1

(xp
i − t p

i )
2 (2)

where for each sample p=1,. . . , P and each neuron
of the output layer i=1,. . . , L; a pair (xi, ti) of NN
output and the target values is defined respectively.
NN learning with Levenberg-Marquardt algorithm
is then carried out and the training set is further di-
vided into 80% for the training and 20% for the vali-
dation. Mean Squared Error (MSE) is used for eval-
uating the NN learning performance. The stopping
criterion is set to 500 training epochs, or gradient
reaching value less than 1.0e-06, or 6 consequent
failed validation checks, whichever occurs first.

The basic split of the data (75% training, 25%
testing) is also used in the RF classification case.
The limit for the forests is set to 500 trees and the
output class is decided by a vote among them.

The SVM are provided with a radial basis ker-
nel (other kernels were tried as well but led to
worse results) and the input parameters are gen-
erated randomly by the algorithm. Moreover,
we also used parameters optimization function
(“tune.svm”) from the package, which increased the

classifier accuracy with up to 4%.

For the first experiment, the NN topology is N-N-
2, where N is the number of inputs and the output
contains 2 binary neurons codded as: 10 for class
“Civil”; and 01 for class “Military”. For the sec-
ond experiment, the same topology is used with 11
output neurons (representing 4 civil and 7 military
classes).

After coding the categorical variables with the
three methods described above, the accuracy of
each classifier is investigated, evaluated and com-
pared before and after the data normalisation and
standardisation.

Figure 6. Confusion matrix illustrating the RF
classification results for the 11 classes, after

employing BTI with continuous value coding. The
batch includes 7 military (‘M1’ – Multi-function,

‘M2’ – Battlefield, ‘M3’ – Aircraft, ‘M4’ – Search,
‘M5’ – Air Defence, ‘M6’ – Weapon and ‘M7’ –
Info) and 4 civil classes (‘C1’ – Maritime, ‘C2’ –
Airborne Navigation, ‘C3’ – Meteorological, ‘C4’

– Air Traffic Control)

Sample confusion matrices are shown in Fig-
ure 5 and Figure 6 for the best accuracy achieved
in the experiments, after training with continuous
input data. The RF demonstrates high accuracy
in both of them (the number of correct responses
given in the green squares and the number of in-
correct ones in the red squares). The bottom right
percentage illustrates the overall classifier accuracy
(OCA). Furthermore, it can be observed from Fig-
ure 6 that the number of hits, as well as the accu-
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that a highly imbalanced distribution can affect the
imputation process, explaining why each imputa-
tion method produces different accuracy for the fea-
tures given in Figure 3 (although, BTI is the overall
winner).

The results for the Wilcoxon test subjected to
the Benjamini-Hochberg and Bonferroni correc-
tions [32] for multiple statistical test are still sig-
nificant (α = 0.05).

7 Classifiers Training Results

The efficiency of each classifier when solving the
radar emitter recognition problem is tested with two
main experiments. The dataset is split into two sub-
sets before the imputation: training one (75% of
the whole data) and testing one (25% of the whole
data).

Batch-mode training is adopted and the investi-
gated neural network topologies include one hidden
layer with fully connected neurons between the ad-
jacent layers. For a given experiment with P learn-
ing samples, the error function is given with (2)
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where for each sample p=1,. . . , P and each neuron
of the output layer i=1,. . . , L; a pair (xi, ti) of NN
output and the target values is defined respectively.
NN learning with Levenberg-Marquardt algorithm
is then carried out and the training set is further di-
vided into 80% for the training and 20% for the vali-
dation. Mean Squared Error (MSE) is used for eval-
uating the NN learning performance. The stopping
criterion is set to 500 training epochs, or gradient
reaching value less than 1.0e-06, or 6 consequent
failed validation checks, whichever occurs first.

The basic split of the data (75% training, 25%
testing) is also used in the RF classification case.
The limit for the forests is set to 500 trees and the
output class is decided by a vote among them.

The SVM are provided with a radial basis ker-
nel (other kernels were tried as well but led to
worse results) and the input parameters are gen-
erated randomly by the algorithm. Moreover,
we also used parameters optimization function
(“tune.svm”) from the package, which increased the

classifier accuracy with up to 4%.

