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1Università degli Studi di Napoli “Federerico II”,
Via Claudio 21, 80125 Napoli, Italy

2Technische Hochschule Ingolstadt,
Esplanade 10, 85049 Ingolstadt, Germany

submitted: 14th April 2016; accepted: 14th November 2016

Abstract

A classification system for the segmentation of driving maneuvers and its validation in
autonomous parking using a small-scale vehicle are presented in this work. The classi-
fiers are designed to detect points that are crucial for the path-planning task, thus enabling
the implementation of efficient autonomous parking maneuvers. The training data set is
generated by simulations using appropriate vehicle–dynamics models and the resulting
classifiers are validated with the small-scale autonomous vehicle. To achieve both a high
classification performance and a classification system that can be implemented on a mi-
crocontroller with limited computational resources, a two-stage design process is applied.
In a first step an ensemble classifier, the Random Forest (RF) algorithm, is constructed
and based on the RF-kernel a General Radial Basis Function (GRBF) classifier is gener-
ated. The GRBF-classifier is integrated into the small-scale autonomous vehicle leading
to excellent performance in parallel-, cross- and oblique-parking maneuvers. The work
shows that segmentation using classifies and open-loop control are an efficient approach
in autonomous driving for the implementation of driving maneuvers.
Keywords: autonomous parking, ensemble learning, maneuver segmentation

1 Introduction

Autonomous Mobile Robots have become re-
cently a topic of great interest among more and
more researchers in the world. Due to the huge de-
velopments done in the field of autonomous navi-
gation and motion planning, the perspective of full
autonomous robots has already become real.

By now, autonomous mobile robots have been
used in many fields and services, first among every-
thing is industry. But they are used, for instance, in
underwater exploration too, aerial surveys are ac-
complished with the so-called Unmanned Aerials

Vehicles and space robots recently managed to land
on a comet. Robotics is successfully applied more
and more also to agricultural systems, to construc-
tion and to medicine.

Due to legal issues, however, the knowledge
aquired in these fields cannot be fully transfered
to autonomous driving. According to the UN/ECE
Regulation R 79 for steering systems automatic
steering is only allowed at speeds below 10 km/h.
It is worth to notice that today, most of the cars are
equipped with all the sensors which would be nec-
essary to make them completely autonomous. In
fact, on a modern car there are already many exte-
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Figure 9. Comparison of the scores by the proposed neural network and the human examinees in 2014
[37]. “Students” is the average scores of the student examinees in 2014. “Average” is the average scores of
all the examinees in public TOEIC test in 2014. “Businessmen” is the average scores of the businessman
examinees in 2014. Because the TOEIC test score conversion table is unpublic and we only know that the

standard error of measurement between the true scores and test scores is 25 [38]. Therefore “the worst
possible score” and “the best possible score” are given, which are the worst and the best possible score of

the proposed neural network for its accuracy of 55.8%.
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roceptive sensors (such as radar, lidar, camera, in-
frared and ultrasound sensors), besides the inertial
measurement unit and the wheel speed sensor that
have been playing a big role in the estimation of the
car movement already for several years (in ABS and
ESP, for example). Until the legislation will change
a first application of a full-autonomous-driving ve-
hicle can be found in autonomous parking.

A lot of work has been already done in this di-
rection, making the autonomous parking already a
feature in production cars. Therefore, many meth-
ods to evaluate the best parking maneuver have
been presented. In [1], for instance, the parking
maneuver, both for parallel and for cross parking,
is divided into several segments, which are calcu-
lated analitically according to the geometry of the
parking area. In [2] the shape of the maneuver is
adjusted online according to the range data coming
from exteroceptive sensors. In a more general mo-
tion planning scenario, see [3], a Linear Quadratic
Regulator (LQR) algorithm can be used to mini-
mize a cost function in order to find the most suit-
able inputs needed to follow the maneuvers. Other
solutions can be founded in [4], [5], [6], [7] and [8],
where Artificial Neural Networks (ANN), Radial
Basis Functions Networks (RBFN) and Rapidly-
Exploring Random Trees (RRT) are used to gener-
ate and learn both acceleration and steering com-
mands. Finally, in [9] and [10], other two different
techniques are used to solve the same problem, i. e.,
hybrid fuzzy controllers and point-stabilization of
non-holonomic systems.

The approach presented here is different since
pre-defined sub-maneuvers of a parking maneuver
are used for parallel and for cross parking. A sub-
maneuver consists of a segment that is character-
ized by specific values of the steering angle (as
explained in detail in the Subsections 3.2.1 and
3.2.2). The segmentation points are those that are
learned by a machine-learning algorithm. Then,
based on measurements, coming from the extero-
ceptive sensors, and on the position of the vehicle
in a global reference frame, estimated by using a
extended Kalman filter, the relative location of the
vehicle with respect to the parking spot is evaluated
and a machine learning algorithm is triggered in or-
der to find out whether the current position is a good
segmentation point or not.

This paper is organized as follows. In Section 2
there is a detailed explanation of the algorithm that
runs on the vehicle throughout the parking maneu-
ver and an overview of the technical background
that is necessary for the algorithm. In Section 3 the
machine learning technique applied to the consid-
ered scenario is described. In Section 4 the results
of the presented algorithm are illustrated. For this
purpose a small-scale autonomous vehicle has been
used. After a brief explanation of its hardware and
software architecture, the results of the implemen-
tation of the parking procedure are shown.

Throughout this work, vectors and matrices are
denoted by lower and upper case bold letters, and
random variables are written using sans serif fonts.

2 Architecture of the Proposed
Parking Scheme

Figures 1 and 2 show the hierachical architec-
ture of the algorithm that runs during the parking
maneuver.

Figure 1. Algorithm architecture

Figure 2. Block “MACHINE LEARNING
ALGORITHM” of Figure 1

A global reference frame is defined and with
the aid of an Extended Kalman Filter (EKF), the
position of the moving vehicle and of its environ-
ment are estimated. At the same time, a suit-
able parking spot is sought. As soon as this is
found the parking maneuver itself begins. The car
starts moving according to the first segment of the
maneuver and its position relative to the parking
spot is forwarded to the the “FEATURE GENERA-
TION” block and then to the “MACHINE LEARN-
ING ALGORITHM” block in order to determine
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aid of an Extended Kalman Filter (EKF), the posi-
tion of the moving vehicle and of its environment
are estimated. At the same time, a suitable park-
ing spot is sought. As soon as this is found the
parking maneuver itself begins. The car starts mov-
ing according to the first segment of the maneu-
ver and its position relative to the parking spot is
forwarded to the the “FEATURE GENERATION”
block and then to the “MACHINE LEARNING AL-
GORITHM” block in order to determine whether the
next sub-maneuver should start. For the maneuvers
considered in this work the machine learning block
consists of two classifiers which divide a parking ma-
neuver in three sub-maneuvers. The block “DECI-
SION SUB-MANEUVER” is assuring that the sub-
maneuvers are implemented in the desired chrono-
logical order. As soon as a transition to a new sub-
maneuver is detected by the classifiers the actuators
are controlled to realize the new sub-maneuver.

2.1 Vehicle Dynamics Model

For the estimation of the vehicle position a statisti-
cal filter is used. This filter is based on the model
of the system, i. e. the vehicle, whose state has to

be estimated. In [11] there is a comparison of the
models that can be used for vehicle tracking. In this
work three of the most common models have been
considered, that are the two track model, the Con-
tinuous Turn Rate and Acceleration (CTRA) and the
kinematic model.
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Figure 3: Parameters of the two track model

The first model, the most sophisticated one, is rep-
resented by the following differential equations de-
scribing how the vehicle state changes over time:




v̇
β̇
ψ̈


= f

(
m, Iz, �f, �r,w,v,β,δFL,δFR,δRL,δRR

F�FL,F�FR,F�RL,F�RR

FsFL,FsFR,FsRL,FsRR

)
,

(1)

where m is the vehicle mass, Iz its inertia around the
z axis, �f and �r are the distances between the ve-
hicle center of gravity and the front and rear axles,
respectively, w is the width of the vehicle. δFL, δFR,
δRL, δRR are the tire slip angles and F�FL, FsFL, F�FR,
FsFR, F�RL, FsRL, F�RR, FsRR the longitudinal and side
forces exchanged by the four tires with the ground.
The quantities v̇, β̇ and ψ̈ are the velocity derivative,
the slip angle derivative and the yaw acceleration, re-
spectively, and they represent the vehicle state (see
Figure 3). The advantage of this model is the high
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whether the next sub-maneuver should start. For
the maneuvers considered in this work the machine
learning block consists of two classifiers which di-
vide a parking maneuver in three sub-maneuvers.
The block “DECISION SUB-MANEUVER” is as-
suring that the sub-maneuvers are implemented in
the desired chronological order. As soon as a transi-
tion to a new sub-maneuver is detected by the clas-
sifiers the actuators are controlled to realize the new
sub-maneuver.