For the first experiment, the NN topology is N-N-
2, where N is the number of inputs and the output
contains 2 binary neurons codded as: 10 for class
“Civil”; and 01 for class “Military”. For the sec-
ond experiment, the same topology is used with 11
output neurons (representing 4 civil and 7 military
classes).

After coding the categorical variables with the
three methods described above, the accuracy of
each classifier is investigated, evaluated and com-
pared before and after the data normalisation and
standardisation.

Figure 6. Confusion matrix illustrating the RF
classification results for the 11 classes, after

employing BTI with continuous value coding. The
batch includes 7 military (‘M1’ – Multi-function,

‘M2’ – Battlefield, ‘M3’ – Aircraft, ‘M4’ – Search,
‘M5’ – Air Defence, ‘M6’ – Weapon and ‘M7’ –
Info) and 4 civil classes (‘C1’ – Maritime, ‘C2’ –
Airborne Navigation, ‘C3’ – Meteorological, ‘C4’

– Air Traffic Control)

Sample confusion matrices are shown in Fig-
ure 5 and Figure 6 for the best accuracy achieved
in the experiments, after training with continuous
input data. The RF demonstrates high accuracy
in both of them (the number of correct responses
given in the green squares and the number of in-
correct ones in the red squares). The bottom right
percentage illustrates the overall classifier accuracy
(OCA). Furthermore, it can be observed from Fig-
ure 6 that the number of hits, as well as the accu-
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Figure 5. (a) Confusion matrix illustrating the RF classification results for the two classes, after employing
BTI with continuous value coding (Military and Civil). (b) ROC Curve for the same simulation

racy of the RF classifier, compared to the previous
work [24], is increased. Another important achieve-
ment is also illustrated in these figures: the class ac-
curacy variance is now within the 34.8% to 90.8%
interval; while in [24] it was between 22.6% and
87.4%. This may be attributed to the higher num-
ber of available training and testing samples as a re-
sult of the BTI imputation, which increased the used
dataset statistical power and improved the classifi-
cation performance of the RF.

The results shown in Figure 7 and Figure 8, il-
lustrate moderate impact of the categorical coding
on the classification, while the continuous coding
appears to be more efficient (1% better for the 2-
class case, and 5% for the 11 classes). For the
two classes (Figure 7), the best result (90.80%) is
obtained when combining the RF classifier with
the BTI and continuous values; and for the eleven
classes, the same combination achieved again the
best accuracy of 71.0% (Figure 8).

In Figure 7 and Figure 8, the SVM columns (the
last three columns) have the same results for the
scaled and standardized data, since the algorithm
performs internally the two operations before the
classification.

Figure 7. Classification performance results of the
classifiers (RF, NN and SVM) in the case of 2

classes after employing three different imputation
techniques (BTI, KNNI and MI), for the three

different groups of coding (binary, continuous and
dummy). The colour scale to the left shows the

achieved accuracy percentile

In 98 out of 108 comparisons, BTI has demon-
strated the best accuracy for all classifiers, while the
KNNI achieved best results in 8 cases and MI in 2
comparisons only.
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Figure 8. Classification performance results of the
classifiers (RF, NN and SVM) in the case of 11

classes after employing three different imputation
techniques (BTI, KNNI and MI), for the three

different groups of coding (binary, continuous and
dummy). The colour scale to the left shows the

achieved accuracy percentile

Taking closer look at the confusion matrix given
in Figure 6, it can be seen that the number of mis-
classified samples within the classes of the same
family (e.g., ‘civil’) is higher than the number of
misclassified samples as belonging to the other fam-
ily classes (e.g., ‘military’). For example, if we con-
sider the M1 class (5th row in Figure 6), 24 samples
of M1 class are wrongly classified as belonging to
civil classes (C1 to C4), while 63 samples are mis-
labelled as of the other military classes (M2 to M7).
It is even more evident from the last row – M7 class,
for which all misclassified samples (seven) belong
to the military family.

Since it is not possible to give a cost for the mis-
classification of each class, a ROC curve analysis
for multiclass problems is used to assess the classi-
fiers accuracy under different conditions [33], [34].

Let’s call a superclass the union of all classes
belonging to the same general type or family (‘civil’
or ‘military’) for the 11-class problem: C = U(C1,...,
C4); and M = U(M1,..., M7). We also define two
types of misclassification errors: outer error (OE)
and inner error (IE).