2.1 Vehicle Dynamics Model

For the estimation of the vehicle position a sta-
tistical filter is used. This filter is based on the
model of the system, i. e. the vehicle, whose state
has to be estimated. In [11] there is a comparison of
the models that can be used for vehicle tracking. In
this work three of the most common models have
been considered, that are the two track model, the
Continuous Turn Rate and Acceleration (CTRA)
and the kinematic model.

Figure 3. Parameters of the two track model

The first model, the most sophisticated one, is
represented by the following differential equations
describing how the vehicle state changes over time:




v̇
β̇
ψ̈


= f

(
m, Iz, ℓf, ℓr,w,v,β,δFL,δFR,δRL,δRR

FℓFL,FℓFR,FℓRL,FℓRR

FsFL,FsFR,FsRL,FsRR

)
,

(1)

where m is the vehicle mass, Iz its inertia around the
z axis, ℓf and ℓr are the distances between the vehi-
cle center of gravity and the front and rear axles,

respectively, w is the width of the vehicle. δFL,
δFR, δRL, δRR are the tire slip angles and FℓFL, FsFL,
FℓFR, FsFR, FℓRL, FsRL, FℓRR, FsRR the longitudinal
and side forces exchanged by the four tires with the
ground. The quantities v̇, β̇ and ψ̈ are the velocity
derivative, the slip angle derivative and the yaw ac-
celeration, respectively, and they represent the vehi-
cle state (see Figure 3). The advantage of this model
is the high precision in the prediction of the vehi-
cle behavior. This, on the other hand, requires the
knowledge of several parameters to completely de-
scribe the system. Some of these parameters can be
either unknown or difficult to estimate. An exam-
ple is the friction coefficients of the tire/road con-
tact needed to evaluate the tire forces using, for in-
stance, the Magic Tire Formula

Fℓi j = Fzi jµℓi j sin
(

cℓi j arctan(bℓi j
sℓi j

µℓi j
)

)
,

Fsi j = Fzi jµsi j sin
(

csi j arctan(bsi j
ssi j

µsi j
)

)
.

(2)

A first simplification of this model can be
achieved considering a constant acceleration, a con-
stant turn rate and a small discretization time-step
T . This leads to the CTRA model which is ex-
pressed by the following difference equations

(3)

where rX [n], rY [n] denote the position of the vehi-
cle’s center of gravity at time step n in the global
frame (X ,Y ), v[n] the velocity of the vehicle, ψ[n]
its yaw angle, ψ̇ its yaw rate, and a∥ the longitudinal
component of the vehicle’s acceleration. Figure 4
visualizes this planar model of the vehicle. In the
Figure δ denotes the wheel angle, i. e., the angle be-
tween the front wheels and the longitudinal axis of
the vehicle.

To be noticed is also that, in both formulas of
Eq. (3), the term v[n]ψ̇ is equal to a⊥[n], the cen-
tripetal acceleration.
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precision in the prediction of the vehicle behavior.
This, on the other hand, requires the knowledge of
several parameters to completely describe the sys-
tem. Some of these parameters can be either un-
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A first simplification of this model can be achieved
considering a constant acceleration, a constant turn
rate and a small discretization time-step T . This
leads to the CTRA model which is expressed by the
following difference equations:




rX [n+1]= rX [n]+ v[n]cos(ψ[n])T

− v[n]sin(ψ[n])ψ̇
T 2

2
+a‖ cos(ψ[n])

T 2

2

rY [n+1]= rY [n]+ v[n]sin(ψ[n])T

+ v[n]cos(ψ[n])ψ̇
T 2

2
+a‖ sin(ψ[n])

T 2

2
,
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where rX [n], rY [n] denote the position of the vehicle’s
center of gravity at time step n in the global frame
(X ,Y ), v[n] the velocity of the vehicle, ψ[n] its yaw
angle, ψ̇ its yaw rate, and a‖ the longitudinal com-
ponent of the vehicle’s acceleration. Figure 4 visual-
izes this planar model of the vehicle. In the figure δ
denotes the wheel angle, i. e., the angle between the
front wheels and the longitudinal axis of the vehicle.
To be noticed is also that, in both formulas of Eq. (3),
the term v[n]ψ̇ is equal to a⊥[n], the centripetal accel-
eration.

ψ[n]

rY [n]

rX [n]
δ

X

Y

O

Figure 4: Vehicle parameters for the kinematic
model

The formulas in Eq. (3) can be further simplified
when the discretization time-step T is very small,
such that T 2 ≈ 0. Moreover the yaw-rate ψ̇ can be
expressed using the basic kinematic formula ψ̇ =
v/R, with R being the radius of the vehicle‘s tra-
jectory. The radius R can also be approximated
using a simple geometric model of the vehicle by
R = �/ tan(δ), where � is the wheel base and δ is
the steering angle. This leads to the following set
of equations:




rX [n+1] = rX [n]+ v[n]cos(ψ[n])T

rY [n+1] = rY [n]+ v[n]sin(ψ[n])T

v[n+1] = v[n]+a‖T

ψ[n+1] = ψ[n]+ v[n] tan(δ)
� T.

(4)

2.2 Extended Kalman Filter

The statistical filter that is going to be used is an Ex-
tended Kalman Filter.

The state vector at time step n is defined as

x[n] = [x1[n],x2[n],x3[n],x4[n]]
T

= [rX [n], rY [n],v[n],ψ[n]]T ,
(5)

where rX [n] and rY [n] are the coordinates of the vehi-
cle position vector expressed in the reference system
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Figure 4. Vehicle parameters for the kinematic
model

The formulas in Eq. (3) can be further sim-
plified when the discretization time-step T is very
small, such that T 2 ≈ 0. Moreover the yaw-rate ψ̇
can be expressed using the basic kinematic formula
ψ̇ = v/R, with R being the radius of the vehicle‘s
trajectory. The radius R can also be approximated
using a simple geometric model of the vehicle by
R = ℓ/ tan(δ), where ℓ is the wheel base and δ is
the steering angle. This leads to the following set of
equations




rX [n+1] = rX [n]+ v[n]cos(ψ[n])T

rY [n+1] = rY [n]+ v[n]sin(ψ[n])T

v[n+1] = v[n]+a∥T

ψ[n+1] = ψ[n]+ v[n] tan(δ)
ℓ T.
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2.2 Extended Kalman Filter

The statistical filter that is going to be used is an
Extended Kalman Filter.

The state vector at time step n is defined as

x[n] = [x1[n],x2[n],x3[n],x4[n]]
T

= [rX [n], rY [n],v[n],ψ[n]]T ,
(5)

where rX [n] and rY [n] are the coordinates of the ve-
hicle position vector expressed in the reference sys-
tem depicted in Figure 4, v[n] is the longitudinal ve-
locity of the vehicle and ψ[n] is its yaw angle com-
puted with respect to the X axis. All the quantities
are referred to the time step n.

The input vector at time step n as

u[n] = [u1[n],u2[n]]
T =

[
a∥,δ

]T
, (6)

where a∥ has been introduced in the previous Sec-
tion. The observation vector, at time step n, is

y[n] = [y1[n],y2[n]]
T = [v[n],ψ[n]]T , (7)

and the system noise is denoted by ηηηs, and the mea-
surement noise by ηηηm.
In this way, we can write the state and the measure-
ment equation in vectorial form as follows



x[n+1] = f(x[n],u[n])+ηηηs

y[n] = h(x[n],u[n])+ηηηm.
(8)

As described in [12] or [13], in order to perform
the extended kalman filtering, the Jacobians ∇f and
∇h are required, where f and h are the functions
described in Eq. (8).
For the presented case where f is given by Eq. (4),
the Jacobian is time dependent and at time step n it
is equal to

∇f [n] =




1 0 cos(x̂4[n])T −x̂3[n]sin(x̂4[n])T
0 1 sin(x̂4[n])T x̂3[n]cos(x̂4[n])T
0 0 1 0
0 0 tan(u2)

ℓ T 1


 .

(9)
The hatted quantities represent the components of
x̂[n], the estimate of the state vector x[n].
The output equation, on the contrary, is linear, ∇h
is time invariant and it is equal to

∇h=

[
0 0 1 0
0 0 0 1

]
. (10)

2.3 Localization

Figure 5. Global frame used for localization and
maneuver planning

Figure 5 shows the global frame that is defined
and used for localization and maneuver planning. It
corresponds to that represented in Figure 4 and it
is initialized at the beginning of the parking area in
which the parking maneuver will be performed. For
the case presented here, the EKF is used to incre-
mentally estimate the vehicle state. These estimates

precision in the prediction of the vehicle behavior.
This, on the other hand, requires the knowledge of
several parameters to completely describe the sys-
tem. Some of these parameters can be either un-
known or difficult to estimate. An example is the
friction coefficients of the tire/road contact needed to
evaluate the tire forces using, for instance, the Magic
Tire Formula:
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c�i j arctan(b�i j
s�i j

µ�i j
)

)
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csi j arctan(bsi j
ssi j
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)

)
.

(2)

A first simplification of this model can be achieved
considering a constant acceleration, a constant turn
rate and a small discretization time-step T . This
leads to the CTRA model which is expressed by the
following difference equations:
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2
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T 2

2
,
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where rX [n], rY [n] denote the position of the vehicle’s
center of gravity at time step n in the global frame
(X ,Y ), v[n] the velocity of the vehicle, ψ[n] its yaw
angle, ψ̇ its yaw rate, and a‖ the longitudinal com-
ponent of the vehicle’s acceleration. Figure 4 visual-
izes this planar model of the vehicle. In the figure δ
denotes the wheel angle, i. e., the angle between the
front wheels and the longitudinal axis of the vehicle.
To be noticed is also that, in both formulas of Eq. (3),
the term v[n]ψ̇ is equal to a⊥[n], the centripetal accel-
eration.
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rY [n]
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The formulas in Eq. (3) can be further simplified
when the discretization time-step T is very small,
such that T 2 ≈ 0. Moreover the yaw-rate ψ̇ can be
expressed using the basic kinematic formula ψ̇ =
v/R, with R being the radius of the vehicle‘s tra-
jectory. The radius R can also be approximated
using a simple geometric model of the vehicle by
R = �/ tan(δ), where � is the wheel base and δ is
the steering angle. This leads to the following set
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with respect to the X axis. All the quantities are re-
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where a‖ has been introduced in the previous section.
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and the system noise is denoted by ηηηs, and the mea-
surement noise by ηηηm.
In this way, we can write the state and the measure-
ment equation in vectorial form as follows:
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
x[n+1] = f(x[n],u[n])+ηηηs

y[n] = h(x[n],u[n])+ηηηm.
(8)

As described in [12] or [13], in order to perform the
extended kalman filtering, the Jacobians ∇f and ∇h
are required, where f and h are the functions de-
scribed in Eq. (8).
For the presented case where f is given by Eq. (4),
the Jacobian is time dependent and at time step n it
is equal to:

∇f [n] =


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The hatted quantities represent the components of
x̂[n], the estimate of the state vector x[n].
The output equation, on the contrary, is linear, ∇h is
time invariant and it is equal to:

∇h=
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Figure 5: Global frame used for localization and ma-
neuver planning

Figure 5 shows the global frame that is defined and
used for localization and maneuver planning. It cor-
responds to that represented in Figure 4 and it is ini-
tialized at the beginning of the parking area in which
the parking maneuver will be performed. For the
case presented here, the EKF is used to incrementally
estimate the vehicle state. These estimates are used
as inputs to generate features (see Subsection 3.3)
that represent the inputs to the machine learning al-
gorithms, which decide whether the current vehicle
state with respect to the map of the parking area is
a good segmentation point for the parking maneuver
or not.

2.4 Feature Generation and Classification

The segmentation classifiers in Figure 2 are imple-
mented by machine-learning algorithms. Many rela-
tions that are found by statistical learning methods in
data can be represented in the form of classification
or regression functions. Classification and regression
aim at estimating values of an attribute of a system
based on previously measured attributes of this sys-
tem. Given a set of measured observation attributes
p = [p1, . . . , pN′ ]T ∈ RN′

, statistical learning meth-
ods estimate the values of a different attribute z. If z
takes on continuous numerical values, i. e., z ∈R one
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trajectory. The radius R can also be approximated
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T
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where rX [n] and rY [n] are the coordinates of the ve-
hicle position vector expressed in the reference sys-
tem depicted in Figure 4, v[n] is the longitudinal ve-
locity of the vehicle and ψ[n] is its yaw angle com-
puted with respect to the X axis. All the quantities
are referred to the time step n.

The input vector at time step n as
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T =

[
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where a∥ has been introduced in the previous Sec-
tion. The observation vector, at time step n, is

y[n] = [y1[n],y2[n]]
T = [v[n],ψ[n]]T , (7)

and the system noise is denoted by ηηηs, and the mea-
surement noise by ηηηm.
In this way, we can write the state and the measure-
ment equation in vectorial form as follows



x[n+1] = f(x[n],u[n])+ηηηs

y[n] = h(x[n],u[n])+ηηηm.
(8)

As described in [12] or [13], in order to perform
the extended kalman filtering, the Jacobians ∇f and
∇h are required, where f and h are the functions
described in Eq. (8).
For the presented case where f is given by Eq. (4),
the Jacobian is time dependent and at time step n it
is equal to
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The hatted quantities represent the components of
x̂[n], the estimate of the state vector x[n].
The output equation, on the contrary, is linear, ∇h
is time invariant and it is equal to

∇h=
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0 0 1 0
0 0 0 1

]
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Figure 5. Global frame used for localization and
maneuver planning

Figure 5 shows the global frame that is defined
and used for localization and maneuver planning. It
corresponds to that represented in Figure 4 and it
is initialized at the beginning of the parking area in
which the parking maneuver will be performed. For
the case presented here, the EKF is used to incre-
mentally estimate the vehicle state. These estimates
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are used as inputs to generate features (see Subsec-
tion 3.3) that represent the inputs to the machine
learning algorithms, which decide whether the cur-
rent vehicle state with respect to the map of the
parking area is a good segmentation point for the
parking maneuver or not.

2.4 Feature Generation and Classification

The segmentation classifiers in Figure 2 are im-
plemented by machine-learning algorithms. Many
relations that are found by statistical learning meth-
ods in data can be represented in the form of classi-
fication or regression functions. Classification and
regression aim at estimating values of an attribute of
a system based on previously measured attributes of
this system. Given a set of measured observation at-
tributes p= [p1, . . . , pN′ ]T ∈RN′

, statistical learning
methods estimate the values of a different attribute
z. If z takes on continuous numerical values, i. e.,
z ∈ R one talks about regression and if it takes on
discrete values from a set of Q categorical values,
called classes, i. e., z ∈ {c1, . . . ,cQ} one talks about
classification. Often a preprocessing of the obser-
vation vector p is performed in order to simplify
the mapping from p to z. Preprocessing plays a
very important role being a possibility to introduce
a priori knowledge about the considered machine
learning problem. This preprocessing transforms
the observation vector p into the so-called feature
vector w ∈RN . Defining feature vectors is the most
common and convenient means of data representa-
tion for classification and regression problems. A
pair (w,z) is called a pattern, w the “input” and z
the “output” or “target”. Because the measured at-
tribute values are subject to variations which often
cannot be described deterministically, a statistical
framework must be adopted. In this framework, w
is the realization of the random variable w and z of
the random variable z. One can think of the map-
ping from p to z or the mapping from w to z as a
black box representing the process of interest.