In the 11-class case, the OE occurs when: one
of the civil samples belonging to a Ci, i =1,.., 4,

class is misclassified as belonging to a military one
M j, j= 1,..,7; or when a military sample is misla-
belled as a civil one. An IE occurs when a civil
sample is misclassified as belonging to another civil
class or when a military pattern is mislabelled with
a different military label.

Let us now denote the Inner Accuracy (IA) as
the accuracy obtained calculating the ROC curve
for a multi-class problem, as proposed in [34], when
applied only on classes belonging to the same su-
perclass. The area under the curve (AUC) is ob-
tained by averaging the AUC of all considered pair-
wise classes. This approach measures how well
each class is separated from the others, emphasis-
ing that certain pairs of classes can be well sepa-
rated, even when the superclasses cannot be well
separated.

Labelling the civil classes C1, ..., Ck, (k = 4),
we estimate the probability of each test sample x
belonging to any class Ci as: p(Ci |x), for i = 1,
..., k. For any pair of classes (Ci, C j), it is possi-
ble to compute measure ‘A’ using p(Ci|x) or p(C j

|x), hence, A(Ci |C j) is the probability of a ran-
domly selected member of class Ci to have lower
estimated probability of belonging to class C j, than
a randomly selected member of class C j .. Because
for a 2 class problem (class 0 and class 1): A(0 |1)
= A(1 |0); and for a multi-class problem A(Ci|C j)
̸= A(C j|Ci), we use the average A(Ci, C j) = (A(Ci

|C j) + A(C j |Ci) )/2, adopted as measure of sepa-
rability between Ci and C j, the overall performance
of the classification in separating k classes is then
the average of this measure over all class pairs

IA =
2

k(k−1) ∑
i< j

A(Ci,Cj). (3)

The difference 1-IA represents on average, the per-
centage of wrongly labelled patterns in the same su-
perclass.

On the other hand, the Outer Accuracy (OA)
is calculated applying the average AUC to all pairs
(Ci, M j)

OA =
∑A(Ci, M j)

kn
, (4)

where i=1,..., k, j=1,..., n, and k and n are the num-
ber of civil and military classes respectively. Again,
the difference 1-OA represents the percentage of
patterns, misclassified as belonging to the other su-
perclass.
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for multiclass problems is used to assess the classi-
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for a multi-class problem, as proposed in [34], when
applied only on classes belonging to the same su-
perclass. The area under the curve (AUC) is ob-
tained by averaging the AUC of all considered pair-
wise classes. This approach measures how well
each class is separated from the others, emphasis-
ing that certain pairs of classes can be well sepa-
rated, even when the superclasses cannot be well
separated.

Labelling the civil classes C1, ..., Ck, (k = 4),
we estimate the probability of each test sample x
belonging to any class Ci as: p(Ci |x), for i = 1,
..., k. For any pair of classes (Ci, C j), it is possi-
ble to compute measure ‘A’ using p(Ci|x) or p(C j

|x), hence, A(Ci |C j) is the probability of a ran-
domly selected member of class Ci to have lower
estimated probability of belonging to class C j, than
a randomly selected member of class C j .. Because
for a 2 class problem (class 0 and class 1): A(0 |1)
= A(1 |0); and for a multi-class problem A(Ci|C j)
̸= A(C j|Ci), we use the average A(Ci, C j) = (A(Ci

|C j) + A(C j |Ci) )/2, adopted as measure of sepa-
rability between Ci and C j, the overall performance
of the classification in separating k classes is then
the average of this measure over all class pairs
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k(k−1) ∑
i< j

A(Ci,Cj). (3)

The difference 1-IA represents on average, the per-
centage of wrongly labelled patterns in the same su-
perclass.

On the other hand, the Outer Accuracy (OA)
is calculated applying the average AUC to all pairs
(Ci, M j)

OA =
∑A(Ci, M j)

kn
, (4)

where i=1,..., k, j=1,..., n, and k and n are the num-
ber of civil and military classes respectively. Again,
the difference 1-OA represents the percentage of
patterns, misclassified as belonging to the other su-
perclass.

CLASSIFIERS ACCURACY IMPROVEMENT BASED ON . . .