In machine learning one is interested both in
generating from the observation p a feature vector
w that is suitable for the application at hand and in
estimating the mapping from w to z. In supervised
learning a set of M already known patterns, the so-
called training set D is used

D = {(w1,z1), . . . ,(wM,zM)}. (11)

It should be noted that for a good performance of
the learning system, which enables to predict accu-
rately the output z for a new unseen measurement
vector p, the construction of the feature vector w is
extremely important. Figure 6 shows that the com-
puted output ẑ can only be a good estimate of the
target z corresponding to w if both the feature ex-
traction and the mapping g from w to ẑ are chosen
properly.

Figure 6. Learning system

The common approach in the statistical learning
framework to find the mapping for classification

g : RN →{c1, . . . ,cK},w �→ z (12)

is to minimize the risk that is defined as the expec-
tation of a loss function L(·, ·),

R(g) = Ew,z {L(z,g(w))} . (13)

The classifier gB(w) that minimizes this risk is
called “Bayes classifier” [14]. Using the 0/1-loss

L(z,g(w)) =

{
0, if z= g(w)
1, otherwise,

(14)

the Bayes classifier is identical with the Maximum-
A-Posteriori (MAP) classifier, i. e., given a feature
vector w, the best choice for its label is the class
with the highest a-posteriori probability

gB(w)=gMAP(w)=argmax
cℓ

{p(z=cℓ|w=w)}.

(15)

Thus, many algorithms in statistical learning
compute—explicitly or implicitly—based on a
training data set D estimates p̂z|w(z = cq|w = w),
q = 1, . . . ,Q, for the a-posteriori probabilities and
assign classes to inputs w based on these estimates.

3 Machine Learning for Au-
tonomous Parking

The approach for autonomous parking which is
presented in this work is based on a decomposition
of a parking maneuver in sub-maneuvers that can
be realized individually with an open-loop control
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box representing the process of interest.
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ing from the observation p a feature vector w that is
suitable for the application at hand and in estimating
the mapping from w to z. In supervised learning a set
of M already known patterns, the so-called training
set D is used

D = {(w1,z1), . . . ,(wM,zM)}. (11)

It should be noted that for a good performance of the
learning system, which enables to predict accurately
the output z for a new unseen measurement vector p,
the construction of the feature vector w is extremely
important. Figure 6 shows that the computed output
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work to find the mapping for classification

g : RN →{c1, . . . ,cK},w �→ z (12)

is to minimize the risk that is defined as the expecta-
tion of a loss function L(·, ·),

R(g) = Ew,z {L(z,g(w))} . (13)

The classifier gB(w) that minimizes this risk is called
“Bayes classifier” [14]. Using the 0/1-loss

L(z,g(w)) =

{
0, if z= g(w)
1, otherwise,

(14)

the Bayes classifier is identical with the Maximum-
A-Posteriori (MAP) classifier, i. e., given a feature
vector w, the best choice for its label is the class
with the highest a-posteriori probability

gB(w)=gMAP(w)=argmax
c�

{p(z=c�|w=w)}. (15)

Thus, many algorithms in statistical learning
compute—explicitly or implicitly—based on a train-
ing data set D estimates p̂z|w(z = cq|w = w), q =
1, . . . ,Q, for the a-posteriori probabilities and assign
classes to inputs w based on these estimates.

3 Machine Learning for Au-
tonomous Parking

The approach for autonomous parking which is pre-
sented in this work is based on a decomposition of a
parking maneuver in sub-maneuvers that can be real-
ized individually with an open-loop control in a vehi-
cle. Such a decomposition of maneuvers is presented
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in a vehicle. Such a decomposition of maneuvers
is presented also in [1]. In [15] the authors intro-
duce the term “dynamic primitives” for segments of
trajectories. This decomposition into segments has
similarities to the way how human drivers would
plan a complex driving maneuver. In this approach
the challenging task is the identification of transi-
tions between sub-maneuvers. For this purpose, as
shown in Figures 1 and 2, machine learning classi-
fiers are used, having the task to detect those points
in a parking maneuver where a transition from one
sub-maneuver to the next one is necessary.

3.1 Ensemble Learning and GRBF

The classifiers that are used to detect the tran-
sition from one segment of a parking maneuver
to the next one are constructed in a two-stage de-
sign process. In a first step, an ensemble learn-
ing algorithm, the Random Forest (RF), is used to
find similarities between the feature vectors in the
training data set and to generate a fair estimate of
the generalization error related to the classification
task and hereby of the complexity of the problem
in hand. In the second step, the similarities be-
tween the feature vectors in the training data set
are used for the generation of class-specific clusters,
which are utilized for the construction of a Gen-
eralized Radial Basis Function (GRBF) classifier.
Then, the trained GRBF-classifier can be imple-
mented on a microcontroller with limited compu-
tational resources, while providing some additional
advantages, e. g., a “fuzzy-like” interpretability of
each decision.

3.1.1 Ensemble learning

Ensemble learning is a powerful machine learn-
ing technique that has proven a high performance in
classification tasks on a variety of real-world appli-
cations. An ensemble can be characterized as a set
of individual machine learning models that work in
parallel and whose outputs are combined to the fi-
nal output. One approach to explain why ensemble
learning classifiers have a high generalization abil-
ity, i. e., according to Eq. (13) a low risk R(g), is
based on the bias-variance decomposition. In [16]
it is shown that the bias-variance decomposition of
the generalization error for classification problems
does not lead to an additive relation between bias
and variance, as it is the case in regression tasks,

and that it is possible to reduce the classification
error to its minimum value by reducing only the
variance. If the decisions of the individual classi-
fiers in an ensemble are combined using the major-
ity vote scheme, this is a variance-reducing tech-
nique, which leads to a high generalization ability.
The variance is reduced by a majority vote since
uncorrelated errors made by the individual classi-
fiers can be removed. Another explanation for the
superior performance of ensemble learning classi-
fiers compared to a “single best learner” is given
in [17], where three reasons are mentioned: the
training data might not provide sufficient informa-
tion for choosing a single best classifier, the learn-
ing algorithms for the single best classifier might
not be able to solve difficult search problems, and
finally the hypothesis space for the single best clas-
sifier might not contain the Bayes classifier gB.

3.1.2 RF Kernel

A well-known ensemble learning classifier is
the RF algorithm. The RF algorithm has been in-
troduced by Breiman in [18] and it is one of the
most powerful known off-the-shelf machine learn-
ing procedures for classification. It is a random-
ized and aggregated version of the well-known [19]
Classification And Regression Tree (CART) al-
gorithm strengthened by the bagging (bootstrap
aggregating) technique. Given a RF with B trees,
an intrinsic similarity measure in the input space
between the input vectors wm and wn is given by
the measure

prox(wm,wn) =
B′(wm,wn)

B
. (16)

Hereby, B′(wm,wn) is the number of trees in the
RF in which the input vector wm and wn lie in the
same leaf. The measure prox(wm,wn) has been in-
troduced by Breiman in [18] as the proximity mea-
sure and it has been shown in [20] that it can be
interpreted for full-grown CART-trees in the RF as
a kernel

κRF(wm,wn) = prox(wm,wn). (17)

Besides providing a similarity measure, that will be
used for the construction of GRBF-classifiers (see
next Subsection), the RF-algorithm also offers the
possibility to generate an unbiased estimate of the
generalization error if the number B of trees in the
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in a vehicle. Such a decomposition of maneuvers
is presented also in [1]. In [15] the authors intro-
duce the term “dynamic primitives” for segments of
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similarities to the way how human drivers would
plan a complex driving maneuver. In this approach
the challenging task is the identification of transi-
tions between sub-maneuvers. For this purpose, as
shown in Figures 1 and 2, machine learning classi-
fiers are used, having the task to detect those points
in a parking maneuver where a transition from one
sub-maneuver to the next one is necessary.

3.1 Ensemble Learning and GRBF

The classifiers that are used to detect the tran-
sition from one segment of a parking maneuver
to the next one are constructed in a two-stage de-
sign process. In a first step, an ensemble learn-
ing algorithm, the Random Forest (RF), is used to
find similarities between the feature vectors in the
training data set and to generate a fair estimate of
the generalization error related to the classification
task and hereby of the complexity of the problem
in hand. In the second step, the similarities be-
tween the feature vectors in the training data set
are used for the generation of class-specific clusters,
which are utilized for the construction of a Gen-
eralized Radial Basis Function (GRBF) classifier.
Then, the trained GRBF-classifier can be imple-
mented on a microcontroller with limited compu-
tational resources, while providing some additional
advantages, e. g., a “fuzzy-like” interpretability of
each decision.

3.1.1 Ensemble learning

Ensemble learning is a powerful machine learn-
ing technique that has proven a high performance in
classification tasks on a variety of real-world appli-
cations. An ensemble can be characterized as a set
of individual machine learning models that work in
parallel and whose outputs are combined to the fi-
nal output. One approach to explain why ensemble
learning classifiers have a high generalization abil-
ity, i. e., according to Eq. (13) a low risk R(g), is
based on the bias-variance decomposition. In [16]
it is shown that the bias-variance decomposition of
the generalization error for classification problems
does not lead to an additive relation between bias
and variance, as it is the case in regression tasks,

and that it is possible to reduce the classification
error to its minimum value by reducing only the
variance. If the decisions of the individual classi-
fiers in an ensemble are combined using the major-
ity vote scheme, this is a variance-reducing tech-
nique, which leads to a high generalization ability.
The variance is reduced by a majority vote since
uncorrelated errors made by the individual classi-
fiers can be removed. Another explanation for the
superior performance of ensemble learning classi-
fiers compared to a “single best learner” is given
in [17], where three reasons are mentioned: the
training data might not provide sufficient informa-
tion for choosing a single best classifier, the learn-
ing algorithms for the single best classifier might
not be able to solve difficult search problems, and
finally the hypothesis space for the single best clas-
sifier might not contain the Bayes classifier gB.

3.1.2 RF Kernel

A well-known ensemble learning classifier is
the RF algorithm. The RF algorithm has been in-
troduced by Breiman in [18] and it is one of the
most powerful known off-the-shelf machine learn-
ing procedures for classification. It is a random-
ized and aggregated version of the well-known [19]
Classification And Regression Tree (CART) al-
gorithm strengthened by the bagging (bootstrap
aggregating) technique. Given a RF with B trees,
an intrinsic similarity measure in the input space
between the input vectors wm and wn is given by
the measure

prox(wm,wn) =
B′(wm,wn)

B
. (16)

Hereby, B′(wm,wn) is the number of trees in the
RF in which the input vector wm and wn lie in the
same leaf. The measure prox(wm,wn) has been in-
troduced by Breiman in [18] as the proximity mea-
sure and it has been shown in [20] that it can be
interpreted for full-grown CART-trees in the RF as
a kernel

κRF(wm,wn) = prox(wm,wn). (17)

Besides providing a similarity measure, that will be
used for the construction of GRBF-classifiers (see
next Subsection), the RF-algorithm also offers the
possibility to generate an unbiased estimate of the
generalization error if the number B of trees in the
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RF is large [18]. This is realized by the bootstrap
procedure when training the trees in the RF, such
that each training pattern is not seen by approxi-
mately 36% of the B trees in the RF. By evaluating
each pattern with a majority vote only among those
trees which have not seen this pattern during train-
ing one obtains a so-called out-of-bag estimate of
the generalization error. In [21] Breiman gives em-
pirical evidence that the out-of-bag estimate is as
accurate as using a test set of the same size as the
training set. This way by using a RF classifier gRF it
is possible to determine a good estimate Roob(gRF)
of the risk R(gRF), which is also a measure of the
complexity of the classification task that must be
solved.

3.1.3 GRBF

The design of GRBF in this work is based
on [20], where the main idea is to carry over
the good generalization properties of the RF al-
gorithm to GRBF classifiers by approximating the
RF-kernels with Gaussian kernels. After train-
ing a RF classifier gRF and computing the kernel
κRF(wm,wn) between each pair of feature vectors
(wm,wn) from the training set a class-wise cluster-
ing of the training data is performed. This leads to
H clusters and for each cluster the sample mean th
and the sample covariance matrix Ch are computed.
For a feature vector w the similarity sh(w,th) to the
sample mean th, which can be interpreted as a tem-
plate of the data in the h-th cluster, can be imple-
mented by

sh(w,th)=exp
(
−γ(w−th)

TC−1
h (w−th)

)
, (18)

where γ > 0 is a tuning parameter. The GRBF clas-
sifier is realized using the architecture presented in
Figure 7.

Figure 7. Architecture of a GRBF classifier

The output z̃ = [z̃1, . . . , z̃Q]
T of the GRBF clas-

sifier is computed as

z̃=As, (19)

where A ∈ RQ×H is a weight matrix with
the (q,h)-th entry being αq,h and s =
[s1(w,t1), . . . ,sH(w,tH)]

T denotes the similarity of
the feature vector w to the H centers. Having M
patterns in the training data set the weights αq,h and
the parameter γ are computed by the minimization
of

ε =
1
M

M

∑
m=1

||z̃m −eq(m)||2, (20)

with eq(m) being the unit vector representation of
the class cq belonging to the feature vector wm and
z̃m =Asm, where sm ∈ RH denotes the similarities
of wm to the H templates th. Finally, an output
z̃ ∈ RQ can be transformed by a mapping m

m : RQ → [0,1]Q, z̃ �→ ẑ (21)

as described in [22] to a vector ẑ of estimated a-
posteriori probabilities

ẑ= [ẑ1, . . . , ẑQ]
T (22)

= [p̂z|w(z=c1|w=w), . . . , p̂z|w(z=cQ|w=w)]T.

This way by choosing for a given feature vector
w as label the class with the highest estimated
a-posteriori probability an estimate of the MAP-
classifier from Eq. (15) is realized.
The “fuzzy-like” interpretability that can be ob-
tained with the GRBF classifier must be understood
as a statement of the form: “The feature vector
w obtains the class label cq because it is close to
at least one center th that belongs to class cq and
far away from the centers that belong to the other
classes”. Besides the good generalization perfor-
mance that is inherited from the RF algorithm and
the fuzzy-like interpretability, these GRBF classi-
fiers require low computational resources making
them attractive for implementations on microcon-
trollers.

3.2 Data Generation

In order to train the classifiers to detect various
segmentation points, several training data sets are
needed. For this reason, a simulation program was
designed with the purpose of creating them. Given a
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certain range for the initial conditions, this program
is able to find the right maneuver that drives the ve-
hicle in the desired parking spot, and store it in a
database. This is done in two different ways, mainly
depending on the geometry of the considered park-
ing area (i. e., parallel or cross parking), but always
applying the same concept. The maneuver is split-
ted into segments which can be either straight lines
or arcs, whose lengths depend on the initial state of
the car and on its relative position with respect to
the parking spot (see Figures 8 and 9). The simula-
tion program changes iteratively the lengths of the
segments until the vehicle is able to enter its park-
ing spot without occupying the adjacent ones. By
this procedure a labeling of the feature vectors is
performed.

For the simulation the geometric and physical
characteristics of the small-scale vehicle which will
be employed in the testing phase are used.

3.2.1 Parallel-Parking

The maneuver structure for the parallel parking
is depicted in Figure 8. Two segmentation points
that divide the maneuver into three segments can be
seen: the first is straight, the second and the third
are driven at the maximum steering angle value,
respectively clockwise and counterclockwise. The
length of these segments, or their duration given a
certain vehicle speed, is to be found by means of
the algorithm mentioned in Subsection 3.2. In this
way, the parking area and the vehicle state can be
mapped to a feature space. The feature spaces of the
classifiers used for the maneuvers are shown later in
Figures 13a and 13b.