Table 7. Classifiers inner accuracy (IA) and outer accuracy (OA) compared to the best overall accuracy
(OCA) in the 11 class classification (given in figure 8) for RF, NN and SVM; best OA for RF, NN, SVM;

and results for two classifiers with same OCA but different OA

CLASSIFIER IA OA OCA
RF BTI continuous (RFbest OCA) 87.1 88.7 71.0
RF KNNI continuous standardised (RFbest OA) 89.1 90.6 68.3
NN BTI dummy scaled (NNbest OCA) 74.1 74.2 54.9
NN BTI continuous scaled (NNbest OA) 81.0 84.3 52.7
SVM BTI continuous (SVMbest OCA) 64.8 67.7 47.6
SVM KNNI continuous scaled (SVMbest OA) 62.9 69.0 46.2
NN MI continuous 75.6 78.8 46.0
SVM BTI binary standardised 64.9 67.7 46.0

Results for IA, OA and OCA are given in Table
7, where in the first six rows the best OA and OCA
accuracies for the RF, NN and SVM classifiers are
shown (which performance is illustrated with Fig-
ure 8). The last two rows display the results for NN
(with MI and continuous coding) and SVM (with
BTI, binary coding and standardisation).

The IA and OA can help to better understand the
underlying distribution of the misclassified samples
among the classes. Looking at the results in Figure
8, it is evident that for some of them, it is difficult
to choose the best classifier due to the similar OCA
values. In such cases the OA can provide insight-
ful information and help identify the best one. For
example, the OCA is identical (46%) for the NN
(with MI and continuous coding) and SVM (with
BTI, binary coding and standardization) classifiers.
Nevertheless, looking at the OA column in table 7
(last 2 cells), one can see that the NN classifier is
with 11.1% better accuracy than the SVM one.

In theory, it may be speculated that the probabil-
ity of having a misclassified sample within the same
superclass is higher (since they are coming from the
same family of radar signals), than the probability
of a class being misclassified as belonging to the
other superclass. Considering the values given in
Table 7, it can be observed that the IA is gener-
ally lower than the OA, which is in agreement with
the above presumption. Moreover, the RF, NN and
SVM classifier configurations producing the best
OCA (71%, 54.9%, and 47.6%: rows 2, 4, and 6,
respectively) are not the best ones when OA is used
as a metric (then their OCA are 68.3%, 52.7%, and
46.2%: rows 3, 5, and 7, respectively). This en-
forces our point that a second metric should be used

when assessing classifiers performance. For exam-
ple, the RF classifiers with the highest OCA and OA
are shown in the first 2 rows of Table 7. In the first
case (1st row – (RFbest OCA)), 29% of the patterns
are misclassified (1450 of 5000) and 11.3% of them
are assigned to the wrong superclass (164 patterns).
In the second case (2nd row - (RFbest OA)), 31.7%
of the samples (1680 of 5000) are wrongly labelled
and 9.4% of them (158) are assigned to the wrong
superclass.

As for the NN classifiers (3rd and 4th rows),
the difference in the OCA is very small (2.2%),
with 2255 and 2365 misclassified samples respec-
tively, while the relative OA difference is substan-
tial - 10.1%, with 582 and 371 misclassified pat-
terns respectively. Similar results can be observed
for the SVM classifier as well (6th and 7th rows). All
these results lead to the conclusion that the use of
OA can provide extra insight about the classifiers’
performance, giving additional metric for choosing
the best classification model configuration (consid-
ering the trade-off between OCA and OA).

8 Conclusion

This work shows that the performance of the em-
ployed classifiers for recognition and identification
of radar sources, based on datasets of radar sig-
nal characteristics depends a lot on the quality of
the available data and dealing with the missingness
in the datasets can improve the classifier overall
accuracy. For this purpose, three different model
based approaches for imputation are investigated
here for substituting large number of missing data
(up to 60% missingness). The implementation of
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MI, BTI, and KNNI models tripled the number of
samples with completed values, which in turn led
to improved results for the classifiers. The perfor-
mance of the imputation methods is assessed with
Wilcoxon’s test for statistical significance (show-
ing no significant difference between the substituted
samples) and Cohen’s effect size metric to assess
how much, on average, one technique outperforms
another.