Figure 8. Parallel parking maneuver

3.2.2 Cross-Parking

In Figure 9 the structure of the cross parking
maneuver is depicted. As in the case of the parallel
parking, it is divided into three segments, which dif-
fer from the previous ones only in their relative po-
sition. The second segment here is obtained driving

with maximum value of the steering angle counter-
clockwise, while the third one is driven clockwise.
Similar to the previous case, also the feature spaces
of the classifiers used for the cross parking maneu-
ver are shown later in Figures 13c and 13d.

Figure 9. Cross parking maneuver

3.2.3 Oblique-Parking

Figure 10 visualizes the oblique parking, where
the maneuver is made up of only two segments.
Therefore, only one segmentation point is defined.
The first segment is straight, while the second the
second is driven at the maximum steering angle
value. Also here, the length of these segments will
be found using the procedure explained in Subsec-
tion 3.2.

Figure 10. Oblique-parking maneuver

3.3 Feature Spaces and Visualization

The generation of the features, which is repre-
sented in Figures 1 and 6 by the block “FEATURE
GENERATION”, is described in this Subsection.
For the classification tasks that must be performed
for the segmentation of parking maneuvers three-
dimensional feature spaces are chosen, i. e., w∈R3.
Being able to work with three-dimensional feature
spaces has the huge advantage that the decisions
of the classifiers can be visualized and hereby val-
idated by experts. The three features are the x dis-
tance dx, the y distance dy, and the yaw angle ψ.
While the yaw angle has a clear meaning (namely
the orientation of the car in the global reference
frame as defined in Figure 4), the two distances
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one center th that belongs to class cq and far away
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Besides the good generalization performance that is
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interpretability, these GRBF classifiers require low
computational resources making them attractive for
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3.2 Data Generation
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needed. For this reason, a simulation program was
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gorithm mentioned in Subsection 3.2. In this way,
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to a feature space. The feature spaces of the classi-
fiers used for the maneuvers are shown later in Fig-
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3.2.2 Cross-Parking

In Figure 9 the structure of the cross parking maneu-
ver is depicted. As in the case of the parallel parking,
it is divided into three segments, which differ from
the previous ones only in their relative position. The
second segment here is obtained driving with max-
imum value of the steering angle counterclockwise,
while the third one is driven clockwise.
Similar to the previous case, also the feature spaces
of the classifiers used for the cross parking maneuver
are shown later in Figures 13c and 13d.
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3.2.3 Oblique-Parking

Figure 10 visualizes the oblique parking, where the
maneuver is made up of only two segments. There-
fore, only one segmentation point is defined. The
first segment is straight, while the second the second
is driven at the maximum steering angle value. Also
here, the length of these segments will be found us-
ing the procedure explained in Subsection 3.2.
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The generation of the features, which is repre-
sented in Figures 1 and 6 by the block “FEATURE
GENERATION”, is described in this subsection.
For the classification tasks that must be performed
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for the segmentation of parking maneuvers three-
dimensional feature spaces are chosen, i. e., w ∈ R3.
Being able to work with three-dimensional feature
spaces has the huge advantage that the decisions of
the classifiers can be visualized and hereby validated
by experts. The three features are the x distance
dx, the y distance dy, and the yaw angle ψ. While
the yaw angle has a clear meaning (namely the ori-
entation of the car in the global reference frame as
defined in Figure 4), the two distances need to be
clarified. They are the oriented projections on the
axes of the global reference frame of the vector that
goes from the center of gravity of the vehicle to the
most critical point in the parking area. In the parallel
parking scenario this point is the rear left corner of
the rectangle representing the parking spot in front
of the target spot. In the cross parking scenario the
critical point is the rear right corner of the rectan-
gle representing the parking spot on the right of the
target spot. The bold vectors in Figures 11 and 12
visualize how the features dx and dy are computed.

Figures 13a and 13b show the feature spaces of the
two classifiers that are used for the segmentation of
the parallel parking maneuver. Being only three-
dimensional, the feature space has been sampled for
the generation of the figures and only those feature
vectors where the classifiers detect a transition from
one sub-maneuver to the next are represented with
markers. These markers form the “clouds” in the fig-
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certain range for the initial conditions, this program
is able to find the right maneuver that drives the ve-
hicle in the desired parking spot, and store it in a
database. This is done in two different ways, mainly
depending on the geometry of the considered park-
ing area (i. e., parallel or cross parking), but always
applying the same concept. The maneuver is split-
ted into segments which can be either straight lines
or arcs, whose lengths depend on the initial state of
the car and on its relative position with respect to
the parking spot (see Figures 8 and 9). The simula-
tion program changes iteratively the lengths of the
segments until the vehicle is able to enter its park-
ing spot without occupying the adjacent ones. By
this procedure a labeling of the feature vectors is
performed.

For the simulation the geometric and physical
characteristics of the small-scale vehicle which will
be employed in the testing phase are used.

3.2.1 Parallel-Parking

The maneuver structure for the parallel parking
is depicted in Figure 8. Two segmentation points
that divide the maneuver into three segments can be
seen: the first is straight, the second and the third
are driven at the maximum steering angle value,
respectively clockwise and counterclockwise. The
length of these segments, or their duration given a
certain vehicle speed, is to be found by means of
the algorithm mentioned in Subsection 3.2. In this
way, the parking area and the vehicle state can be
mapped to a feature space. The feature spaces of the
classifiers used for the maneuvers are shown later in
Figures 13a and 13b.

Figure 8. Parallel parking maneuver

3.2.2 Cross-Parking

In Figure 9 the structure of the cross parking
maneuver is depicted. As in the case of the parallel
parking, it is divided into three segments, which dif-
fer from the previous ones only in their relative po-
sition. The second segment here is obtained driving

with maximum value of the steering angle counter-
clockwise, while the third one is driven clockwise.
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be found using the procedure explained in Subsec-
tion 3.2.
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3.3 Feature Spaces and Visualization

The generation of the features, which is repre-
sented in Figures 1 and 6 by the block “FEATURE
GENERATION”, is described in this Subsection.
For the classification tasks that must be performed
for the segmentation of parking maneuvers three-
dimensional feature spaces are chosen, i. e., w∈R3.
Being able to work with three-dimensional feature
spaces has the huge advantage that the decisions
of the classifiers can be visualized and hereby val-
idated by experts. The three features are the x dis-
tance dx, the y distance dy, and the yaw angle ψ.
While the yaw angle has a clear meaning (namely
the orientation of the car in the global reference
frame as defined in Figure 4), the two distances
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need to be clarified. They are the oriented projec-
tions on the axes of the global reference frame of the
vector that goes from the center of gravity of the ve-
hicle to the most critical point in the parking area.
In the parallel parking scenario this point is the rear
left corner of the rectangle representing the parking
spot in front of the target spot. In the cross parking
scenario the critical point is the rear right corner of
the rectangle representing the parking spot on the
right of the target spot. The bold vectors in Fig-
ures 11 and 12 visualize how the features dx and dy

are computed.

Figure 11. Critical point in the parallel parking
scenario

Figure 12. Critical point in the cross parking
scenario

Figures 13a and 13b show the feature spaces of
the two classifiers that are used for the segmentation
of the parallel parking maneuver. Being only three-
dimensional, the feature space has been sampled for
the generation of the figures and only those feature
vectors where the classifiers detect a transition from
one sub-maneuver to the next are represented with
markers. These markers form the “clouds” in the
figures. Similarly for the cross parking maneuver
the feature spaces and the decisions of the two clas-
sifiers are visualized in Figures 13c and 13d.

(a) Classifier for the first
segmentation point of the
parallel parking maneuver

(b) Classifier for the sec-
ond segmentation point of
the parallel parking ma-
neuver

(c) Classifier for the first
segmentation point of the
cross parking maneuver

(d) Classifier for the sec-
ond segmentation point of
the cross parking maneu-
ver

(e) Classifier for the seg-
mentation point of the
oblique parking maneuver

Figure 13. Feature spaces and decisions of the
four classifiers

The visualization of the decision boundaries of
the four classifiers reveal that their learned behavior
conforms with expert knowledge.

4 Validation Using a Small-Scale
Autonomous Vehicle

In order to test the parking maneuver algo-
rithms, a model of a fully autonomous car was
used. This has been provided by Audi AG for its
contest Audi Autonomous Driving Cup.
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ures. Similarly for the cross parking maneuver the
feature spaces and the decisions of the two classifiers
are visualized in Figures 13c and 13d. The visualiza-
tion of the decision boundaries of the four classifiers
reveal that their learned behavior conforms with ex-
pert knowledge.

4 Validation Using a Small-Scale
Autonomous Vehicle

In order to test the parking maneuver algorithms, a
model of a fully autonomous car was used. This has
been provided by Audi AG for its contest Audi Au-
tonomous Driving Cup.

4.1 Hard- and Software
In Figure 14 there is a scheme of the hardware of the
small-scale car used for the presented tests.
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The core of the computing system is an ODROID-X2
board. It is used for the main signal processing, sen-
sor funsion, situation interpretation and action plan-
ning. This board is connected via USB with an Ar-
duino Due board which takes care of the interface
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In order to test the parking maneuver algorithms, a
model of a fully autonomous car was used. This has
been provided by Audi AG for its contest Audi Au-
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In Figure 14 there is a scheme of the hardware of the
small-scale car used for the presented tests.
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Figure 14. Hardware of the small-scale car used
for testing

The core of the computing system is an
ODROID-X2 board. It is used for the main sig-
nal processing, sensor funsion, situation interpreta-
tion and action planning. This board is connected
via USB with an Arduino Due board which takes
care of the interface with sensors and actuators, i. e.,
reading the values of the signals coming from the
sensors and writing the calculated values to the ac-
tuators or the actuators controllers. An ASUS xtion
camera is directly connected, also via USB, to the
ODROID board. This is able to provide both RGB
images and depth maps by the aid of a built-in in-
frared device. Other exteroceptive sensors are the
infrared and the ultrasound sensors, which are ho-
mogeneously distributed around the vehicle.
As far as the software is concerned, on the ODROID
board, a Linux distribution is installed. The frame-
work in which all the functions have been integrated
is ADTF (Automotive Data and Time-Triggered
Framework), that is a framework widely used in the
automotive industry. All the functions have been
written in C++, making use of OpenCV libraries for
the basic image processing functions.

4.2 Validation Procedure and Results

The size of the training data for the four classi-
fiers is presented in Table 1.

The out-of-bag generalization errors of the
trained RF-classifiers (see Subsection 3.1) and the
resubstitution errors of the GRBF-classifer are pre-
sented in Table 2, 3 and 4.

Table 1. Number of patterns in the training data set
for the parallel, cross and oblique parking

maneuver

Parallel Cross Oblique

Classifier 1 1512 1728 7560

Classifier 2 2354 2514 —

Table 2. Performance of Classifiers for the Parallel
Parking Maneuver

Classif. 1 Classif. 2

OOB error RF 6.18% 1.32%

Resubstitution 3.44% 1.15%
error GRBF

Table 3. Performance of Classifiers for the Cross
Parking Maneuver

Classif. 1 Classif. 2

OOB error RF 8.12% 1.79%

Resubstitution 8.85% 1.63%
error GRBF

Table 4. Performance of Classifier for the Oblique
Parking Maneuver

Classif. 1

OOB error RF 1.23%

Resubstitution 2.46%
error GRBF

As expected from the visualization in Figure 13
the classifiers trained to detect the first segmenta-
tion point perform worse than the classifiers for
the second segmentation point for both parallel and
cross parking maneuvers. In particular the detec-
tion of the first segmentation point in cross parking
maneuvers is a hard classification task.
Tables 5 and 6 report the results of a series of tests
carried on with the small-scale autonomous vehicle
in order to validate the whole parking procedure and
compare it to the simulation results. Figures 15a
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with sensors and actuators, i. e., reading the values
of the signals coming from the sensors and writing
the calculated values to the actuators or the actuators
controllers. An ASUS xtion camera is directly con-
nected, also via USB, to the ODROID board. This is
able to provide both RGB images and depth maps by
the aid of a built-in infrared device. Other exterocep-
tive sensors are the infrared and the ultrasound sen-
sors, which are homogeneously distributed around
the vehicle.
As far as the software is concerned, on the ODROID
board, a Linux distribution is installed. The frame-
work in which all the functions have been integrated
is ADTF (Automotive Data and Time-Triggered
Framework), that is a framework widely used in the
automotive industry. All the functions have been
written in C++, making use of OpenCV libraries for
the basic image processing functions.

4.2 Validation Procedure and Results

The size of the training data for the four classifiers
is presented in Table 1. The out-of-bag generaliza-
tion errors of the trained RF-classifiers (see Subsec-
tion 3.1) and the resubstitution errors of the GRBF-
classifer are presented in Table 2, Table 3 and Ta-

Table 1: Number of patterns in the training data set
for the parallel, cross and oblique parking maneuver

Parallel Cross Oblique

Classifier 1 1512 1728 7560

Classifier 2 2354 2514 —

ble 4.

Table 2: Performance of Classifiers for the Parallel
Parking Maneuver

Classif. 1 Classif. 2

OOB error RF 6.18% 1.32%

Resubstitution 3.44% 1.15%
error GRBF

Table 3: Performance of Classifiers for the Cross
Parking Maneuver

Classif. 1 Classif. 2

OOB error RF 8.12% 1.79%

Resubstitution 8.85% 1.63%
error GRBF

As expected from the visualization in Figure 13 the
classifiers trained to detect the first segmentation
point perform worse than the classifiers for the sec-
ond segmentation point for both parallel and cross
parking maneuvers. In particular the detection of the
first segmentation point in cross parking maneuvers
is a hard classification task.
Tables 5 and 6 report the results of a series of tests
carried on with the small-scale autonomous vehicle
in order to validate the whole parking procedure and
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to 15d show prototypically an autonomous parallel
parking maneuver that was implemented using the
GRBF-classifiers.

(a) Beginning of the ma-
neuver

(b) First segmentation
point

(c) Second segmentation
point

(d) Final position of the car

Figure 15. Parallel parking maneuver tested on the
car model

A maneuver is considered to be successful
when the final position and orientation of the car
are within the same boundaries used for the training
procedure. This is given when the center of gravity
of the car is inside a square centered at the center of
the parking spot, and its orientation, before align-
ment, does not differ more than 45◦ from the ideal
one. The cases 1, 2, and 3 in Tables 5 and 6 (first,
second, and third row) correspond to those tests in
which the position and the orientation of the vehicle
at the beginning of the maneuver are: inside the re-
gion of the feature space where the classifiers were
trained (case 1), outside of this region but within
130% of its boundary (case 2), outside of this re-
gion and between 130% and 160% of its boundary
(case 3). These tests were performed exemplarily
for the parallel parking maneuver.

– For the first case the tests show that all maneu-
vers succeeded bringing the vehicle in the right
final position.

– In the second case, even though the initial con-
ditions of the vehicle are outside the training-
region, 60% of the maneuvers succeeded and,
when they failed, the two classifiers have the
same percentage of error.

– In the third case, all the 19 failing maneuvers
were already due to the first classifier, for the
first segmentation point. In this case the out-
puts of the second classifier are ignored due

to the logic in the block “DECISION SUB-
MANEUVER” in Figure 2.

The percentages in Table 6 are relative to the
number of failed tests for each case.

Table 5. Results of 100 tests carried on with the
small-scale autonomous vehicle (successful

maneuvers)

Completed successfully

Case 1 (40 tests) 40

Case 2 (30 tests) 18

Case 3 (30 tests) 11

Table 6. Results of 100 tests carried on with the
small-scale autonomous vehicle (most failing

classifier)

Most failing classifier

Case 1 (40 tests) —

Case 2 (30 tests) Classifier 1 and 2 (50%)

Case 3 (30 tests) Classifier 1 (100%)

Since the region of the feature space covered by
the training data is the most frequently expected,
the focus should lie on case 1. The out-of-bag error
of the RF classifiers indicates a generalization error
of approximately 6% which for 40 tests means 2
failures. From the resubstitution error of the GRBF
classifiers (3.44%), which in general is smaller than
the true generalization error, we could expect at
least 1 failure. In the tests no failure was observed
for case 1, which is due to the small number of tri-
als.