The use of Bagged Tree imputation method trig-
gered best accuracy for all supervised classifiers
(especially in the 11-class case). Once the missing-
ness in the datasets is dealt with, two case studies
are investigated: a 2-class and 11-class classifica-
tion and neural networks, support vector machines
and random forests are implemented for solving
these two tasks. In the 2-class case, when two
superclasses (military and civil) are investigated,
the best performance was achieved by the RF af-
ter BTI imputation and continuous coding (90.8%),
followed by the NN (83.3%) and SVM (81.3%).
These results are in agreement with Weinberg et
al. work [23], who argued that random forests do
not have significantly higher percent accuracy than
support vector machines and neural networks, con-
tradicting the Fernandez-Delgado et al. paper [22],
where they claim that ‘RF is the best family classi-
fier’. In our view, what can be claimed for sure is
that each classifier accuracy depends considerably
on the pre-processing phase (the difference best–
worst performance for each classifier investigated
in this work was between 6%-9% in the two-class
case, and between 10%-14% in the 11-class case),
and obviously the assessment of their performances
depends on the metric used for the comparison. In
the second case study, the two superclasses are fur-
ther specialised into four civil and seven military
classes – defining an 11-class problem. We use the
ROC curve analysis for a multi-class problem, and
obtain the area under the curve (AUC) by averaging
the AUC of all considered pairwise classes. This
approach shows that some pairs of classes can be
well separated, even when the superclasses are not
well distinguished.

We also show that the introduced two new met-
rics: inner (super) class accuracy IA (eq. 3); and
the outer class accuracy OA (eq. 4), can be used to
complement the overall classifier accuracy (OCA)
metric when choosing the best classifier configura-

tion for the problem at hand. Especially in cases
when the OCA has similar values for the classifiers,
the OA should be used as an additional criterion for
the choice of the most efficient and accurate classifi-
cation model. This investigation found that the IA is
usually smaller than the OA, which is in agreement
with the presumption that it is more likely a class
to be misclassified as one from the same superclass
(same family), than to be misclassified as belonging
to the other superclass. Future work may include
identification of more than two superclasses by im-
plementing unsupervised learning and then employ-
ing supervised one for assessing IA and OA metrics.
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MI, BTI, and KNNI models tripled the number of
samples with completed values, which in turn led
to improved results for the classifiers. The perfor-
mance of the imputation methods is assessed with
Wilcoxon’s test for statistical significance (show-
ing no significant difference between the substituted
samples) and Cohen’s effect size metric to assess
how much, on average, one technique outperforms
another.

The use of Bagged Tree imputation method trig-
gered best accuracy for all supervised classifiers
(especially in the 11-class case). Once the missing-
ness in the datasets is dealt with, two case studies
are investigated: a 2-class and 11-class classifica-
tion and neural networks, support vector machines
and random forests are implemented for solving
these two tasks. In the 2-class case, when two
superclasses (military and civil) are investigated,
the best performance was achieved by the RF af-
ter BTI imputation and continuous coding (90.8%),
followed by the NN (83.3%) and SVM (81.3%).
These results are in agreement with Weinberg et
al. work [23], who argued that random forests do
not have significantly higher percent accuracy than
support vector machines and neural networks, con-
tradicting the Fernandez-Delgado et al. paper [22],
where they claim that ‘RF is the best family classi-
fier’. In our view, what can be claimed for sure is
that each classifier accuracy depends considerably
on the pre-processing phase (the difference best–
worst performance for each classifier investigated
in this work was between 6%-9% in the two-class
case, and between 10%-14% in the 11-class case),
and obviously the assessment of their performances
depends on the metric used for the comparison. In
the second case study, the two superclasses are fur-
ther specialised into four civil and seven military
classes – defining an 11-class problem. We use the
ROC curve analysis for a multi-class problem, and
obtain the area under the curve (AUC) by averaging
the AUC of all considered pairwise classes. This
approach shows that some pairs of classes can be
well separated, even when the superclasses are not
well distinguished.

We also show that the introduced two new met-
rics: inner (super) class accuracy IA (eq. 3); and
the outer class accuracy OA (eq. 4), can be used to
complement the overall classifier accuracy (OCA)
metric when choosing the best classifier configura-

tion for the problem at hand. Especially in cases
when the OCA has similar values for the classifiers,
the OA should be used as an additional criterion for
the choice of the most efficient and accurate classifi-
cation model. This investigation found that the IA is
usually smaller than the OA, which is in agreement
with the presumption that it is more likely a class
to be misclassified as one from the same superclass
(same family), than to be misclassified as belonging
to the other superclass. Future work may include
identification of more than two superclasses by im-
plementing unsupervised learning and then employ-
ing supervised one for assessing IA and OA metrics.
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