5 Conclusion

A machine learning approach to realize an au-
tonomous parking maneuver has been introduced in
this work. The approach relies on dividing a com-
plex driving maneuver into segments. The detec-
tion of the transition points from one segment to
another is performed with GRBF-classifiers which
were generated by using the kernel of an ensemble
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classifier, the RF algorithm. The training and a first
validation have been done using simulation data.
Then, the classifiers were implemented into a small-
scale autonomous vehicle and the whole procedure
for autonomous parking was validated successfully
in a number of trials. Besides the high robustness,
which has been pointed out in previous Section, the
presented method does not require much compu-
tational effort both for the sensor data acquisition
and pre-processing, and also for the computation of
suitable parking maneuvers. These are big advan-
tages of the presented parking method over different
currently-adopted strategies mentioned in Section
1. They can be exploited to reduce both the park-
ing maneuver computational time and the complex-
ity of the whole hard- and software system archi-
tecture. The results demonstrate that the method-
ology of training classifiers using only simulation
data and then implementing them in real systems is
extremely well-suited for this application.
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validation have been done using simulation data.
Then, the classifiers were implemented into a small-
scale autonomous vehicle and the whole procedure
for autonomous parking was validated successfully
in a number of trials. Besides the high robustness,
which has been pointed out in previous Section, the
presented method does not require much compu-
tational effort both for the sensor data acquisition
and pre-processing, and also for the computation of
suitable parking maneuvers. These are big advan-
tages of the presented parking method over different
currently-adopted strategies mentioned in Section
1. They can be exploited to reduce both the park-
ing maneuver computational time and the complex-
ity of the whole hard- and software system archi-
tecture. The results demonstrate that the method-
ology of training classifiers using only simulation
data and then implementing them in real systems is
extremely well-suited for this application.

Acknowledgment

The authors would like to thank the committee
of the Audi Autonomous Driving Cup for providing
the small-scale autonomous vehicle.

References
[1] K. Min, J. Choi, H. Kim, and H. Myung, Design

and implementation of path generation algorithm for
controlling autonomous driving and parking, in 12th
International Conference on Control, Automation
and Systems (ICCAS), Jeju Island, Korea, 2012, pp.
956–959

[2] I. E. Paromtchik and C. Laugier, Autonomous par-
allel parking of a nonholonomic vehicle, in Proc. of
the IEEE Intelligent Vehicles Symposium, Tokyo,
Japan, 1996, pp. 13–18

[3] J. Z. Kolter, C. Plagemann, D. T. Jackson, A. Y.
Ng, and S. Thrun, A probabilistic approach to mixed
open-loop and closed-loop control, with application
to extreme autonomous driving, in IEEE Interna-
tional Conference on Robotics and Automation, An-
chorage, Alaska, USA, 2010, pp. 839–845

[4] T. K. Lau, Learning autonomous drift parking from
one demonstration, in Proc. of the IEEE Interna-
tional Conference on Robotics and Biomimetics,
Phuket, Thailand, 2011, pp. 1456–1461

[5] M. R. Heinen, F. S. Osório, F. J. Heinen, and C. Kel-
ber, Seva3d: Using artificial neural networks to au-
tonomous vehicle parking control, in 2006 Interna-
tional Joint Conference on Neural Networks, Van-
couver, BC, Canada, 2006, pp. 4704–4711

[6] N. N. Samani, J. Ghaisari, and M. Danesh, 2nd in-
ternational econference on computer and knowledge
engineering (iccke), in 2006 International Joint Con-
ference on Neural Networks, 2012, pp. 117–122

[7] D. Gorinevsky, A. Kapitanovsky, and A. Golden-
berg, Design of radial basis function-based con-
troller for autonomous parking of wheeled vehicles,
in Proc. of the American Control Conference, Balti-
more, Maryland, 1994, pp. 806–810

[8] S. Kim, W. Liu, and K. A. Marczuk, Autonomous
parking from a random drop point, in 2014 IEEE
Intelligent Vehicles Symposium (IV), Dearborn,
Michigan, USA, 2014, pp. 498–503

[9] Y. Wang and X. Zhu, Hybrid fuzzy logic controller
for optimized autonomous parking, in American
Control Conference (ACC), Washington, DC, USA,
2013, pp. 182–187

[10] Z. Joung, K. J. W. X. DongJi, and K. Y. Bae, A
study of autonomous parking for a 4-wheel driven
mobile robot, in Proc. of the 26th Chinese Control
Conference, Zhangjiajie, Hunan, China, 2007, pp.
179–184

[11] R. Schubert, E. Richter, and G. Wanielik, Compar-
ison and evaluation of advanced motion models for
vehicle tracking, in 11th International Conference
on Information Fusion, 2008

[12] B. Siciliano and O. Kathib, Springer Handbook of
Robotics, Berlin, Germany: Springer, 2008

[13] P. S. Maybeck, Stochastic Models, Estimation and
Control, New York, NY, USA: Academic Press,
1979, vol. 1

[14] T. Hastie, R. Tibshirani, and J. Friedman, The Ele-
ments of Statistical Learning, Springer-Verlag, 2001

[15] P. Banerjee and R. Nevatia, Dynamics based tra-
jectory segmentation for uav videos, in Conference
on Advanced Video and Signal Based Surveillance
(AVSS), 2010 Seventh IEEE International, Boston,
MA: IEEE, 2010, pp. 345 – 352

[16] J. H. Friedman, On bias, variance, 0/1-loss and the
curse of dimensionality, Data Mining and Knowl-
edge Discovery, vol. 1, pp. 55–77, 1997

[17] T. G. Dietterich, Machine learning research: Four
current directions, AI Magazine, vol. 18, no. 4, pp.
97–136, 1997

[18] L. Breiman, Random forests, Machine Learning,
vol. 45, no. 1, pp. 5–32, 2001

A MACHINE LEARNING APPROACH FOR . . .

[19] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone, Classification and Regression Trees, ser. The
Wadsworth & Brooks/Cole Statistics/Probability
Series, Wadsworth, 1984

[20] M. Botsch and J. A. Nossek, Construction of in-
terpretable radial basis function classifiers based on
the random forest kernel, in IEEE World Congress

on Computational Intelligence 2008 (WCCI 2008),
2008

[21] L. Breiman, Out-of-bag estimation, University of
California, Berkeley, Tech. Rep., 1996

[22] J. Schürmann, Pattern Classification: a unified
view of statistical and neural approaches, John Wi-
ley & Sons, 1996

Gennaro Notomista received the 
Bachelor’s Degree in Mechanical En-
gineering in 2012 from the University 
of Naples “Federico II”, Naples, Italy, a 
Master of Engineering in Automotive 
Engineering in 2015 from the Technis-
che Hochschule Ingolstadt, Germany, 
and a Master of Science in Mechanical 
Engineering in 2016 from the Univer-

sity of Naples “Federico II”, all with honors. From 2016 he 
is a PhD student in Robotics at the Institute for Robotics and 
Intelligent Machines at the Georgia Institute of Technology, 
Atlanta, GA, USA. He is a student member of IEEE.

Michael Botsch received the diploma 
and doctoral degrees in electrical en-
gineering, both with honors, from 
Technische Universität München, 
München, Germany, in 2005 and 2009. 
He worked for fi ve years in the auto-
motive industry as Development Engi-
neer at Audi AG in the fi eld of active 
safety systems. In October 2013 he was 

appointed Professor for Vehicle Safety and Signal Process-
ing at Technische Hochschule Ingolstadt in the Department 
of Electrical Engineering and Computer Science. He is the 
Associate Scientifi c Director of the vehicle safety research 
center CARISSMA at Technische Hochschule Ingolstadt. His 
research interests are in signal processing and automotive ap-
plications. Prof. Botsch is a member of IEEE and VDE.


